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Deep Learning in Safety-Critical Systems 4

Figure: Driverless Car [18], Autonomous Underwater Vehicles [19], Drone for inspection [17],
Smart Grid [2], Net-zero buildling [1], etc.
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Deep Learning in Safety-Critical Systems 5

▶ Drug Discovery and
Development

▶ Automatic Medical Diagnosis
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Reliability Validation of Learning Enabled Vehicle Tracking 6

Figure: Original detected tracks Figure: Distorted tracks

[25] Reliability Validation of Learning Enabled Vehicle Tracking. ICRA2020
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Practical Verification of Robotics Systems 7

(a) Heuristic search (b) Verification (c) Enumeration of all possible Tracks

[9] Practical Verification of Neural Network Enabled State Estimation System for Robotics.

IROS2020.
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Trustworthy AI 8

Trustworthiness = Certification + Explanation

▶ Certification can be property-based, considering safety and security properties.

[11]: A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing,

Adversarial Attack and Defence, and Interpretability, Computer Science Review. 37 (2020): 100270.
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Properties 9

1. Generalisation

2. Uncertainty

3. Robustness

4. Data Poisoning

5. Backdoor

6. Model Stealing

7. Membership Inference

8. Model Inversion

9. etc
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Attack in ML Development Cycle 10

[10] Machine Learning Safety. Springer, 2022.
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Certification & Assurance 12

Assurance is a description of what high-quality software development processes should
be put in-place to create (safety-critical) software that performs its desired function.

If life cycle evidence can be produced to demonstrate that these processes have been
correctly and appropriately implemented, then such software should be assured.

leads to software standards such as

▶ DO-178B/C, Software Considerations in Airborne Systems and Equipment
Certification

▶ ISO 26262: standards for the functional safety of road vehicles
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Analysis Techniques 13

[11] A survey of safety and trustworthiness of deep neural networks: Verification, testing,

adversarial attack and defence, and interpretability. Computer Science Survey, 2020



23.33%

Trend of relevant research 14

Figure: https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

Comprehensive ones: 1. A Survey of Safety and Trustworthiness of Deep Neural Networks:

Verification, Testing, Adversarial Attack and Defence, and Interpretability, Computer Science Review.

37 (2020): 100270. [11]; 2. Machine Learning Safety. Springer, 2022. [10]

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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Falsification 15

Falsification aims to find evidence to demonstrate the weaknesses of a trained machine
learning model or a machine learning training process. Popular techniques include

▶ adversarial attack

▶ testing

▶ Monte Carlo sampling based methods,

▶ genetic algorithm based methods,

▶ etc
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Robustness Error 16

DL model: classifies α and α′ differently
Human: should remain the same
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Limited-Memory BFGS Attack (L-BFGS) 17

For robustness, one of earliest adversarial attack : optimization based formulation with
L2-norm metric

▶ Model f : Rs1 → {1 . . . sK} with sK labels

▶ x ∈ Rs1 = [0, 1]s1 is an input

▶ t ∈ {1 . . . sK} is a target misclassification label

Find the adversarial perturbation r via

min ||r||2 assure human-decision unchanged
s.t. argmaxl fl(x+ r) = t assure misclassification

x+ r ∈ Rs1 assure perturbed image feasible
(1)
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Gradient Direction 18

The gradient vector ∇f(x, y) points
in the direction of greatest rate of in-
crease of f(x, y)
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FGSM Attack 19

Fast Gradient Sign Method is able to find adversarial perturbations with a fixed
L∞-norm constraint very efficiently

▶ θ: the model parameters,

▶ x, y: the input and the label

▶ J(θ, x, y): the loss function

Find adversarial perturbation r by linearizing the loss function around the current value
of θ,

r = ϵ sign (∇xJ(θ, x, y)) (2)

- A one-step modification to all pixel values to increase the loss function with a
L∞-norm constraint ϵ
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Universal Attack on Both Additive and Nonaddictive Noise 20

▶ Instead of perturbing the pixel values, adversarial attacks can be achieved by
spatial transformation – on MNIST: digit ”0” is misclassified as ”2” (left figure)

▶ Different metric is required to measure pixel’s spatial displacement

▶ Perturb spatial location and values of pixels simultaneously on a set of images?

[24] Generalizing Universal Adversarial Perturbations for DNNs. ICDM2020
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Label Poisoning Attack on Graph Neural Networks 21

1. label propagation to
generate predictive labels

2. maximum gradient attack
to poison data labels

3. GNN training with
poisoned labels

[16] Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation. ECCV2022
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Software Testing Methods 22

▶ Well established in many industrial standard for software used in safety critical
systems, such as ISO26262 for automotive systems and DO 178B/C for avionic
systems.

▶ Coverage-guided testing
▶ (step 1) generate as many as possible the test cases according to the structural

information of the model, and
▶ (step 2) use the test cases to evaluate if the model performs well with respect to

certain properties
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Coverage-Guided Testing 23

▶ Coverage Metrics
▶ Structural Coverage, e.g., MC/DC coverage metrics [23] (Core idea: not only the

presence of a feature needs to be tested but also the causal effects of less complex
features on a more complex feature must be tested.)

▶ Scenario Coverage

▶ Test Case Generation Methods
▶ Fuzzing
▶ Symbolic/Concolic execution [24], etc

▶ check DeepConcolic: https://github.com/TrustAI/DeepConcolic

[23] Structural Test Coverage Criteria for Deep Neural Networks. ICSE2019

[24] Concolic Testing for Deep Neural Networks. ASE2018

https://github.com/TrustAI/DeepConcolic


40%

More Advanced Testing 24

Coverage-Guided Testing for Re-
current Neural Networks [6]

Hierarchical Distribution-Aware Testing of Deep
Learning [7]

[6] Coverage-Guided Testing for Recurrent Neural Networks. IEEE trans. on Reliability, 2021

[7] Hierarchical Distribution-Aware Testing of Deep Learning. ArXiv, 2022
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Explanation 25

The black-box nature of deep neural networks (DNNs) makes it impossible to
understand why a particular output is produced, creating demand for “Explainable AI”.

(a) ‘cowboy hat’ (b) ‘dog’ (c) ‘numbfish’ (d) ‘sheep’

Figure: Input images and explanations from for Xception (red labels highlight misclassification
or counter-intuitive explanations) [22]

For certification, we need not only correct classification but also correct explanation.

[22] Explaining Image Classifiers using Statistical Fault Localization. ECCV2020
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Explanation through Statistical Fault Localization 26

Adopting the definition of explanations by Halpern and Pearl, which is based on their
definition of actual causality. What we required:

1. an explanation is a sufficient cause of the outcome;

2. an explanation is a minimal such cause (that is, it does not contain irrelevant or
redundant elements);

3. an explanation is not obvious; in other words, before being given the explanation,
the user could conceivably imagine other explanations for the outcome.

What we propose:

▶ SFL (stochastic fault localisation) measures to rank the set of pixels of x by
slightly abusing the notions of passing and failing tests

[22] Explaining Image Classifiers using Statistical Fault Localization. ECCV2020
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BayLIME: Bayesian LIME 27

Utilising Bayesian variant to deal with

▶ consistency in repeated explanations of a single prediction (as shown below, with
LIME, different explanations can be generated for the same prediction)

▶ explanation fidelity

▶ robustness to kernel settings

[31] BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations. UAI2021
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SAFARI: Robustness ∧ Interpretability 28

Figure: Two types of
misinterpretations after perturbation

Novel black-box evaluation methods:

▶ based on Genetic Algorithm

▶ for both worst-case and overall robustness
of explanations

▶ new interpretation Discrepancy Metrics

[8] SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability. ArXiv, 2022.
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Verification 29

Verification aims to determine if a model satisfies certain properties. Popular
techniques include

▶ reduction to constraint solving

▶ over-approximation

▶ global optimisation based methods

▶ statistical evaluation

▶ coverage-guided testing

▶ etc
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Verification 30

(Robustness) Verification: verify if a certain input area can exclude misclasssification
with guarantees
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Verification by Reduction to Constraint Solving 31

▶ (step 1) encode the entire network

▶ (step 2) encode the robustness constraint over the input

▶ (step 3) compute the result by solving the constraints
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Verification by Reduction to Constraint Solving 32

▶ encode the network

▶ Let t⃗i+1 have value 0 or 1 in its entries and have the same dimension as v⃗i+1, and
M be a very large constant number that can be treated as ∞.

▶ we have the following MILP constraints for every layer i = 1..K − 2

v⃗i+1 ≥ Wiv⃗i + b⃗i,

v⃗i+1 ≤ Wiv⃗i + b⃗i +Mt⃗i+1,
v⃗i+1 ≥ 0,
v⃗i+1 ≤ M(1− t⃗i+1),

(3)
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Verification by Region Propagation 33

How does neural network pro-
cess (two very similar) inputs?

How does verification work?

A layer-by-layer explicit search
with SMT solver

[12] Safety verification of deep neural networks. CAV2017
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Verification by Global Optimisation 34
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Figure: A lower-bound function designed via Lipschitz constant

[20] Reachability Analysis of Deep Neural Networks with Provable Guarantees. IJCAI2018.
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Robustness Verification by Other Methods 35

▶ Reduction to Monte-Carlo Tree Based Search

▶ Reduction to Other Global Optimisation Method

▶ Reduction to Two-player Game

[26] Feature-guided black-box safety testing of deep neural networks. TACAS2018.
[21] Global robustness evaluation of deep neural networks with provable guarantees for the Hamming
distance. IJCAI2019

[27] A game-based approximate verification of deep neural networks with provable guarantees.

Theoretical Computer Science, 2020.
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Challenges of Verification 36

▶ Scalability

▶ Mostly work with Robustness

▶ Can only deal with deterministic variables/neurons, but machine learning problems
are mostly statistical ...
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Verifying Geometric Robustness of Large-scale Neural Networks 37

Figure: After normalising the parameter space to a unit search space, GeoRobust performs a
sequence of space divisions to find the global worst-case transformation.

[3] Towards Verifying the Geometric Robustness of Large-scale Neural Networks. ArXiv. 2022
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Enhancement through Rectification 38

Rectification aims to enhance the machine learning training process or the trained
machine learning model, so that the resulting machine learning model performs better
with respect to the properties. Popular techniques include

▶ adversarial training

▶ regularisation

▶ outlier detection

▶ randomisation (based on differential privacy)

▶ etc



65%

Model Improvement for Robustness 39
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Training and Inference of Deep Learning 40
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Attack vs. Defence: An Endless Game 41

@ DARPA’s GARD programme
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Structural Components that Affect Generalisability 42

Consider weight correlation during the training

Figure: For fully connected networks, the weight correlation of any two neurons is the cosine
similarity of the associated weight vectors. For convolutional neural networks, the weight
correlation of any two filters is the cosine similarity of the reshaped filter matrices.

[15] How does Weight Correlation Affect Generalisation Ability of DNNs? NeurIPS2020
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PAC-Bayes Bound 43

(McAllester, 1999) considers a generalization bound on the parameters

KL divergence plays a key role in the generalization bound

▶ a small KL term will help tighten the bound

▶ a larger KL term will loose the bound

[14] How does Weight Correlation Affect Generalisation Ability of DNNs? NeurIPS2020
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Weight Expansion Helps Generalisation 44

Figure: Visualization of weight volume and features of the last layer in a CNN on MNIST, with
and without dropout during training

[15] Weight Expansion: A New Perspective on Dropout and Generalization. Transactions on Machine
Learning Research. 2022
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Statistics over Weight that Affects Robust Generalisation 45

▶ treating model weights as random variables allows for enhancing adversarial
training through Second-Order Statistics Optimization (S2O) with respect to the
weights

▶ derive an improved PAC-Bayesian adversarial generalization bound, which
suggests that optimizing second-order statistics of weights can effectively tighten
the bound.

▶ thhrough experiments, we show that S2O not only improves the robustness and
generalization of the trained neural networks when used in isolation, but also
integrates easily in state-of-the-art adversarial training techniques like TRADES,
AWP, MART, and AVMixup, leading to a measurable improvement of these
techniques.

[13] Enhancing Adversarial Training with Second-Order Statistics of Weights. CVPR2022
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Uncertainty Estimation for Generalisation 46

1. train a teacher net

2. supervised by the pretrained teacher net, a
student net with an additional variance
branch is trained

3. During the online inference phase, we only
use the student net to generate both a
place prediction and the uncertainty

This can not only generate uncertainty for each
prediction but also improve the accuracy (i.e.,
generalisation).

Estimated 
Uncertainty 
Level=4/10 

(High)

Teacher 
Net

Estimated 
Uncertainty 
Level=1/10 

(Low)

Top1 Candidate A

Query BQuery A

Student 
Net

Top1 Candidate B

STUN

Teacher 
Net

Student 
Net

STUN

[4] STUN: Self-Teaching Uncertainty Estimation for Place Recognition. IROS2022
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Reliability 47

Safety assurance via a reliability assessment model.

▶ Safety assurance: processes that function systematically to ensure the
performance and effectiveness of safety risk controls and that the organization
meets or exceeds its safety objectives through the collection, analysis, and
assessment of information

▶ Software reliability: the probability of failure-free software operation for a specified
period of time in a specified environment

Approach: a reliability assessment model to construct probabilistic safety argument by
deriving reliability requirements from low-level ML functionalities
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Reliability Assessment Model (RAM) 48

A RAM built upon statistical testing evidence, while inspired by conventional
partition-based testing and operational profile (OP)-based testing

Reliability = Generalisation× Local Robustness/Safety/Security/... (4)

Specifically,

λ :=

∫
x∈Rs1

I{x causes a misclassification}(x)Op(x) dx , (5)

where x is an input in the input domain Rs1 , and IS(x) is an indicator function—it is
equal to 1 when S is true and equal to 0 otherwise. The function Op(x) returns the
probability that x is the next random input.

[28] A safety framework for critical systems utilising deep neural networks. SafeCOMP2020.
[29] Assessing Reliability of Deep Learning Through Robustness Evaluation and Operational Testing.
AISafety2021
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RAM in 4 Steps 49

▶ Partition the input space into “cells”, with the
guidance of r-separation

▶ Approximation the operational profile OP

▶ Cell robustness evaluation

▶ “Assemble” cell-wise estimates for reliability

λ =

m∑
i=1

Opiλi (6)

Then we can have the mean and variance of λ

[30] Reliability Assessment and Safety Arguments for Ma-

chine Learning Components in Assuring Learning-Enabled Au-

tonomous Systems. ACM Trans. Embedded Computing Sys-

tems, 2022.
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Autonomous Underwater Vehicle (AUV) Case Study 50

▶ An autonomous
inspection/survey
mission with several
waypoints and docking

▶ 6 simulated objects per
mission: pipe, barrel,
dock-cage, etc

▶ the mission is subject
to dynamic noise
factors

[30] Reliability Assessment and Safety Arguments for Machine Learning Components in System

Assurance. ACM Trans. Embedded Computing Systems, 2022.



85%

RAM for Motion Planning 51

[5] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems.

IROS2022.
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RAM for Motion Planning 52

[5] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems.

IROS2022.
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Conclusions 53
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Conclusions 54

▶ There is no single tool/method that can work for the certification of deep learning

▶ None of the F.E.V.E.R. has been sophisticated – many to be done for not only
each analysis technique but also the interfacing between them

▶ More than one properties to work with – probably an expressive formal language
will help.
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