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Human-Level Intelligence



Robotics and Autonomous Systems



Deep neural networks

all implemented with



Major problems and critiques

I un-safe, e.g., lack of robustness (this talk)

I hard to explain to human users

I ethics, trustworthiness, accountability, etc.



Figure: safety in image classification networks



Figure: safety in natural language processing networks



Figure: safety in voice recognition networks



Figure: safety in security systems
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Certification of DNN



Safety Requirements

I Pointwise Robustness (this talk)

I if the decision of a pair (input, network) is invariant with
respect to the perturbation to the input.

I Network Robustness

I or more fundamentally, Lipschitz continuity, mutual
information, etc

I model interpretability



Safety Definition: Human Driving vs. Autonomous Driving

Traffic image from “The German Traffic Sign Recognition Benchmark”



Safety Definition: Human Driving vs. Autonomous Driving

Image generated from our tool



Safety Problem: Incidents



Safety Definition: Illustration



Safety Definition: Deep Neural Networks

I Rn be a vector space of inputs (points)

I f : Rn → C , where C is a (finite) set of class labels, models
the human perception capability,

I a neural network classifier is a function f̂ (x) which
approximates f (x)



Safety Definition: Deep Neural Networks

A (feed-forward) neural network N is a tuple (L,T ,Φ), where

I L = {Lk | k ∈ {0, ..., n}}: a set of layers.

I T ⊆ L× L: a set of sequential connections between layers,

I Φ = {φk | k ∈ {1, ..., n}}: a set of activation functions
φk : DLk−1

→ DLk , one for each non-input layer.



Safety Definition: Traffic Sign Example



Maximum Safe Radius

Definition
The maximum safe radius problem is to compute the minimum
distance from the original input α to an adversarial example, i.e.,

MSR(α) = min
α′∈D
{||α− α′||k | α′ is an adversarial example} (1)





Challenges

Challenge 1: continuous space, i.e., there are an infinite number of
points to be tested in the high-dimensional space

Challenge 2: The spaces are high dimensional

Challenge 3: the functions f and f̂ are highly non-linear, i.e., safety
risks may exist in the pockets of the spaces

Challenge 4: not only heuristic search but also verification



Approach 1: Single Layer – Discretisation

Define manipulations δk : DLk → DLk over the activations in the
vector space of layer k .
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Figure: Example of a set {δ1, δ2, δ3, δ4} of valid manipulations in a
2-dimensional space



Exploring a Finite Number of Points
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Finite Approximation

Definition
Let τ ∈ (0, 1] be a manipulation magnitude. The finite maximum
safe radius problem FMSR(τ, α) is defined over the manipulation
magnitude τ (details to be given later).

Lemma
For any τ ∈ (0, 1], we have that MSR(α) ≤ FMSR(τ, α).



Approach 2: Single Layer – Exhaustive Search
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Figure: exhaustive search (verification) vs. heuristic search



Approach 3: Single Layer – Anytime Algorithms



Approach 4: Layer-by-Layer Refinement

Will explain how to determine τ∗0 later.



Approach 2: Layer-by-Layer Refinement



Approach 2: Layer-by-Layer Refinement
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Preliminaries: Lipschitz network

Definition
Network N is a Lipschitz network with respect to distance function
Lk if there exists a constant ~c > 0 for every class c ∈ C such
that, for all α, α′ ∈ D, we have

|N(α′, c)− N(α, c)| ≤ ~c · ||α′ − α||k . (2)

Most known types of layers, including fully-connected,
convolutional, ReLU, maxpooling, sigmoid, softmax, etc., are
Lipschitz continuous [4].



Preliminaries: Feature-Based Partitioning

Partition the input dimensions with respect to a set of features.
Here, features in the simplest case can be a uniform partition, i.e.,
do not necessarily follow a particular method.

Useful for the reduction to two-player game, in which player One
chooses a feature and player Two chooses how to manipulate the
selected feature.



Preliminaries: Input Manipulation

Let τ > 0 be a positive real number representing the manipulation
magnitude, then we can define input manipulation operations
δτ,X ,i : D→ D for X ⊆ P0, a subset of input dimensions, and
i : P0 → N, an instruction function by:

δτ,X ,i (α)(j) =

{
α(j) + i(j) ∗ τ, if j ∈ X
α(j), otherwise

for all j ∈ P0.



Approximation Based on Finite Optimisation

Definition
Let τ ∈ (0, 1] be a manipulation magnitude. The finite maximum
safe radius problem FMSR(τ, α) based on input manipulation is as
follows:

min
Λ′⊆Λ(α)

min
X⊆

⋃
λ∈Λ′ Pλ

min
i∈I
{||α−δτ,X ,i (α)||k | δτ,X ,i (α) is an adv. example}

(3)

Lemma
For any τ ∈ (0, 1], we have that MSR(α) ≤ FMSR(τ, α).

We need to determine the condition for τ to satisfy so that
FMSR(τ, α) = MSR(α).



Grid Space

Definition
An image α′ ∈ η(α, Lk , d) is a τ -grid input if for all dimensions
p ∈ P0 we have |α′(p)− α(p)| = n ∗ τ for some n ≥ 0. Let
G (α, k , d) be the set of τ -grid inputs in η(α, Lk , d).



misclassification aggregator

Definition
An input α1 ∈ η(α, Lk , d) is a misclassification aggregator with
respect to a number β > 0 if, for any α2 ∈ η(α1, Lk , β), we have
that N(α2) 6= N(α) implies N(α1) 6= N(α).

Lemma
If all τ -grid inputs are misclassification aggregators with respect to
1
2d(k , τ), then MSR(k , d , α, c) ≥ FMSR(τ, k , d , α, c)− 1

2d(k , τ).



Conditions for Achieving Misclassification Aggregator

Given a class label c , we let

g(α′, c) = min
c ′∈C ,c ′ 6=c

{N(α′, c)− N(α′, c ′)} (4)

be a function maintaining for an input α′ the minimum confidence
margin between the class c and another class c ′ 6= N(α′).

Lemma
Let N be a Lipschitz network with a Lipschitz constant ~c for
every class c ∈ C . If

d(k , τ) ≤ 2g(α′,N(α′))

maxc∈C ,c 6=N(α′)(~N(α′) + ~c)
(5)

for all τ -grid input α′ ∈ G (α, k, d), then all τ -grid inputs are
misclassification aggregators with respect to 1

2d(k, τ).



Main Theorem

Theorem
Let N be a Lipschitz network with a Lipschitz constant ~c for
every class c ∈ C . If

d(k , τ) ≤ 2g(α′,N(α′))

maxc ′∈C ,c ′ 6=N(α′)(~N(α′) + ~c ′)

for all τ -grid inputs α′ ∈ G (α, k, d), then we can use
FMSR(τ, k , d , α, c) to estimate MSR(k , d , α, c) with an error bound
1
2d(k , τ).
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Flow of Reductions
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Convergence of Lower and Upper Bounds



Experimental Results: GTSRB

Image Classification Network for The German Traffic Sign
Recognition Benchmark

Total params: 571,723



Experimental Results: GTSRB



Experimental Results: imageNet

Image Classification Network for the ImageNet dataset, a large
visual database designed for use in visual object recognition
software research.

Total params: 138,357,544



Experimental Results: ImageNet



Comparison with Existing Tools on Finding Upper Bounds

L0

MNIST CIFAR101

Distance Time(s) Distance Time(s)

mean std mean std mean std mean std

DeepGame 6.11 2.48 4.06 1.62 2.86 1.97 5.12 3.62

CW [1] 7.07 4.91 17.06 1.80 3.52 2.67 15.61 5.84

L0-TRE [5] 10.85 6.15 0.17 0.06 2.62 2.55 0.25 0.05

DLV [2] 13.02 5.34 180.79 64.01 3.52 2.23 157.72 21.09

SafeCV [6] 27.96 17.77 12.37 7.71 9.19 9.42 26.31 78.38

JSMA [3] 33.86 22.07 3.16 2.62 19.61 20.94 0.79 1.15



Comparison with Existing Tools on Finding Upper Bounds

Figure: ‘original’, ‘DeepGame’, ‘CW’, ‘L0-TRE’, ‘DLV’, ‘SafeCV’, ‘JSMA’.



Comparison with Existing Tools on Finding Upper Bounds

Figure: ‘original’, ‘DeepGame’, ‘CW’, ‘L0-TRE’, ‘DLV’, ‘SafeCV’, ‘JSMA’.



Nexar Traffic Challenge

Figure: Adversarial examples generated on Nexar data demonstrate a lack
of robustness. (a) Green light classified as red with confidence 56% after
one pixel change. (b) Green light classified as red with confidence 76%
after one pixel change. (c) Red light classified as green with 90%
confidence after one pixel change.



Conclusions and Future Works

I Pointwise Robustness (this talk)

I Network Robustness

I or more fundamentally, Lipschitz continuity, mutual
information, etc

I model interpretability
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