
A logic of Probabilistic Knowledge and Strategy

⇤

Xiaowei Huang and Cheng Luo
School of Computer Science and Engineering

University of New South Wales, Australia
{xiaoweih,luoc}@cse.unsw.edu.au

ABSTRACT
The ability of reasoning about knowledge and strategy is key to the
autonomy of an intelligent system of multiple players. In this paper,
we study the logic of knowledge and strategy in stochastic multi-
agent systems, where the system’s behaviour is determined by both
the behaviour of the players and by some random elements. Play-
ers have incomplete information about the system and do not have
memory. A logic PATEL⇤, whose semantics is based on partially-
observed concurrent game structures, is proposed. The computa-
tional complexities of model checking the logic and its sublogics
are solved.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods

Keywords
Logic of Knowledge, Strategy Logic, Probabilistic Reasoning, Multi-
agent Systems, Computational Complexity

1. INTRODUCTION
Model checking [6] is an approach to the verification of system

designs. Taking as input a system model and a logic formula, it is
to automatically determine whether the formula holds on the model
by algorithms. Starting from temporal logics, model checking has
been extensively studied in various logics, e.g., probabilistic tem-
poral logics, strategic logics, and temporal epistemic logics, etc.

A stochastic multiagent system consists of a set of players (or
agents, processes, etc) operating concurrently in a stochastic en-
vironment. The system’s behaviour is determined both by the be-
haviour of the players and by some random elements, e.g., the inac-
curacy of the sensors, etc. In such a system, each player is assumed
to have its own local state and a system state consists of a local
state for each player. The system is incomplete information if play-
ers can not directly observe the entire system state, especially other
players’ local states. At each system state, every player will take
a local action and the next system state is determined by taking
into consideration players’ local actions and the random elements.
⇤Research supported by Australian Research Council Discovery
Grants DP1097203 and DP120102489.

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota,
USA.
Copyright c� 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Notable examples of stochastic multiagent systems include various
card games, security protocols, and military operations.

In an intelligent system of multiple players, it’s key to the au-
tonomy of the players that they have the ability of reasoning about
knowledge and strategy. Every player has its own goals and may
achieve its goals by cooperating with its alliance and competing
with its adversaries. In a play, the players may gain knowledge
and utilise the obtained knowledge to construct an optimal strat-
egy. Reasoning about knowledge and strategy has applications in
e.g., distributed systems, artificial intelligence, game theory, and
computer security, etc. Logics have been the fundamental instru-
ments when reasoning about knowledge and strategy. Among all
relevant logics, the logic of knowledge [8] and alternating time tem-
poral logic [1] are two prominent ones that have been widely used
in specifying the possibility of a property in a multi-player system
from the players’ subjective point of views. E.g., “the player i can
eventually know the fact �” and “the set A of players has a strategy
to enforce the goal �, no matter what their opponent’s strategy is”.

In stochastic multiagent systems, we are interested in not only
the possibility but also the probability of a property. E.g., “the
player i can eventually know the fact �with a probability more than
p1" and “the set A of players have a strategy to achieve the goal �
with a probability no less than p2". These probabilistic properties
may provide more insightful information into the system.

We make the following contributions in the paper. First, we study
a logic, named probabilistic alternating-time temporal epistemic
logic PATEL⇤, that combines knowledge, strategy and temporal
modalities with probabilistic measures to specify the properties of
a stochastic multiagent system. The logic has two probabilistic op-
erators: probabilistic knowledge operator and probabilistic strategy
operator. The semantics of the logic is based on partially-observed
probabilistic concurrent game structures. We assume that players
do not have memory to remember their observation histories (or
observational semantics). While it may be arguable that assuming
players have unbounded memory to remember all its past obser-
vations and local actions (or perfect recall semantics) is meaning-
ful in reasoning about critical systems, as it imposes the optimal
assumption over the adversaries, the important problem of model
checking is highly intractable. In non-probabilistic systems, [26]
proved that LTLKn is undecidable, when common knowledge op-
erator is included, and is non-elementary, otherwise. It is widely
believed [1, 23] that ATL is undecidable if assuming perfect recall.
In stochastic multiagent systems, it is worse, as [17, 14] shows that
the undecidability holds even for the single-player fragment of the
PATL logic and the probabilistic temporal epistemic logic without
common knowledge operator.

Second, the computational complexities of model checking
PATEL⇤ and its sublogics are studied. Generally, model checking

Logic Combined Model Formula
Complexity Complexity Complexity

PATEL⇤ 2-EXP-compl ⌃P
2 -compl 2-EXP-compl

PATEL �P
3 -compl ⌃P

2 -compl P
PCTL⇤Kn 2-EXP-compl P-compl 2-EXP-compl
PCTLKn P-compl P-compl P

Table 1: Model Checking Complexities

PATEL⇤ is 2-EXPTIME-complete. More subtleties are discovered
when we look into the model complexity and formula complexity,
by assuming that the formula or the model is fixed. The model
complexity of PATEL⇤ is ⌃P

2 -complete and the formula complexity
is 2-EXPTIME-complete. These complexities may be lowered if
we impose constraints on the syntax of the logic. Table 1 collects
the complexity results of PATEL⇤ and its sublogics.

On one hand, in the logic PCTL⇤Kn, we can only reason about
those strategies where all players are in a group, by writing for-
mulas like hhAgtii./d�. In this logic, the combined complexity and
the formula complexity remain at 2-EXPTIME-complete, while the
model complexity falls to P-complete.

On the other hand, in the logics PATEL and PCTLKn, we impose,
on the logics PATEL⇤ and PCTL⇤Kn, a constraint that every tem-
poral operator is immediately preceded by a probabilistic strategy
operator. In these two logics, the model complexity remains, while
the combined complexity and the formula complexity are lowered.
For PATEL logic, the combined complexity is �P

3 -complete and the
formula complexity is in P. For the PCTLKn logic, the combined
complexity is P-complete and the formula complexity is in P.

2. A LOGIC OF PROBABILISTIC KNOWL-
EDGE AND STRATEGY

Suppose that we are working with a stochastic multiagent system
with a finite set Agt of players. Let Prop be a set of propositions.
To specify the properties of the system, we present a logic PATEL⇤
that combines the temporal operators, the knowledge operator, the
strategy operator and probability measures. Its syntax is given by

� ::= p | ¬� | �1 ^ �2 | X� | �1U�2 | Pr./di � | hhAii./d�
where p 2 Prop, i 2 Agt, A ✓ Agt, d is a rational constant in [0, 1],
and ./ is a relation symbol in the set {, <, >,�}. Intuitively, for-
mula X� expresses that � holds at the next time, �1U�2 expresses
that �1 holds until �2 becomes true, Pr./i � expresses that player i
knows the fact � with a probability in relation ./ with constant d,
and hhAii./d� expresses that players in A can collaborately enforce
the fact � with a probability in relation ./ with constant d. Other
operators can be obtained in the usual way, e.g., F� ⌘ TrueU�,
G� ⌘ ¬F¬�, �1R�2 ⌘ ¬(¬�1U¬�2), etc.

From PATEL⇤ logic, we may have several variants by reducing
its expressiveness.

• PATEL logic, in which every temporal operator has to be im-
mediately preceded by a probabilistic strategy operator. Like
other branching time logics CTL and ATL, we need both
hhAii./d�1U�2 and hhAii./d�1R�2.

• PCTL⇤Kn logic, in which the probabilistic strategy operator
is restricted by only allowing to write hhAgtii./d�.

• PCTLKn logic, in which both the restrictions are imposed.

Moreover, by removing the probabilistic knowledge operator from
PCTL⇤Kn and PCTLKn logic, we may obtain the same expressive-
ness as that of PCTL⇤ and PCTL logics [11].

3. PROBABILISTIC CONCURRENT GAME
STRUCTURE

Let Agt = {1, ..., n} be a set of players. A finite partially-observed
probabilistic concurrent game structure (PO-PCGS) is a tuple M =
(S , sinit, {Actx}x2Agt[{e}, {Nx}x2Agt[{e}, {POi}i2Agt, PT, ⇡), where S is a
finite set of states, sinit 2 S is the initial state, Actx is the set of
local actions of the environment e or the players in Agt, Nx : S !
P(Actx) indicates the set of legal actions that are available to the
environment or the player x 2 Agt [{e} at a specific state. Let
Act = Acte ⇥ Act1 ⇥ ... ⇥ Actn be the set of global actions. Function
PT : S ⇥Act⇥S ! [0, 1] represents a probability transition matrix
such that

P
s02S PT (s, a, s0) 2 {0, 1}, for all s 2 S and a 2 Act, and

9a 2 Act9s0 2 S : PT (s, a, s0) > 0, for all s 2 S . For each player
i 2 Agt, we have an observation function POi : S ⇥ O ! [0, 1],
such that

1. 8s 2 S : POi(s, o1) , 0 ^ POi(s, o2) , 0) o1 = o2,

2. 8o 2 O : (
P

s2S POi(s, o)) = 0 _ (
P

s2S POi(s, o)) = 1, and

3. POi(sinit, o) = 1 for all i 2 Agt and some o 2 O.

Finally, the labelling function ⇡ : S ! P(Prop) is an interpreta-
tion of the atomic propositions Prop at the states. We assume that
all states in S are reachable from sinit. Moreover, we use Oi(s) to
denote the observation o 2 O, if POi(s, o) > 0, and write POi(s)
for POi(s,Oi(s)). Here we make an assumption that, a PO-PCGS
M has a single initial state sinit and every player can distinguish it
from other states. The constraints are simply for the ease of the
notations and can be relaxed without affecting the conclusions.

We introduce some preliminary notions for probabilistic systems.
A probability space is a triple (W, F, µ) such that W is a set, called
the carrier, F ✓ P(W) is a set of measurable sets in P(W), closed
under countable union and complementation, and µ : F ! [0, 1]
is a probability measure, such that µ(W) = 1 and µ(U [V) =
µ(U) + µ(V) if U \ V = ;. As usual, we define the conditional
probability µ(U |V) = µ(U \ V)/µ(V) when µ(V) , 0.

We assume that for all states s1, s2 2 S and i 2 Agt, Oi(s1) =
Oi(s2) implies Ni(s1) = Ni(s2). Intuitively, a player can distinguish
two states if they have different legal actions. We suppose that the
environment reacts deterministically, and thus all nondeterminism
in the system comes from the actions of the players. Let ki(s) =
{s0 2 S | Oi(s) = Oi(s0)} be the set of states in which the player i
can not distinguish from state s.

Let s, s0 2 S and a 2 Act. A path ⇢ from a state s is a finite or
infinite sequence of states and actions s0a0 s1a1 . . . such that s0 = s
and PT (sk, ak, sk+1) > 0 for all k such that k < |⇢| � 1, where |⇢| is
the total number of states on ⇢. Given a path ⇢, we use s(⇢,m) to
denote its (m+1)-th state, a(⇢,m) to denote its m-th action, in which
ax(⇢,m) is its m-th local action of the environment or the player
x 2 Agt [{e}. Moreover, we use s(⇢, 0..m) to denote the sequence
of states s(⇢, 0)...s(⇢,m), a(⇢, 1..m) to denote the sequence of global
actions a(⇢, 1)...a(⇢,m) and ai(⇢, 1..m) the sequence of local actions
ai(⇢, 1)...ai(⇢,m) of player i. A fullpath from a state s is an infinite
path from s. Let ⇢[m] be the suffix of the path ⇢ from state s(⇢,m).
More specifically, ⇢[0] = ⇢.

A strategy �i of a player i is a function that maps each finite path
⇢ = s0a0 s1a1 . . . sn to an action in Ni(sn). A (finite or infinite) path
⇢ is compatible with �i if ai(⇢, k) = �i(s0a0 . . . sk�1) for all k |⇢|.
A memoryless strategy �i of a player i is a function that maps each

state s 2 S to an action in Ni(s), i.e., �i(s) 2 Ni(s). A (finite or
infinite) path ⇢ is compatible with �i if ai(⇢, k) = �i(s(⇢, k � 1)) for
all k � 1. Given a PO-PCGS M and a player i’s strategy �i, we
write Path(M,�i) for the set of fullpaths in M that are compatible
with �i. In the following, strategies are always memoryless.

A strategy �i is uniform if for all paths ⇢, ⇢0 2 Path(M,�i)
and m,m0 2 N, we have si(⇢,m) = si(⇢0,m0) implies ai(⇢,m) =
ai(⇢0,m0), i.e., i’s reactions following �i are a function of its lo-
cal states. The local state si(⇢,m) depends on the view V that
the player i has on the observations. For perfect recall view, we
have that si(⇢,m) = Oi(s(⇢, 0))ai(⇢, 1)...Oi(s(⇢,m)), representing
that player i remembers all its past observations and local actions.
For observational view, we have that si(⇢,m) = Oi(s(⇢,m)), rep-
resenting that player i can make a current observation. In an in-
complete information system, a memoryless strategy usually corre-
sponds with observational semantics.

Let A be a set of players. A coalition strategy �A fixes a strategy
�i for each player i 2 A. We call �A a complete coalition strategy
if A = Agt, or an incomplete coalition strategy if A ⇢ Agt. We
assume the following definitions on a set of players when writing
formulas like hhAii./d�. Let kA(s) =

T
i2A ki(s) and

POA(s) =
⇧i2APOi(s)

P
s02kA(s) ⇧i2APOi(s0)

,

For example, given two players i and j and two states s and t, if
POi(s) = 1/4, POi(t) = 3/4, POj(s) = 1/3, and POj(t) = 2/3, then
PO{i, j}(s) = 1/4⇥1/3

1/4⇥1/3+3/4⇥2/3 = 1/7 and PO{i, j}(t) = 3/4⇥2/3
1/4⇥1/3+3/4⇥2/3 =

6/7, which, comparing with the observation functions POi and
POj, suggest that the addition of observation functions between
two players strengthens a consensus view between them that state
s is less possible than state t. This definition can be seen as a prob-
abilistic variant of the distributed knowledge [8]. Similarly, we can
define OA.

The idea of defining a semantics for the PATEL⇤ logic is based on
breaking a PO-PCGS into a set of partially-observed discrete-time
Markov chains (PO-DTMCs). A PO-DTMC C of a PO-PCGS M
is a tuple (S , sinit, {Actx}x2Agt[{e}, {�i}i2Agt, {POx}x2Agt, PTC , ⇡) where
S , sinit, Actx, POx, ⇡ are defined the same as in M, �i is a strategy of
player i, and PTC is a probability transition matrix such that

PTC(s, a, s0) =

8>><
>>:

PT (s, a, s0) if �Agt(s) = a,
0 otherwise.

A PO-DTMC C of M is uniform for player i if �i(s) = �i(s0) for
all s0 2 ki(s).

Let RC,s be the set of fullpaths in a PO-DTMC C that starts from
state s. We now define a probability space on RC,s, using a well-
known construction (e.g., that of [27]). Given a finite path ⇢ of
m + 1 states and m actions such that ⇢(0) = s, write RC,s(⇢) = {⇢0 2
RC,s | s(⇢0, 0..m) = s(⇢, 0..m), a(⇢0, 1..m) = a(⇢, 1..m)} for the set of
fullpaths with prefix ⇢. (One may view this as a cone of fullpaths
sharing the same prefix ⇢.) Let FC,s be the minimal algebra with
basis the sets WC,s =

S{RC,s(⇢) | ⇢ prefixes some r 2 RC,s}, i.e.,
FC,s is the set of all sets of fullpaths that can be constructed from
the basis by using countable union and complement. We define the
measure µC,s on the basis sets by

µC,s(RC,s(⇢)) =
m�1Y

i=0

PT (s(⇢, i), a(⇢, i + 1), s(⇢, i + 1)).

Intuitively, µC,s(RC,s(⇢)) denotes the probability of those infinite
paths in C that having ⇢ as prefix and s as starting state. There
is a unique extension of µC,s that satisfies the constraints on proba-
bility measures (i.e., countable additivity and universality), and we

also denote this extension by µC,s.

PROPOSITION 1. Given a PO-DTMC C and a state s, the triple
(WC,s, FC,s, µC,s) defines a probability space.

Now we lift the probability space (WC,s, FC,s, µC,s) on a PO-DTMC
C and a state s to the space (WC,A,s, FC,A,s, µC,A,s) by considering
the observation function of players A. More specifically, we let
WC,A,s =

S
s02kA(s) WC,s0 , FC,A,s =

S
s02kA(s) FC,s0 , and

µC,A,s(RC,s0 (⇢)) =

8>><
>>:

POA(s0) ⇥ µC,s0 (RC,s0 (⇢)) if OA(s) = OA(s0),
0 otherwise.

where OA(s) = OA(s0) if and only if for all i 2 A, Oi(s) = Oi(s0). In-
tuitively, µC,A,s(RC,s0 (⇢)) normalises those probabilities µC,s0 (RC,s0 (⇢))
for s0 by the observation function POA.

PROPOSITION 2. Given a PO-DTMC C, a set A of players and
a state s, the triple (WC,A,s, FC,A,s, µC,A,s) defines a probability space.

Given a PO-PCGS M and a complete uniform coalition strategy
�Agt = {�i | �i is uniform, i 2 Agt}, we can obtain a uniform PO-
DTMC C = M(�Agt). Two PO-DTMCs C1 and C2 are strategic
equivalent with respect to a coalition strategy �A if players in A
follow the same strategies, more specifically, if C1 = M(�1

Agt) and
C2 = M(�2

Agt) then �1
i = �

2
i = �i for all i 2 A. Let C[M] be the set

of PO-DTMCs that can be obtained from M and C[M,�A] be the
subset of C[M] in which all PO-DTMCs are strategic equivalent
with respect to coalition strategy �A.

Given a PO-PCGS M, a complete coalition strategy �Agt, a state
s and a formula �, we write

R(M(�Agt), s, �) = {⇢ 2 Path(M,�Agt) | ⇢(0) = s, M,�Agt, ⇢ |= �}
to be the set of fullpaths that start from the state s and satisfy the
formula �, and

R(M(�Agt), A, s, �) =
[

s02kA(s)

R(M(�Agt), s0, �)

to be the set of fullpaths that start from a state s0 2 kA(s) and satisfy
the formula �. Based on them, we define a probabilistic notation
Pr(M,�Agt, A, s, �) as follows.

Pr(M,�Agt, A, s, �)
= µM(�Agt),A,s(R(M(�Agt), A, s, �) | R(M(�Agt), A, s,T))
= µM(�Agt),A,s(R(M(�Agt), A, s, �))

(1)

It is a conditional probability of the set of fullpaths which satsify
the formula �, given the set of paths that start from those states that
are indistinguishable for the players in A from the current state s.
The second equation holds because we have that

µM(�Agt),A,s(R(M(�Agt), A, s,T))
= µM(�Agt),A,s(

S
s02kA(s) R(M(�Agt), s0,T))

=
P

s02kA(s) PO(s0) ⇥ µM(�Agt),s0 (R(M(�Agt), s0,T))
=
P

s02kA(s) PO(s0)
= 1

The relation M,�Agt, ⇢ |= � is defined inductively as follows.

• M,�Agt, ⇢ |= p if p 2 ⇡(s(⇢, 0)).

• M,�Agt, ⇢ |= ¬� if not M,�Agt, ⇢ |= �.

• M,�Agt, ⇢ |= � ^ if M,�Agt, ⇢ |= � and M,�Agt, ⇢ |= .

• M,�Agt, ⇢ |= X� if M,�Agt, ⇢[1] |= �.

• M,�Agt, ⇢ |= �U if there exists a time m0 � m such that
M,�Agt, ⇢[m0] |= and M,�Agt, ⇢[m00] |= � for all m00 with
m m00 < m0.

• M,�Agt, ⇢ |= Pr./di � if we have Pr(M,�0Agt, {i}, ⇢(0), �) ./ d
for all possible complete strategies �0Agt. Intuitively, to en-
able a probabilistic knowledge, the player i’s subjective prob-
abilistic measurement on the formula � has to hold in all pos-
sible PO-DTMCs. Note that, all strategies include not only
uniform strategies but also non-uniform strategies.

• M,�Agt, ⇢ |= hhAii./d� if there exists a strategic equivalence
class C[M,�0A] for some uniform strategy �0A of players in
A, such that for all PO-DTMC C = M(�0Agt) 2 C[M,�0A]
with �0Agt a uniform strategy of all players Agt, we have that
Pr(M,�0Agt, A, ⇢(0), �) ./ d. Intuitively �0A represents a joint
winning strategy of A such that for all joint opponent strate-
gies, �0A enforces a win on every compatible state.

A formula � is said to hold in M, written M |= �, if M,�Agt, ⇢ |= �
for all paths ⇢ such that s(⇢, 0) = sinit and all complete coalition
strategy �Agt. The model checking problem is then to determine,
given a PO-PCGS M and a formula �, whether M |= �.

The combined complexity is the complexity of determine M |= �,
given a PO-PCGS M and a formula �. The model complexity of a
fixed formula � is the complexity of determine M |= �, given a
PO-PCGS M. This gives a measure of the complexity of model
checking as a function of the size of the model. The formula com-
plexity of a fixed model M is the complexity of determine M |= �,
given a formula �. This captures the contribution to the complexity
of model checking that derives from the formula.

3.1 Relation with Perfect Recall
Before proceeding, let’s compare the above definitions for obser-

vational semantics with those of perfect recall semantics. In [15],
a semantics on probabilistic knowledge based on [10] is presented
to work with fully-probabilistic systems. A fully-probabilistic sys-
tem is a PO-DTMC and therefore contains no nondeterminism. In
[17], the probabilistic strategy is defined in a logic PATL⇤, which
is shown to be undecidable in model checking even for the single-
player fragment.

Both the definitions of probabilistic knowledge operator and prob-
abilistic strategy operator in the papers are based on a conditional
probability

µc
r,m,i(U) = µc(R(U) | R(K c

i (r,m)))

with U = {(r0,m0) | (r0,m0) 2 K c
i (r,m), I, (r0,m0) |= �}. Interested

readers can refer to the papers for formal treatments on the seman-
tics. Roughly speaking, µc is a probability measure over a measur-
able set c of fullpaths, the set R(U) is the set of fullpaths that are
indistinguishable to the player i and satisfy the formula �, and the
set R(K c

i (r,m)) contains all fullpaths that are indistinguishable to
the player i. Therefore, µc

r,m,i(U) is the probability of satisfying the
formula � under the condition of indistinguishability.

Our definition of Pr(M,�Agt, A, s, �) in the equation (1) resem-
bles this idea. The measure µM(�Agt),A,s is a probability measure over
a measurable set WM(�Agt),A,s of fullpaths, the set R(M(�Agt), A, s, �)
is the set of fullpaths whose starting states are indistinguishable to
the state s and satisfy the formula �, and the set R(M(�Agt), A, s,T)
contains all fullpaths whose starting states are indistinguishable to
the state s. Therefore, Pr(M,�Agt, A, s, �) is also the conditional
probability of satisfying the formula � under the condition of indis-
tinguishability.

Although similar ideas of defining the operators by conditional
probability, their differences are significant if we look into the com-

ponents of the conditional probabilities. In perfect recall seman-
tics, the indistinguishable setK c

i (r,m) changes over the time, which
makes the sets R(U) and R(K c

i (r,m)), and therefore the conditional
probability µc

r,m,i(U), also change over the time. However in obser-
vational semantics,R(M(�Agt), A, s,T)) andR(M(�Agt), A, s, �)), and
therefore Pr(M,�Agt, A, s, �), do not change with the time.

The differences can also be witnessed in the definitions of PO-
PCGSs and the ways how to compute the two conditional proba-
bilities. In perfect recall semantics, because the conditional proba-
bility changes over the time, a recursive procedure is developed to
compute it from the conditional probability of previous round, as is
shown in the Theorem 1 of [17] that

µc
r,m+1,i(U) = µc

r,m,i(Ur,m,i | K c
i (r,m + 1)),

where Ur,m,i = {(r0,m0) 2 K c
i (r,m) | 9m00 : (r0,m00) 2 U}. There-

fore, in a PO-PCGS, only the initial distribution PI such thatP
s2S PI(s) = 1 and the non-probabilistic observation function Oi

are needed to define the measure µc
r,0,i. In observational semantics,

as the conditional probability does not change over the time, in a
PO-PCGS M, a probabilistic observation function POi is needed
for every player i 2 Agt. Intuitively, the observation function POi

assumes a prior probability distribution over those states indistin-
guishable for player i.

The above differences demonstrate the potentially different ap-
plications of the observational semantics and the perfect recall se-
mantics. In a system having both nondeterminism and probability,
a nondeterministic choice may represent an unspecified probabilis-
tic distribution that one of the players does not know when the game
starts. By taking perfect recall semantics, the player can gradually
discover it by reasoning about its past observations and local ac-
tions, as the evidence theory discussed in [21]. On the other hand,
if the nondeterministic choices are inherent, i.e., there should not be
a single distribution on it, then we may use observational semantics
to design a strategy based on it. In this case, the nondeterminism is
resolved by the strategy of the players.

In a practical scenario, they may be used in two phases of rea-
soning: the perfect recall semantics can be used to reason about
some information and then these information are used as a prior for
the observational semantics to design a strategy. For example, in
a pursuit-evasion game that will be described in the next section, a
subgame of perfect recall can be used to track the appearance prob-
ability of the evader in specific area (e.g., 70% in area 1 and 30%
in area 2) and then a subgame of observational semantics is used
to see if we can have a successful strategy based on this prior (e.g.,
in case the appearance probability of the evader is higher in area 1,
we should deploy more pursuers in that area).

4. APPLICATIONS
In the following, we present some examples to demonstrate the

applications of the PATEL⇤ logic of observational semantics.

4.1 A Simple Example
We take the simple example from [17] as our first example. The

system M = (S , sinit, Acti,Ni, POi, PT, ⇡) is a system of a sin-
gle player i, where S = {sinit, s1, s2, s3, s4, s5}, Acti = {h, t}, and
Ni(s) = {h, t} for all states s. s4 is the only state in which proposi-
tion p holds. The transition matrix PT is shown in Figure 1, where
states si and s j are connected by an arrow labeled with (act, pk) if
PT (si, act, s j) = pk , 0. The observation function POi are de-
fined as POi(s2) = 1/3 and POi(s3) = 2/3, and POi(si) = 1 for
si 2 S \ {s2, s3}. Intuitively, player i can distinguish every two
states except for s2 and s3.

sinit

s1

s2

s3

s4

s5

(h,1/3)

(h,1/3)

(h,1/3)

(h,1/2)

(h,1/2)

(h,1/3)

(h,2/3)

(h,1)

(h,1)

(h,1)

{p}

(t,1) (t,1)

(t,1)

(t,1)

(t,1)

(t,1)

Figure 1: A Simple Example

We discuss three strategies �1, �2 and �3 by omitting irrelevant
choices at the terminal states: (1) �1(sinit) = t; (2) �2(sinit) = h,
�2(s2) = �2(s3) = t; (3) �3(sinit) = h, �3(s2) = �3(s3) = h. Note
that �(s2) = �(s3) for all uniform strategies �.

Initially, player i does not have a strategy to eventually reach
state s4 in a probability more than 1/2.

M |= ¬hhiii>1/2(F p) (2)

The probabilities of satisfying F p by taking the three strategies
are 0, 1/3 and 7/18, respectively. For example, if player i takes
strategy �2 that decides a unique PO-DTMC C1, then we have that
Pr(M,�2, {i}, sinit, F p) = µC1 ,{i},sinit (R(C1, {i}, sinit, F p)) =
µC1 ,sinit (R(C1, sinit, F p)) = 1/3.

On the other hand, the player has a strategy to reach in a proba-
bility more than 1/2 those next states, from which it has a strategy
to reach state s4 in a probability more than 1/2, as expressed in the
following expression.

M |= hhiii>1/2Xhhiii>1/2F p (3)

One may find that the first hhiii can be enforced by either �2 or
�3, and the second is enforced by �3. The first step is to reach
from state sinit to states s2 or s3, which can be done in the prob-
ability 2/3 by taking the action h. To show the second, we show
that M, s2 |= hhiii�1/2F p (and therefore M, s3 |= hhiii�1/2F p since
Oi(s2) = Oi(s3)). By fixing the strategy �3 that decides a unique
PO-DTMC C2, we have that Pr(M,�3, {i}, s2, F p) =
µC2 ,{i},s2 (R(C2, {i}, s2, F p)) = 1/3 ⇥ µC2 ,s2 (R(C2, s2, F p)) + 2/3 ⇥
µC2 ,s3 (R(C2, s3, F p)) = 1/3 ⇤ 1/2 + 2/3 ⇤ 2/3 = 11/18 � 1/2.

4.2 Pursuit Evasion Games
Pursuit-Evasion games are a type of multi-player games in which

one or more pursuers have the objective of identifying the pres-
ence of one or more evaders, and of capturing them. They are re-
cently approached by the model checking of temporal epistemic
logics [16, 18], which do not take probabilistic information into
consideration and do not explicitly work with strategy operator.
Here we describe a simple scenario with probabilistic information
and characterise properties with PATEL⇤ formulas.

Let G = (V, E) be a discrete graph consisting of a set V of posi-
tions and a set E of edges connecting positions. Assume that there
are several players, a set D of pursuers and an evader ak. Every
player i stays at some position posi. The evader is captured by the
pursuers if it is in the same position with one of the pursuers, i.e.,

capture ⌘
_

i2D
posak = posi.

Let v0 and v00 be two positions that do not in the graph G, that
is, {v0, v00} \ V = ;. Let ? < � denote the empty strategy. A game

5

6 7

9

12

11

138

12
29

23 2024

30

2728

2

31

1

4

3

15

14

16

17

18

19

32

22

25

26

21

Figure 2: A Graph for Pursuit Evasion Games

state is a tuple s = ({posi}i2D, {⌧i}i2D, posak) such that posi 2 V[{v0}
and ⌧i 2 � [{?} for i 2 D, and posak 2 V [{v00}. Initially, all
pursuers appear at position v0, all pursuers’ strategies are empty
strategy, and the evader appears at position v00. Formally, sinit =
({v0}i2D, {?}i2Agt, v00).

From the initial state sinit, the pursuers move to a specific position
v1 2 V and the evader moves to any other position v01 2 V such that
v01 , v1. In the mean time, every pursuer chooses a strategy from
� = {⌧1, ..., ⌧m} by a prior distribution µ� such that

P
⌧2� µ�(⌧) = 1.

From a game state s , sinit, a player can either moves to one of
its neighbouring positions or stays still. The pursuers’ strategies do
not change. All strategies ⌧ in � are deterministic strategies, i.e.,
for any position v 2 V , ⌧(v) 2 {v} [{v0 | (v, v0) 2 E}. Intuitively, the
probabilistic transitions occur at the beginning of the game, when
every pursuer is assigned with a strategy to follow by a prior dis-
tribution µ� on a set of deterministic strategies. After that, every
pursuer follows the assigned strategy.

As discussed at the end of Section 3.1, the prior distribution µ�
may be obtained from a pre-game, where the pursuers discover (by
perfect recall semantics) the appearance probability of the evader
in several areas. A deterministic strategy that patrols an area where
the evader has higher appearance probability in the pre-game should
be given higher prior probability in the game.

The observation functions are defined as follows. For the pur-
suer i 2 D, we let Oi(({posi}i2D, {⌧i}i2D, posak)) = (posi, ⌧i). For the
evader ak, we let Oak(({posi}i2D, {⌧i}i2D, posak)) = ({pos0i }i2Agt, posak)
such that pos0i = posi if (posi, posak) 2 E and pos0i = ?, otherwise.
Intuitively, the pursuers can only observe their current positions
and their strategies, and the evader ak can observe the neighboring
nodes, but is not able to observe the strategies of the players in D.

Now consider an area as described in Figure 2 [18]. An example
strategy ⌧ is denoted as a patrolling path ⇢⌧ = 1 ! 2 ! 28 !
27 ! 25 ! 24 ! 23 ! 20 ! 18 ! 16 ! 15 ! 13 ! 12 !
8! 7! 6! 31! 1 such that ⌧(s) = t if (s! t) 2 ⇢⌧.

In such a game, the objective of the evader ak is to avoid being
captured by the pursuers D. An interesting specification is

hh{ak}ii>0.8G(¬capture) (4)

which expresses that the attacker ak has a strategy that in a proba-
bility of more than 80% to avoid being captured. Another specifi-
cation can be

G ¬Pr�0.9
ak F(¬capture) (5)

which says that the players ak can never have a knowledge that he
will win the game in a probability no less than 90%.

5. MODEL CHECKING COMPLEXITY
In the previous section, we use PO-PCGSs to describe scenarios

and PATEL⇤ formulas to express interesting specifications that we
want to know in the scenarios. In this section, we will solve the
computational complexities of model checking PATEL⇤ logic and
its sublogics.

5.1 Probabilistic Knowledge
First, we will consider the impact of adding probabilistic knowl-

edge operator into the logics PCTL and PCTL⇤. Consider the rela-
tion M,�Agt, ⇢ |= Prd

i �. By definition, we need to compute

max�Agt Pr(M,�Agt, {i}, ⇢(0), �)
⌘ max�Agt µM(�Agt),{i},⇢(0)(R(M(�Agt), {i}, ⇢(0), �))
⌘ max�Agt µM(�Agt),{i},⇢(0)(

S
s2ki(⇢(0)) R(M(�Agt), s, �))

⌘ max�Agt

P
s2ki(⇢(0))(POi(s) ⇥ µM(�Agt),s(R(M(�Agt), s, �)))

(6)

If working with a formula of nested probabilistic knowledge, for
example Prd1

i (�1 ^ F Prd2
j �2), then the model checking starts

from the innermost subformulas (i.e., the most nested ones) and
then goes to the outer ones. Therefore, the complexity of model
checking a nested formula is polynomial with respect to both the
size of formula and the complexity of model checking a subfor-
mula without nested probabilistic knowledge operators.

THEOREM 1. Model checking PCTL⇤Kn in PO-PCGSs is
2-EXPTIME-complete for combined complexity, P-complete for model
complexity, and 2-EXPTIME-complete for formula complexity.

Proof: (sketch) By [22], an LTL formula � can be converted into a
deterministic Rabin automata A� by expanding its size by doubly
exponential. Then the size of product automata M ⇥ A� is poly-
nomial with respect to the model M and doubly exponential with
respect to the size of formula �. Let A = (V, µV) be the product
automata. An end component is a set of states T ✓ V such that
1) for all s 2 T and a 2 Act, if µV (s, a, t) > 0 then t 2 T , and 2)
the underlying graph of (T, µV) is strongly connected. A maximal
end-component is an end-component that is maximal under set in-
clusion. The computation of maximal end components can be done
in polynomial time by a variant of Tarjan’s algorithm.

The component µM(�Agt),s(R(M(�Agt), s, �) can be rewritten into
the reachability probability of the set of maximal end components
of the automata M ⇥A�. A reachability probability can be trans-
lated into the solution of a set of linear equations of polynomial
size [2]. Therefore, the computation of equation (6) on a PO-PCGS
M is then reduced to the solution of the maximal value of a lin-
ear combination of reachability probabilities. As the complexity of
linear programming is polynomial, we have that model checking
PCTL⇤Kn can be solved in 2-EXPTIME. Note that in equation (6),
�Agt ranges over all memoryless strategies, including non-uniform
ones. A polynomial reduction to linear programming problem does
not exist if �Agt ranges over all uniform strategies, since the com-
plexity of finding a uniform strategy is NP-complete [24].

The lower bound is matched by the LTL model checking over
MDP [7], which is 2-EXPTIME-complete for combined complex-
ity.

Model Complexity. If we fix the formula �, the product automata
M ⇥ A� is linear with respect to the model M and therefore the
model complexity is in P.

The lower bound can be reduced from the monotone circuit value
problem, which is P-complete (cf. [9]). It takes as input a monotone
boolean circuit C and an input �, to determine if the output value
C(�) = 1. A monotone boolean circuit C = (B, BI , bO,T, op) is a
directed acyclic graph, in which B is a set of gates, BI ✓ B is a
set of input gates, bO is a single output gate, and T : B ! P(B) is
directed connections between gates such that

� �

left left right

0.5 0.5 1.0 1.0

b1 b2

b3

b1 b2

b3

b1 b2

b3

b1 b2

b3

Figure 3: The transformation from boolean circuit to concur-
rent game structure

• 8b 2 BI : {b0 2 B | b 2 T (b0)} = ; (the indegree of input
gates is zero),

• T (bO) = ; (the outdegree of the output gate is zero), and

• 8b 2 B \ BI : |{b0 2 B | b 2 T (b0)}| = 2 (the indegree of
non-input gates is 2).

and op : (B \ BI) ! {^,_} is a labelling function mapping every
non-input gate to a boolean operator ^ or _. An input of the circuit
C is an assignment � : BI ! {0, 1} of boolean values to input gates.
The value of a non-input gate is computed as the result of boolean
operation (the one on its label) on the values of its ancestors. The
output value of the circuit C(�) is the value on the output gate.

Let M = (S , sinit, Acti,Ni, POi, PT, ⇡) be the concurrent game
structure of a single player i, such that 1) S = B, 2) sinit = bO,
3) Acti = {le f t, right}, 4) Ni(b) = {le f t, right}, if op(b) = _, and
Ni(b) = {le f t}, otherwise, 5) POi(b) = 1 for all b 2 S , 6) p 2 ⇡(b)
iff �(b) = 1, and 7) PT is obtained by the transformations as dis-
played in Figure 3. Intuitively, we reverse the directions of arrows
in C and turn the boolean operations into probabilistic transition
relations.

Finally, the circuit valuation problem C(�) = 1 is equivalent to
the model checking problem of M |= hh{i}ii�1F p. The later is then
equivalent to M |= hhAgtii�1F p since Agt = {i}.

Formula Complexity. If we fix the model M, the product au-
tomata M ⇥ A� is still doubly-exponential with respect to � and
therefore results in the formula complexity in 2-EXPTIME. The
lower bound follows from the conclusion in [7] for LTL model
checking. �

THEOREM 2. Model checking PCTLKn in PO-PCGSs is
P-complete for combined and model complexity, and in P for for-
mula complexity.

Proof: (sketch) By following a similar procedure as that of [11],
the computation of the component µM(�Agt),s(R(M(�Agt), s, �) can be
reduced into the solution of a set of linear equations of polynomial
size with respect to both the model M and the formula �. Then
by a similar procedure as the case of PCTL⇤Kn, the computation of
equation (6) can be reduced to the solution of a linear programming
problem of polynomial size with respect to both the PO-PCGS M
and formula �.

The lower bounds for the combined and model complexity are
obtained the same as the lower bound for the model complexity of
PCTL⇤Kn logic, by noticing that hhAgtii�1F p is also a PCTLKn

formula. �
Note that, the proof for the lower bound of the model complexity

of checking PCTL⇤Kn logic also implies the P-hardness as the com-
bined and model complexity of checking PCTL and PCTL⇤ logics
over MDPs, which is not unknown but does not appear in the liter-
ature. The model M is indeed an MDP and the expression C(�) = 1
is equivalent to M 6|= Pr<1(F p) in their terms.

5.2 Probabilistic Strategy
Second, we will consider the impact of adding probabilistic strat-

egy operator into the logics PCTL⇤Kn and PCTLKn. Similarly, the
model checking is conducted from the innermost subformulas to-
wards the outer ones.

THEOREM 3. Model checking PATEL⇤ in PO-PCGSs is
2-EXPTIME-complete for combined complexity, ⌃P

2 -complete for
model complexity, and 2-EXPTIME-complete for formula complex-
ity.

Proof: (sketch) Model checking can be done by induction on the
structure of the formula. Given a relation M,�Agt, ⇢ |= hhAiid�, we
can decide by

1. guessing a strategy for players A, let it be �A, and then

2. computing max�Agt\A Pr(M,�Agt, {i}, ⇢(0), �).

As stated in the probabilistic knowledge case, the second line
can be reduced to a linear programming problem whose equations
represent the model checking of the LTL formula � in a MDP.
From [7], model checking LTL formula on MDPs is 2-EXPTIME-
complete for the formula and in P for the model. It uses an alternat-
ing turing machine of exponential space over the size of the formula
to compute the result. Enhancing with the above algorithm, a fur-
ther polynomial space over the model is requested to store the strat-
egy. Put them together, the model checking can be implemented
by taking an alternating turing machine of exponential space over
the size of the formula and polynomial space over the size of the
model, which added up to a AEXPSPACE=2-EXPTIME complex-
ity. This complexity is hard as the LTL model checking has been
2-EXPTIME-complete.

Model Complexity. For the model complexity, we decide the re-
lation M,�Agt, ⇢ |= hhAiid� by

1. guessing a strategy for players A, let it be �A, and

2. reversing the result of the following procedure:

(a) guess a strategy for players Agt \ A, let it be �Agt\A, and
(b) return the result of Pr(M,�Agt, {i}, ⇢(0), �) > d.

Note that the model complexity of PCTL⇤Kn logic is in P. There-
fore, the above procedure gives a NPNP = ⌃P

2 procedure.
The lower bound can be reduced from the satisfiability of quanti-

fied Boolean formulas (QBF) of 2 alternations, which is ⌃P
2 -complete.

Given a boolean formula f with variables partitioned into 2 sets V1
and V2, to determine if 9V18V2 : f (V1 [V2). Assume that f is
in its conjunctive normal form, that is, f = f1 ^ ... ^ fm such that
fk = vk,1 _ ..._ vk,l for 1 k m, where vk, j is a variable in V1 [V2
or its negation.

The technical details of the reduction are omitted for the space
limit and will appear in the longer version of the paper. The basic
idea is: for each variable v, we use a player agv to control its truth
value. The uniformity of the players’ strategies are used to make
sure that all appearances of a variable take the same truth value as
the one decided by the players. The environment e controls the se-
lection of clause fk. The evaluation of a clause is simulated as a
sequential evaluation of the literals such that if the literal is evalu-
ated as false then it moves on to the next literal and if it is evaluated
as true then it moves to a specific successful state sT where the
atomic proposition p holds.

Finally, the satisfiability of QBF formulas of 2 alternations is
equivalent to the model checking problem of M |= hh{agv | v 2
V1}ii�1F p.

Formula Complexity. If we fix a PO-PCGS M, the algorithm for
combined complexity also gives a 2-EXPTIME procedure for the
formula complexity. The hardness follows from that of LTL model
checking over MDPs. �

THEOREM 4. Model checking PATEL in PO-PCGSs is
�P

3 -complete for combined complexity, ⌃P
2 -complete for model com-

plexity, and in P for formula complexity.

Proof: (sketch) We reuse the algorithm for the model complexity
in the proof of Theorem 3 to obtain the upper bound. First of all,
because we are dealing with PCTLKn logic instead of PCTL⇤Kn

logic, as stated in Theorem 2, the computation of the component
Pr(M,�Agt, {i}, ⇢(0), �) > d takes polynomial time. Secondly, as
stated in Theorem 3, the algorithm in itself is a ⌃P

2 procedure with
respect to the size the model M. Thirdly, for a formula of nested
operators, a polynomial procedure with respect to the size of the
formula is needed to query a ⌃P

2 oracle implemented by the algo-
rithm. Put them together, the combined complexity of checking
PCTLKn logic is in P⌃

P
2 = �P

3 .
The lower bound is matched by the complexity of model check-

ing ATL logic on MDPs.
Model Complexity. A similar argument as that of PATEL⇤ logic

can be made to have the ⌃P
2 -complete model complexity.

Formula Complexity. If the model M is fixed, the algorithm for
combined complexity gives a polynomial procedure for checking
PATEL formulas. �

The above complexity results suggest that with the addition of
probabilistic strategy operator, the model complexity increases from
P-complete to ⌃P

2 -complete, while the formula complexity remains.
Also, from PCTLKn to PATEL, the combined complexity increases
from P-complete to �P

3 -complete.

6. RELATED WORKS
Both probabilistic verification and the logics of knowledge and

strategy are active research areas. We only discuss those works that
are closely related to the paper. For complete information systems,
[3] presents a model checking algorithm for PCTL* and PCTL over
MDP by considering the temporal operators and probability mea-
sure. The algorithm has been implemented in the tool PRISM [12].
This has been extended in [5] to PATL and PATL* to deal with
strategic operator, and implemented as PRISM-games [4].

For incomplete information systems and perfect recall seman-
tics, [17] proved that model checking PATEL⇤ and PATEL is un-
decidable even for single-player fragment, [14] shows the undecid-
ability for a probabilistic temporal epistemic logic PLTLKn, and
[15] gives a symbolic MTBDD-based algorithm for a small frag-
ment of the PCTL⇤Kn logic in fully-probabilistic systems. For
observational semantics, [25] proposed a logic that combines the
knowledge operator with a probabilistic strategic operator. The se-
mantics is substantially different with the one presented in the paper
in that 1) they deal with knowledge operator instead of probabilistic
knowledge operator and 2) the interpretation of probabilistic strate-
gic operator is not related to the indistinguishable relation between
states.

The incomplete information may result in several different in-
terpretations on the statement that a set of players have a strategy,
including the existence of a strategy [13, 25], the existence of a
consistent strategy [19], knows the existence of a consistent strat-
egy but don’t know how to play, and knows not only the existence
of a strategy but also how to play, see e.g., [20]. In the paper, we
assume the last one.

7. CONCLUSIONS AND FUTURE WORK
We present a logic PATEL⇤ to reasoning about the probabilistic

knowledge and the probabilistic strategy in stochastic multiagent
systems. Several examples are given to show its applications, and
the model checking complexities of the logic and its sub-logics are
addressed.

Several issues are left open by this work. The first one is a com-
plete axiomatic system for the logic PATEL⇤. Especially, we need a
set of axioms for the probabilistic variant of distributed knowledge.
They are expected to be a natural generalisation of the axioms for
distributed knowledge. The second one is the way how to retrieve
the observation function POi for the agents i 2 Agt. In the paper,
they are treated as extra input. The ideal approach is, as briefly dis-
cussed in the paper, to retrieve them from a pre-computation which
takes as input the stochastic multiagent system with the function Oi

for i 2 Agt. The third one is a practical model checking algorithm
and its implementation. It is interesting to investigate its scalability
in dealing with practical examples.

Acknowledgement
The authors thank the reviewers and Ron van der Meyden for their
useful comments. Especially, Ron is skeptical about several set-
tings of the semantics of the logic, including the way how to re-
trieve observation functions (i.e., POi) for the players, and how to
define POA of a set A of players from POi for i 2 A. The paper
provides a solution to them. The justification of the solution will
be addressed in the future work.

8. REFERENCES
[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.

Alternating-Time Temporal Logic. Journal of the ACM,
49(5):672–713, 2002.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008.

[3] Andrea Bianco and Luca de Alfaro. Model Checking of
Probabalistic and Nondeterministic Systems. In 15th
Conference on Foundations of Software Technology and
Theoretical Computer Science, volume 1026 of Lecture
Notes in Computer Science, pages 499–513, 1995.

[4] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David
Parker, and Aistis Simaitis. Prism-games: A model checker
for stochastic multi-player games. In 19th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’13), 2013.

[5] Taolue Chen and Jian Lu. Probabilistic Alternating-time
Temporal Logic and Model Checking Algorithm. In FSKD
(2), pages 35–39, 2007.

[6] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The
MIT Press, 1999.

[7] Costas Courcoubetis and Mihalis Yannakakis. The
complexity of probabilistic verification. Journal of the ACM,
42(4):857–907, 1995.

[8] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning
About Knowledge. The MIT Press, 1995.

[9] A. Gibbons and W. Rytter. Efficient Parallel Algorithms.
Cambridge University Press, 1988.

[10] Joseph Y. Halpern and Mark R. Tuttle. Knowledge,
probability, and adversaries. Journal of the ACM,
40:917–960, 1993.

[11] Hans Hansson and Bengt Jonsson. A logic for reasoning
about time and reliability. Formal Asp. Comput,
6(5):512–535, 1994.

[12] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In Proc. Conf on Tools and Algorithms for the
Construction and Analysis of Systems, volume 3920 of
LNCS, pages 441–444. Springer, 2006.

[13] W. Hoek and M. Wooldridge. Tractable multiagent planning
for epistemic goals. In Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), pages 1167–1174, 2002.

[14] Xiaowei Huang. Diagnosability in concurrent probabilistic
systems. In 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS2013), 2013.

[15] Xiaowei Huang, Cheng Luo, and Ron van der Meyden.
Symbolic Model Checking of Probabilistic Knowledge. In
13th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK XII), pages 177–186, 2011.

[16] Xiaowei Huang, Patrick Maupin, and Ron van der Meyden.
Model checking knowledge in pursuit-evasion games. In the
22nd International Joint Conference on Artificial
Intelligence (IJCAI2011), pages 240–245, 2011.

[17] Xiaowei Huang, Kaile Su, and Chenyi Zhang. Probabilistic
Alternating-time Temporal Logic of Incomplete information
and Synchronous Perfect Recall. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence
(AAAI-12), pages 765–771, 2012.

[18] Xiaowei Huang and Ron van der Meyden. Synthesizing
Strategies for Epistemic Goals by Epistemic Model
Checking: An Application to Pursuit Evasion Games. In
Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI-12), pages 772–778, 2012.

[19] Wojciech Jamroga. Some Remarks on Alternating Temporal
Epistemic Logic. In Proceedings of Formal Approaches to
Multi-Agent Systems (FAMAS 2003), 2003.

[20] Wojciech Jamroga and Wiebe van der Hoek. Agents that
Know How to Play . Fundamenta Informaticae, 62:1–35,
2004.

[21] Riccardo Pucella Joseph Y. Halpern. A Logic for Reasoning
about Evidence. Journal of Artificial Intelligence Research,
26:1–34, 2006.

[22] Orna Kupferman and Adin Rosenberg. The blow-up in
translating ltl to deterministic automata. In Ron Meyden and
Jan-Georg Smaus, editors, Model Checking and Artificial
Intelligence, volume 6572 of Lecture Notes in Computer
Science, pages 85–94. Springer Berlin Heidelberg, 2011.

[23] François Laroussinie, Nicolas Markey, and Ghassan Oreiby.
On the Expressiveness and Complexity of ATL. Logical
Methods in Computer Science, 4(2), 2008.

[24] Michael L. Littman. Memoryless policies: Theoretical
limitations and practical results. In the third international
conference on Simulation of adaptive behavior (SAB94),
pages 238–245, 1994.

[25] Henning Schnoor. Strategic Planning for Probabilistic
Games with Incomplete Information. In the proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pages 1057–1064, 2010.

[26] Ron van der Meyden and Nikolay V. Shilov. Model
Checking Knowledge and Time in Systems with Perfect
Recall. In Foundations of Software Technology and
Theoretical Computer Science, pages 432–445, 1999.

[27] Moshe Y. Vardi. Automatic Verification of Probabilistic
Concurrent Finite-State Programs. In FOCS, pages 327–338,
1985.

