Principles of Computer Game Design and Implementation

Lecture 9

Credits

- J.M. van Verth, L.M. Bishop "Essential Mathematics for Games & Interactive Applications: A Programmer's Guide". Morgan Kaufman Publishers, 2008.
- + Slides

Coordinate Systems

 Until now, we only considered the "screen" coordinates (e.g. 800x600) and "world" coordinates

 On the other hand, we've seen that translation and rotation are independent

Well, how independent are they?

Planets Example Revisited (1)

```
protected void simpleInitGame() {
moon.setLocalTranslation(40, 0, 0);
pivotNode.attachChild(moon);
```

Planet Example Revisited (2)

```
public void simpleUpdate(float tpf) {
  quat.fromAngleAxis(tpf, axis);
  pivotNode.rotate(quat);
  moon.move(tpf,0,0);
}
```

New simpleUpdate()

```
protected void simpleUpdate() {
   if (tpf < 1) {
     angle = angle + (tpf * 1);
     if (angle > 2*FastMath.PI) {
       angle -= 2*FastMath.PI;
   rotQuat.fromAngleAxis(angle, axis);
   pivotNode.setLocalRotation(rotQuat);
 moon.setLocalTranslation(moon.getLocalTransla
 tion().add(tpf*5,0,0));
```

To See It Better

Replace sphere with AxisRods

Local Coordinate System

- Every object has it's own "local" coordinate system, which can be placed into the world coordinate system
 - Screen coordinates and world coordinates are local coordinates

Advantages

- Objects can be manipulated "locally"
- Physical interaction is easier to describe
- Lighting of 3D objects is easier to compute

 However, a transformation from one coordinate system to another is required

What Are Local Coordinates

Three vectors $\mathbf{X}_p \mathbf{Y}_p \mathbf{Z}_p$ define local coordinates at P

So, we need a way to transform between coordinates

Dot and Cross Products

- Given two vectors, V and W, there are two product operators
 - V•W a "dot" product
 - A number
 - Used to project

- $-\mathbf{V} \times \mathbf{W} \mathbf{a}$ "cross" product
 - A vector
 - Used to find normals

Dot Product

- Coordinate-independent definition
 - Given V and W

$$\mathbf{V} \cdot \mathbf{W} = \|\mathbf{V}\| \cdot \|\mathbf{W}\| \cdot \cos \theta$$

where $\| \|$ is the length and θ is the angle between the vectors

Dot Product

In coordinates

$$\mathbf{V} = (x_v, y_v, z_v)$$

$$\mathbf{W} = (x_w, y_w, z_w)$$

$$\mathbf{V} \cdot \mathbf{W} = x_v \cdot x_w + y_v \cdot y_w + z_v \cdot z_w$$

Uses: Vector Length

• Since cos(0) = 1

$$\mathbf{V} \cdot \mathbf{V} = \|\mathbf{V}\| \cdot \|\mathbf{V}\| \cdot \cos 0 = \|\mathbf{V}\|^2$$

Hence,

$$\|\mathbf{V}\| = \sqrt{\mathbf{V} \cdot \mathbf{V}}$$

Uses: Measuring Angles

On the one hand,

$$\mathbf{V} \cdot \mathbf{W} = \|\mathbf{V}\| \cdot \|\mathbf{W}\| \cdot \cos \theta$$

On the other,

$$\mathbf{V} \cdot \mathbf{W} = x_v \cdot x_w + y_v \cdot y_w + z_v \cdot z_w$$

So,

$$\theta = \cos^{-1}\left(\frac{\mathbf{V} \cdot \mathbf{W}}{\|\mathbf{V}\| \cdot \|\mathbf{W}\|}\right)$$

Can be computed from vector coordinates

Uses: Classifying Angle

• Since $\|\mathbf{V}\|$ and $\|\mathbf{W}\|$ are non-negative

- If
$$\mathbf{V} \cdot \mathbf{W} > 0$$
 then angle < 90°
- If $\mathbf{V} \cdot \mathbf{W} = 0$ then angle = 90°
- If $\mathbf{V} \cdot \mathbf{W} < 0$ then angle > 90°

Application: Collision Response

- V and W are speed vectors of two balls
- Three options:

$$(\mathbf{V} - \mathbf{W}) \cdot \mathbf{n} < 0$$
 Separating $(\mathbf{V} - \mathbf{W}) \cdot \mathbf{n} = 0$ Resting $(\mathbf{V} - \mathbf{W}) \cdot \mathbf{n} > 0$ Colliding

V – W is the *relative velocity*n is the vector between centres of balls

Suppose want to project W onto V

- Is part of W pointing along V
- Represented as Plant W

From trig

$$\|\operatorname{proj}_{\mathbf{V}} \mathbf{W}\| = \|\mathbf{W}\| \cos \theta = \frac{\mathbf{W} \cdot \mathbf{V}}{\|\mathbf{V}\|}$$

• Now multiply by normalized V, so

$$\operatorname{proj}_{\mathbf{V}} \mathbf{W} = \left\| \operatorname{proj}_{\mathbf{V}} \mathbf{W} \right\| \cdot \mathbf{U}_{\mathbf{V}} = \frac{\mathbf{W} \cdot \mathbf{V}}{\|\mathbf{V}\|} \cdot \frac{\mathbf{V}}{\|\mathbf{V}\|}$$
$$= \frac{\mathbf{W} \cdot \mathbf{V}}{\mathbf{V} \cdot \mathbf{V}} \mathbf{V}$$

So,

$$\operatorname{proj}_{\mathbf{V}} \mathbf{W} = \frac{\mathbf{W} \cdot \mathbf{V}}{\mathbf{V} \cdot \mathbf{V}} \mathbf{V}$$

 If V is already normalized (often the case), then becomes

$$\operatorname{proj}_{U} \mathbf{W} = (\mathbf{W} \cdot \mathbf{U})\mathbf{U}$$

• Can use this to break ${f W}$ into components parallel and perpendicular to ${f V}$

$$perp_{\mathbf{v}} \mathbf{W} = \mathbf{W} - proj_{\mathbf{v}} \mathbf{W}$$

Uses: World Coordinates to Local Coordinates

$$X_p = ((\mathbf{V} - \mathbf{P}) \cdot \mathbf{U}_{\mathbf{x}})$$

$$Y_p = ((\mathbf{V} - \mathbf{P}) \cdot \mathbf{U}_y)$$

$$Z_p = ((\mathbf{V} - \mathbf{P}) \cdot \mathbf{U}_z)$$

Need to know unit vectors U_z , U_y , U_z