Principles of Computer Game
Design and Implementation

Lecture 6

We already knew

 Game history
* game design information
* Game engine

What’s Next

 Mathematical concepts (lecture 6-10)

* Collision detection and resolution (lecture 11-
16)

 Game Al (lecture 17 -)

Mathematical Concepts

3D modelling, model manipulation and
rendering require Maths and Physics

e Typical tasks:
— How to position objects?
— How to move and rotate objects
— How do objects interact?

2D Space

We will start with a 2D space (simpler) and
look at issues involved in

— Modelling
— Rendering
— Transforming the model / view

2D Geometry

* Representation with two
axes, usually X (horizontal)
and Y (vertical) Y X i

* Origin of the graph and of

the 2D space is where the 30
axes cross (X=Y =0) 5
* Points are identified by their

coordinates B

/Origin X Axis

10 20 30 40 /X

Viewports

* A viewport (or window) is a rectangle of pixels
representing a view into world space

* Aviewport has its own coordinate system, which may
not match that of the geometry.

— The axes will usually be X horizontal & Y vertical
* But don’t have to be — rotated viewports

— The scale of the axes may be different

— The direction of the Y axis may differ.

 E.g.the geometry may be stored with Y up, but the viewport has
Y down.

— The origin (usually in the corners or centre of the viewport)
may not match the geometry origin.

Example

Example of changing coordinate system from world

space to viewport space:

A
400 800

20
600 o P

10

10 20 30 40

P =(20,15) in world space. Where is P’ in viewport
space?

Rendering

* Rendering is the process of converting geometry into
screen pixels

* To render a point:
— Convert vertex coordinates into viewport space
— Set the colour of the pixel at those coordinates

— The colour might be stored with the geometry, or we can
use a fixed colour (e.g. black)

Rendering Lines and Shapes

>

* Need to determine

which part of the o 8o
line is visible, where / \
it meets the -
viewport edge and 60?| e *
how to crop it. v ‘\

10 20 30 70 ->

* |In “Ye good old days” this was rather difficult
* With support from rendering libraries easy

Points and Vectors

* Point: a location in space
* Vector: a direction in space

12

What’s the Difference?

* The only difference is “meaning”

e But think about

— “move a picture to the right
— “move a picture up”
— “move a picture in the direction ...”

* Vectors specify the direction

* Translation of an object

Moving an Object

— Moving without rotating or reflecting
— Apply a vector to all points of an object

— Vector specifies direction and magnitude of
translation

14

Vectors

A vector is a directed line segment

* The length of the segment is called the length
or magnitude of vector.

* The direction of the segment is called the
direction of vector.

* Notations: vectors are usually denoted in
bold type, e.g., a, u, F, or underlined, a, u, F

/> Same direction,
/ red is twice as long

Translation Recipe

* |n order to translate (move) an object in the
direction given by a vector V, move all points.

A A P” = (x, + 2x,, ¥, + 2v,)
y y ’ _
2V

— e

Multiplying a Vector by a Number

 Multiplying a vector by a positive scalar
(positive number) does not change the
direction but changes the magnitude

 Multiplying by a negative number reverses the
direction and changes the magnitude

In Coordinates

* V=(x,y) a vector, A a number

AV = (Ax, Ay)

Example:
2+(2,5) =(4, 10)
0.7+(2, 5) = (1.4, 3.5)
-2+(2, 5) = (-4, -10)

From Ato B

Which vector should be applied to move a
point from (x,,y,) to (Xz,Ys)?

'(XB B XA; yB'yA)

19

Sum of Two Vectors

* Two vectors V and W are added by placing
the beginning of W at the end of V.

V+W

20

In Coordinates

Let
* V=(x,Y,)
* W=(x,,Y,)

Then
V+W = (x,+X,, Y,tYy)

Vector Difference

¢ V-W=V+(-1)W

22

In Coordinates

Let

= (X, Y,)
* W=(x,Y,)

Then
V-W = (XX, YyYu)

Applications

* Apply vector V to an object then apply W
— Apply V+W
— Representing motion as a combination of two

* |f V takes you to A, W takes you to B, what
takes from A to B?

— Apply W -V
— Shooting, targeting

From 2D to 3D

* 3D geometry adds an extra axis
over 2D geometry

— This “Z” axis represents “depth”
— Can choose the “direction” of Z

25

“Handedness”

* Use thumb (X), index finger (Y) & middle finger
(Z) to represent the axes

e Use your left hand and the axes are left-handed,
otherwise they are right-handed

Ylk Y“

v

Z Right-Handed System Left-Handed System
(Z comes out of the screen) (Z goes in to the screen)

Z

Left- vs Right-Handed

* |[n mathematics, traditionally, right-handed
axes are used
* |In computing:

— DirectX and several graphics applications use left-
handed axes

— OpenGL use right-handed

Neither is better, just a choice

Vectors in 3D

 Still a directed interval
* X, Y and z coordinates define a vector

*V=(x,Y,,2,) a vector, A\ a number
V = (Ax, Ay,, Az,)

' (2;2)21)) V - (XV’ yv’ ZV); W = (XW’ yW’ ZW)
/ V+W = (X, 4%, YotV 2,+2,)

:X ‘V=(XV,yV,Z)' W=(XW'yW'Z)
V- W= (X VoY 2,20)

Vectors in jMonkeyEngine

* jME defines two classes for vectors
— Vector3f
— Vector2f

* Constructors

— Vector2f(float x, float y)
— Vector3f(float x, float y, float z)

e Lots of useful methods (see javadoc)

Translation (setting position) in JIME

protected void simplelnitApp() {
Geometry box =...;

Vector3f v= new Vector3f(1,2,0);
box.setLocalTranslation(v);

\ Position of an object

rootNode.attachChild(box);

Translation And the Scene Graph

e Let’'s model a table Boxes

31

Boxes for Tabletop and Legs

Box tableTop = new Box (10, 1, 10);
Box legl = new Box(1l,5,1);

Geometry gTableTop = new
Geometry ("TableTop", tableTop):

gTableTop.setMaterial (mat) ;

Geometry gLegl = new
Geometry ("Legl", legl);

glegl.setMaterial (mat);

Beware of Floats

* |f you think that the table top is too thick and
change
Box tableTop = new Box (10, 1, 10);

to / Double

Box tableTop = new Box (10, 0.3, 10);
you will see an error:

The constructor Box (int, double,
int) 1s undefined

33

Use the “f” word! ©

Box tableTop = new Box (10,
O.BfL;lO);

— float

Many jME methods take “single precision” float
numbers as input

No need “double precision”

Position the legs

legl.setlLocalTranslation
legZ2.setlLocalTranslation

leg3.setlLocalTranslation

legd4.setlLocalTranslation

Attach all to rootNode

Oops...

Framebuffers
Framebufers
Frameeuffers
Textures (M1
Textures CF
Textures (59
haders (M)
shaders (F)
Shaders (s)

Frames per second: 756

A Better Scene Graph

{ ootNode }

(=
el]
[(= [

What are “table” and “legs”

* Internal nodes

Node table = new
Node (“"Table”) ;

Node legs = new i “!J@ﬂ

Node (“Legs”) ; - -l -

38

legs.
legs.
legs.
legs.

Putting it Together

attachChil
attachChil
attachChil
attachChil

table.attachChild (tableTop) ;
table.attachChild(legs)

rootNode.attachChild (table) ;

39

But Does It Change the Picture?

Transforms Are in All Nodes!

legs.move (0,-5f£,0);

J tableTop { Legs]
[| : | |
J Legl ’ J Leg2 ’ J Leg3 ’ J Legd ’

Summary: Manipulation of Vectors

Y
/ 2v / Y
(-1)v (1/12)V
Vector addition

Scalar multiplication of sumv + w
vectors (they remain parallel)

V+Ww

A

Vector difference X
V-W=V+(-w)

\Vector OP

Summary: Vector Arithmetic
*V=(x,Y,Z,) a vector, A a number
= (Ax,, Ay,, Az,)

= (X, Y 2,); W =(X,, Yy Z,)
V+W-= (XV+XW’ YvtYw Zv-l_zw)

V-W = (XX, YyYu Z,-Zy)

What about a product of V and W?
And why?

Summary: Vector Algebra

a+b=b+a (commutative law)
(@a+b)+c=a+(b+c) (associative law)
a+0=a

a+(-a)=0

A(ua)=(Ap)a

(A\+pn)a=ANa+pa

AMa+b)=Aa+Ab

la=a

