
Principles of Computer Game
Design and Implementation

Lecture 6

We already knew

• Game history

• game design information

• Game engine

2

What’s Next

• Mathematical concepts (lecture 6-10)

• Collision detection and resolution (lecture 11-
16)

• Game AI (lecture 17 -)

3

Mathematical Concepts

3D modelling, model manipulation and
rendering require Maths and Physics

• Typical tasks:

– How to position objects?

– How to move and rotate objects

– How do objects interact?

5

2D Space

• We will start with a 2D space (simpler) and
look at issues involved in

– Modelling

– Rendering

– Transforming the model / view

6

2D Geometry

• Representation with two
axes, usually X (horizontal)
and Y (vertical)

• Origin of the graph and of
the 2D space is where the
axes cross (X = Y = 0)

• Points are identified by their
coordinates

7

Viewports

• A viewport (or window) is a rectangle of pixels
representing a view into world space

• A viewport has its own coordinate system, which may
not match that of the geometry.
– The axes will usually be X horizontal & Y vertical

• But don’t have to be – rotated viewports

– The scale of the axes may be different

– The direction of the Y axis may differ.
• E.g. the geometry may be stored with Y up, but the viewport has

Y down.

– The origin (usually in the corners or centre of the viewport)
may not match the geometry origin.

8

Example

• Example of changing coordinate system from world
space to viewport space:

P = (20,15) in world space. Where is P’ in viewport
space? 9

800

600

400

10 3020 40

10

20
P

Rendering

• Rendering is the process of converting geometry into
screen pixels

• To render a point:

– Convert vertex coordinates into viewport space

– Set the colour of the pixel at those coordinates

– The colour might be stored with the geometry, or we can
use a fixed colour (e.g. black)

10

800

600

400

10 3020 40

Rendering Lines and Shapes

• Need to determine
which part of the
line is visible, where
it meets the
viewport edge and
how to crop it.

• In “Ye good old days” this was rather difficult
• With support from rendering libraries easy

11

Points and Vectors

• Point: a location in space

• Vector: a direction in space

x

y

. (1, 1.2)

x

y

. (1, 1.2)

12

What’s the Difference?

• The only difference is “meaning”

• But think about

– “move a picture to the right

– “move a picture up”

– “move a picture in the direction …”

• Vectors specify the direction

13

Moving an Object

• Translation of an object
– Moving without rotating or reflecting

– Apply a vector to all points of an object

– Vector specifies direction and magnitude of
translation

x

y

. (1, 1.2)

x

y

. (1, 1.2)

14

Vectors

A vector is a directed line segment
• The length of the segment is called the length

or magnitude of vector.
• The direction of the segment is called the

direction of vector.
• Notations: vectors are usually denoted in

bold type, e.g., a, u, F, or underlined, a, u, F.

Same direction,
red is twice as long

15

Translation Recipe

• In order to translate (move) an object in the
direction given by a vector V, move all points.

P’ = (xp + xv, yp + yv)
V = (xv, yv)
P = (xP, yp)

x

y

.

V(xv,yv)

P(xp, yp)

x

y

.
P’ = (xp + xv, yp + yv)

.
P’ = (xp + 2xv, yp + 2yv)

2V

16

Multiplying a Vector by a Number

• Multiplying a vector by a positive scalar
(positive number) does not change the
direction but changes the magnitude

• Multiplying by a negative number reverses the
direction and changes the magnitude

V

2V

-V

-2V

17

In Coordinates

• V=(x,y) a vector, λ a number

λV = (λx, λy)

Example:
2(2, 5) = (4, 10)
0.7(2, 5) = (1.4, 3.5)
-2(2, 5) = (-4, -10)

18

From A to B

• Which vector should be applied to move a
point from (xA,yA) to (xB,yB)?

x

y

.(xA, yA)

.(xB, yB)

-(xB - xA, yB-yA)

19

Sum of Two Vectors

• Two vectors V and W are added by placing

the beginning of W at the end of V.

x

y

V

W

V+W

20

In Coordinates

Let

• V = (xv,yv)

• W = (xw,yw)

Then

V + W = (xv+xw, yv+yw)

21

Vector Difference

• V – W = V + (-1)W

x

y

V

W

-W

V-W

22

In Coordinates

Let

• V = (xv,yv)

• W = (xw,yw)

Then

V - W = (xv-xw, yv-yw)

23

Applications

• Apply vector V to an object then apply W

– Apply V + W

– Representing motion as a combination of two

• If V takes you to A, W takes you to B, what
takes from A to B?

– Apply W – V

– Shooting, targeting

24

From 2D to 3D

• 3D geometry adds an extra axis
over 2D geometry

– This “Z” axis represents “depth”

– Can choose the “direction” of Z X

Y

Z

X

Y

Z

Y

X

25

“Handedness”

• Use thumb (X), index finger (Y) & middle finger
(Z) to represent the axes

• Use your left hand and the axes are left-handed,
otherwise they are right-handed

X

Y

Z Right-Handed System

(Z comes out of the screen)

X

Y

Z

Left-Handed System

(Z goes in to the screen)
26

Left- vs Right-Handed

• In mathematics, traditionally, right-handed
axes are used

• In computing:

– DirectX and several graphics applications use left-
handed axes

– OpenGL use right-handed

Neither is better, just a choice

27

Vectors in 3D

• Still a directed interval

• x, y and z coordinates define a vector

X

Y

Z

. (2,2,2,)

•V=(xv,yv,zv) a vector, λ a number
λV = (λxv, λyv, λzv)

•V = (xv, yv, zv); W = (xw, yw, zw)
V + W = (xv+xw, yv+yw, zv+zw)

•V = (xv, yv, zv); W = (xw, yw, zw)
V - W = (xv-xw, yv-yw, zv-zw)

28

Vectors in jMonkeyEngine

• jME defines two classes for vectors

– Vector3f

– Vector2f

• Constructors

– Vector2f(float x, float y)

– Vector3f(float x, float y, float z)

• Lots of useful methods (see javadoc)

29

Translation (setting position) in JME

protected void simpleInitApp() {

Geometry box =…;

Vector3f v= new Vector3f(1,2,0);

box.setLocalTranslation(v);

rootNode.attachChild(box);

}

Position of an object

30

Translation And the Scene Graph

• Let’s model a table Boxes

31

Boxes for Tabletop and Legs

Box tableTop = new Box(10, 1, 10);

Box leg1 = new Box(1,5,1);

…

Geometry gTableTop = new

Geometry("TableTop", tableTop);

gTableTop.setMaterial(mat);

Geometry gLeg1 = new

Geometry("Leg1", leg1);

gLeg1.setMaterial(mat);

…
32

Beware of Floats

• If you think that the table top is too thick and
change
Box tableTop = new Box(10, 1, 10);

to
Box tableTop = new Box(10, 0.3, 10);

you will see an error:

The constructor Box(int, double,

int) is undefined

Double

33

Use the “f” word! 

Box tableTop = new Box(10,

0.3f, 10);

float

Many jME methods take “single precision” float
numbers as input

No need “double precision”

34

Position the legs

…

leg1.setLocalTranslation(7, 0, 7);

leg2.setLocalTranslation(-7, 0, 7);

leg3.setLocalTranslation(7, 0,-7);

leg4.setLocalTranslation(-7, 0,-7);

Attach all to rootNode

35

Oops…

36

A Better Scene Graph

rootNode

table

tableTop legs

leg1 leg2 leg3 leg4

37

What are “table” and “legs”

• Internal nodes

Node table = new

Node(“Table”);

Node legs = new

Node(“Legs”);

…

rootNode

table

… legs

… … … …

38

Putting it Together

legs.attachChild(gLeg1);

legs.attachChild(gLeg2);

legs.attachChild(gLeg3);

legs.attachChild(gLeg4);

table.attachChild(tableTop);

table.attachChild(legs)

rootNode.attachChild(table);

rootNode

Table

tableTop Legs

Leg1 Leg2 Leg3 Leg4

39

But Does It Change the Picture?

No

40

Transforms Are in All Nodes!

legs.move(0,-5f,0);

rootNode

Table

tableTop Legs

Leg1 Leg2 Leg3 Leg4

41

Summary: Manipulation of Vectors

v

w

v + w

Vector addition

sum v + w

v
2v

(-1)v (1/2)V

Scalar multiplication of

vectors (they remain parallel)

v

w

Vector difference

v - w = v + (-w)

v

-w

v - w

x

y

Vector OP

P

O

46

Summary: Vector Arithmetic

•V=(xv,yv,zv) a vector, λ a number

λV = (λxv, λyv, λzv)

•V = (xv, yv, zv); W = (xw, yw, zw)

V + W = (xv+xw, yv+yw, zv+zw)

V - W = (xv-xw, yv-yw, zv-zw)

What about a product of V and W?

And why?

47

Summary: Vector Algebra

• a + b = b + a (commutative law)

• (a + b) + c = a + (b + c) (associative law)

• a + 0 = a

• a + (-a) = 0

• λ (μa) = (λ μ)a

• (λ + μ)a = λ a + μa

• λ(a + b) = λ a + λ b

• 1 a = a

48

