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Major problems and critiques

» un-safe, e.g., lack of robustness (this talk)
» hard to explain to human users

» ethics, trustworthiness, accountability, etc.
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Figure: safety in image classification networks
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Al vs Al: New algorithm automatically bypasses your best
cybersecurity defenses

Researchers have created an Al that tweaks malware code, and it easily bypassed an anti-malware Al
undetected. Is machine learning ready to face down cybersecurity threats?

By Brandon Vigliarolo | August 2, 2017, 12:25 PM PST

Figure: safety in security systems
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Safety Requirements

» Pointwise Robustness (this talk)

» if the decision of a pair (input, network) is invariant with
respect to the perturbation to the input.

» Network Robustness

» or more fundamentally, Lipschitz continuity, mutual
information, etc

» model interpretability



Safety Definition: Human Driving vs. Autonomous Driving
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Safety Definition: Human Driving vs. Autonomous Driving
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Safety Problem: Incidents
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Safety Definition: lllustration
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Safety Definition: Deep Neural Networks

» R"” be a vector space of inputs (points)

» f:R" — C, where C is a (finite) set of class labels, models
the human perception capability,

» a neural network classifier is a function (x) which
approximates f(x)

input domain labels



Safety Definition: Deep Neural Networks

A (feed-forward) neural network N is a tuple (L, T, ®), where
» L={Lx | k€ {0,...,n}}: a set of layers.
» T C L x L: aset of sequential connections between layers,

» & ={¢ | k€ {1,...,n}}: a set of activation functions
¢k : Di,_, — Dy,, one for each non-input layer.

input domain layer 1 layer 2 output layer



Safety Definition: Traffic Sign Example
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Maximum Safe Radius

Definition
The maximum safe radius problem is to compute the minimum
distance from the original input « to an adversarial example, i.e.,

MSR(a) = orpelrf){Ha — /||« | @ is an adversarial example} (1)
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Challenges

Challenge 1: continuous space, i.e., there are an infinite number of
points to be tested in the high-dimensional space

Challenge 2: The spaces are high dimensional

Challenge 3: the functions f and f are highly non-linear, i.e., safety
risks may exist in the pockets of the spaces

Challenge 4: not only heuristic search but also verification



Approach 1: Single Layer — Discretisation

Define manipulations ¢, : Dy, — Dy, over the activations in the
vector space of layer k.

Figure: Example of a set {01, d2, 3,04} of valid manipulations in a
2-dimensional space



Exploring a Finite Number of Points
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Finite Approximation

Definition

Let 7 € (0, 1] be a manipulation magnitude. The finite maximum
safe radius problem FMSR(7, «) is defined over the manipulation
magnitude 7 (details to be given later).

Lemma
For any T € (0, 1], we have that MSR(«) < FMSR(T, ).



Approach 2: Single Layer — Exhaustive Search
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Figure: exhaustive search (verification) vs. heuristic search



Approach 3: Single Layer — Anytime Algorithms
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Approach 4: Layer-by-Layer Refinement

Input Layer Layer 1 Layer 2

MSRy

<

FMS Byl

where 1o > To*

Will explain how to determine 7 later.

Output Layer



Approach 2: Layer-by-Layer Refinement

Input Layer Layer 1 Layer 2

MSRy

<

FMSRy(t0) > FMSRi(r1)

where T1 > T

Output Layer



Approach 2: Layer-by-Layer Refinement

Input Layer Layer 1 Layer 2 Layer k Output Layer
MSRy = MSRy
< =
FMSRy(ry) > FMSRi(n) >  FMSRy(n)

where Tp < Te*
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Game-based Approach for a Single Layer Verification



Preliminaries: Lipschitz network

Definition

Network N is a Lipschitz network with respect to distance function
L, if there exists a constant A, > 0 for every class ¢ € C such
that, for all o, @’ € D, we have

IN(, €) = N(e, €)| < he - [lo — o[ (2)

Most known types of layers, including fully-connected,
convolutional, ReLU, maxpooling, sigmoid, softmax, etc., are
Lipschitz continuous [4].



Preliminaries: Feature-Based Partitioning

Partition the input dimensions with respect to a set of features.
Here, features in the simplest case can be a uniform partition, i.e.,
do not necessarily follow a particular method.

Image of MSR g:ﬁg‘éﬁn Feature 1, Feature 4, Feature A3 Feature 4,

Useful for the reduction to two-player game, in which player One
chooses a feature and player Two chooses how to manipulate the
selected feature.
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Preliminaries: Input Manipulation

Let 7 > 0 be a positive real number representing the manipulation
magnitude, then we can define input manipulation operations
Orx,i D — D for X C Py, a subset of input dimensions, and

i : Py — N, an instruction function by:

o)+ i) x 7, ifjeX
67 x,i()(j) = { (1)7 otJherWise

for all j € Pp.



Approximation Based on Finite Optimisation

Definition

Let 7 € (0,1] be a manipulation magnitude. The finite maximum
safe radius problem FMSR(7, a) based on input manipulation is as
follows:

i i i —07.X,i 0r x,i() is an adv. example
AT xein p, min{{la—drxi(@lli | orxi(e) is an adv. example}
(3)

Lemma
For any T € (0, 1], we have that MSR(«) < FMSR(T, v).

We need to determine the condition for 7 to satisfy so that
FMSR(7, @) = MSR(«).



Grid Space

Definition

An image o' € n(a, L, d) is a T-grid input if for all dimensions
p € Py we have |&/(p) — a(p)| = nx 7 for some n > 0. Let
G(a, k, d) be the set of T-grid inputs in n(«, L, d).
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misclassification aggregator

Definition

An input oy € n(a, Lk, d) is a misclassification aggregator with
respect to a number 3 > 0 if, for any an € n(a1, Lk, 3), we have
that N(ap) # N(«) implies N(a1) # N().

Lemma
If all T-grid inputs are misclassification aggregators with respect to
Td(k,T), then MSR(k,d,a, c) > FMSR(7, k,d, o, ¢) — 2d(k, 7).




Conditions for Achieving Misclassification Aggregator

Given a class label ¢, we let

g(d/,c) = min {N(a/,c) = N(d/, ")} (4)
c’eC,c'#c
be a function maintaining for an input o/ the minimum confidence
margin between the class ¢ and another class ¢’ # N(o).

Lemma
Let N be a Lipschitz network with a Lipschitz constant h. for
every classc € C. If

2g(o', N(a))

d(k,7) <
.7) maXcec c£N (o) (An(ar) + fic)

for all T-grid input o' € G(a, k, d), then all T-grid inputs are
misclassification aggregators with respect to %d (k,T).



Main Theorem

Theorem

Let N be a Lipschitz network with a Lipschitz constant h¢ for
every classc e C. If

/ /
Sy < 28( (@)
maxc’GC,c’#N(a’)(hN(a’) + hc/)

for all T-grid inputs o/ € G(«, k,d), then we can use

FMSR(T, k, d, a, ¢) to estimate MSR(k, d, a, ¢) with an error bound
1
Ed(k’ T).
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Flow of Reductions
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Experimental Results



Convergence of Lower and Upper Bounds
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Experimental Results: GTSRB

Image Classification Network for The German Traffic Sign
Recognition Benchmark
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Experimental Results: GTSRB
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Experimental Results: imageNet

Image Classification Network for the ImageNet dataset, a large
visual database designed for use in visual object recognition
software research.
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Experimental Results: ImageNet

boxer to rhodesian ridgeback great pyrenees to kuvasz



Comparison with Existing Tools on Finding Upper Bounds

MNIST CIFAR10!
Lo Distance Time(s) Distance Time(s)
mean std mean std mean std mean std
DeepGame 6.11 2.48 4.06 1.62 2.86 1.97 5.12 3.62
CW [1] 7.07 491 17.06 1.80 3.52 2.67 15.61 5.84
LO-TRE [5] 10.85 6.15 0.17 0.06 2.62 2.55 0.25 0.05
DLV [2] 13.02 5.34 180.79 64.01 3.52 2.23 157.72 21.09
SafeCV [6] 27.96 17.77 12.37 7.71 9.19 9.42 26.31 78.38
JSMA [3] 33.86 22.07 3.16 2.62 19.61 20.94 0.79 1.15




Comparison with Existing Tools on Finding Upper Bounds
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Figure: ‘original’, ‘DeepGame’, ‘CW’, ‘LO-TRE’, ‘DLV’, ‘SafeCV’, ‘JSMA'.



Comparison with Existing Tools on Finding Upper Bounds
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Figure: ‘original’, ‘DeepGame’, ‘CW’, ‘LO-TRE’, ‘DLV’, ‘SafeCV’, ‘JSMA'.



Nexar Traffic Challenge

Figure: Adversarial examples generated on Nexar data demonstrate a lack
of robustness. (a) Green light classified as red with confidence 56% after
one pixel change. (b) Green light classified as red with confidence 76%
after one pixel change. (c) Red light classified as green with 90%
confidence after one pixel change.



Conclusions and Future Works

» Pointwise Robustness (this talk)
> Network Robustness

» or more fundamentally, Lipschitz continuity, mutual
information, etc

» model interpretability
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