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Zusammenfassung

Wir untersuchen die Existenz von optimalen Strategien in unendlichen Spie-
len auf Graphen, sowie die Komplexität die nötig ist, um diese zu berechnen
und zu implementieren.

Parametrisierte lineare temporale Logiken sind Erweiterungen von „Li-
near Temporal Logic“ (LTL) mit temporalen Operatoren, die mit variablen
Zeitschranken versehen werden können. Solche Logiken wurden als „PLTL“
von Alur et al. und als „PROMPT-LTL“ von Kupferman et al. für das Model-
Checking entwickelt. Wir zeigen, dass in doppelt-exponentieller Laufzeit ent-
schieden werden kann, ob ein Spieler ein Spiel mit PLTL-Gewinnbedingung
bezüglich mindestens einer, unendlich vieler, oder aller Variablenbelegungen
gewinnt. Diese Probleme sind also nicht schwerer als das Lösen von LTL-
Spielen. Weiterhin stellen wir einen Algorithmus mit dreifach-exponentieller
Laufzeit vor, der optimale Variablenbelegungen bestimmt, bezüglich derer
ein Spieler gewinnt. Schließlich zeigen wir doppelt-exponentielle obere und
untere Schranken für die Werte von optimalen Variablenbelegungen.

In Muller-Spielen messen wir die Qualität einer Gewinnstrategie mit
McNaughtons Score-Werten. Wir konstruieren Gewinnstrategien, die alle
Score-Werte des verlierenden Spielers mit zwei beschränken und zeigen, dass
der Wert zwei optimal ist. Damit verringern wir die bisher beste obere
Schranke n! in einem Muller-Spiel mit n Knoten von McNaughton. Unter
Benutzung dieser Strategien zeigen wir, wie aus einen Muller-Spiel ein Sa-
fetyspiel konstruiert werden kann, dessen Lösung es ermöglicht, beide Ge-
winnregionen und eine Gewinnstrategie für einen Spieler im ursprünglichen
Muller-Spiel zu bestimmen. Dadurch erhalten wir eine neue Antiketten-
basierte Speicherstruktur und die erste Definition von permissiven Strate-
gien für Muller-Spiele. Zusätzlich verallgemeinern wir diese Konstruktion,
indem wir einen neuen Begriff einer Spielreduktion von beliebigen Spielen
auf Safety-Spiele einführen, und zeigen, dass dieser auf viele andere Gewinn-
bedingungen anwendbar ist.
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Abstract

We investigate the existence and the complexity of computing and imple-
menting optimal winning strategies for graph games of infinite duration.

Parameterized linear temporal logics are extensions of Linear Temporal
Logic (LTL) by temporal operators equipped with variables for time bounds.
In model-checking, such specifications were introduced as “PLTL” by Alur
et al. and as “PROMPT-LTL” by Kupferman et al. We show how to deter-
mine in doubly-exponential time, whether a player wins a game with PLTL
winning condition with respect to some, infinitely many, or all variable val-
uations. Hence, these problems are not harder than solving LTL games.
Furthermore, we present an algorithm with triply-exponential running time
to determine optimal variable valuations that allow a player to win a game.
Finally, we give doubly-exponential upper and lower bounds on the values
of optimal variable valuations.

In Muller games, we measure the quality of a winning strategy using Mc-
Naughton’s scoring functions. We construct winning strategies that bound
the losing player’s scores by two and show this to be optimal. This improves
the previous best upper bound of n! in a game with n vertices, obtained by
McNaughton. Using these strategies, we show how to transform a Muller
game into a safety game whose solution allows to determine the winning re-
gions of the Muller game and to compute a finite-state winning strategy for
one player. This yields a novel antichain-based memory structure and the
first definition of permissive strategies for Muller games. Moreover, we gen-
eralize our construction by presenting a new type of game reduction from
infinite games to safety games and show its applicability to several other
winning conditions.
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Chapter 1

Introduction

Many of todays problems in computer science are no longer concerned with
programs that transform data and then terminate, but with non-terminating
systems which have to interact with a possibly antagonistic environment.
The emergence of such reactive systems requires new approaches to verifica-
tion and synthesis. Over the course of the last fifty years it turned out to
be very fruitful to model and analyze reactive systems in a game-theoretic
framework, which captures the antagonistic and strategic nature of the in-
teraction between the system and its environment.

This approach can be traced back to work on the synthesis problem
for boolean circuits, nowadays known as Church’s problem [Chu57, Chu63]:
given a requirement on the input-output behavior of circuits expressed in
some suitable formalism, find a circuit that satisfies the given requirement
(or determine that there is no such circuit). This problem can be interpreted
as a game between two agents: an environment generating an infinite stream
of input bits, each of which is answered by an output bit generated by the
circuit. The requirement on the input-output behavior determines the winner
of each execution: if the pair of bitstreams satisfies the requirement, then
the circuit wins, otherwise the environment wins. In this view, Church’s
problem boils down to finding a finitely represented rule which prescribes
for every finite sequence of input bits an output bit such that every input
stream is answered by an output stream in a way that the pair of streams
satisfies the given requirement.

To model the general synthesis problem for reactive systems, another
level of abstraction is added to the game described above: an infinite, graph-
based, two-player game is played in a graph without dead ends whose set
of vertices is partitioned into the positions of Player 0 and the positions of
Player 1. The players construct a play, an infinite path through the graph,
according to the following rule: a token is placed at an initial vertex and
whenever the token is at a position of Player i, she has to move the token to
some successor. After ω moves, the winning condition of the game, a subset
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1 Introduction

of the plays of the graph, determines the winner of the play. A strategy for
Player i in such a game is a mapping prescribing a legal move for every play
prefix ending in a position of Player i. A strategy is winning from a given
vertex, if every play that starts in this vertex and is played according to the
strategy is won by Player i. A game is determined, if from each vertex, one
of the players has a winning strategy.

In this framework, the seminal Büchi-Landweber Theorem [BL69], which
solves Church’s problem as special case, reads as follows: every infinite game
in a finite graph with ω-regular winning condition is determined and finite-
state strategies – strategies implemented by finite automata with output –
suffice to win these games and can be computed effectively. Ever since, this
result was extended along different dimensions, e.g., the number of players,
the type of graph the game is played in, the type of winning condition, the
nature of the interaction between the players (alternation or concurrency),
the presence or absence of probabilistic influences, and complete or incom-
plete information for the players about the evolution of the play.

The synthesis problem for reactive systems can be solved as follows: we
model the system and its environment by a finite graph whose edge rela-
tion describes the interaction between the environment and the system; the
requirement on the system is expressed as ω-regular winning condition. Ap-
plying the Büchi-Landweber Theorem yields an automaton with output so
that every execution that is controlled by the automaton satisfies the re-
quirement (or it yields a strategy for the environment witnessing that the
requirement cannot be satisfied). Hence, the size of the automaton imple-
menting the winning strategy influences the size of the synthesized controller
for the reactive system.

Hence, controllers for reactive systems can be synthesized by solving in-
finite games, which amounts to determining for every vertex the player who
has a winning strategy and to compute such a strategy. The computational
complexity of solving a game and the size of finite-state winning strategies for
a game are influenced by the expressiveness and succinctness of the formal-
ism employed to specify the winning condition. Commonly used formalisms
include linear temporal logics and acceptance conditions from the theory of
automata on infinite words. These were the focus of intensive research that
classified the computational complexity of the solution problem for almost
all types of winning conditions and resulted in (typically) tight upper and
lower bounds on the size of winning strategies. A notable and important
exception concerns the complexity of solving parity games: the problem is
known to be in NP ∩Co-NP and subexponential algorithms were found,
but it is open whether parity games can be solved in polynomial time.

To make synthesis applicable in practice, a good compromise between
the expressiveness of winning conditions on the one hand and the result-
ing computational complexity of solving the game and the size of winning
strategies on the other hand has to be found. Typically, reachability, safety,
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1 Introduction

Büchi-, and co-Büchi games, which can be solved in polynomial time and
have small winning strategies, are too weak to express important properties,
while expressive formalisms like Linear Temporal Logic (LTL) or request-
response conditions are considered infeasible and require prohibitively large
finite-state winning strategies. Only recently, the first tools to solve games
with LTL winning conditions were published [JB06, FJR11, Ehl11, BBF+]
and showed promising results. Further developments might show the per-
ception of LTL synthesis being infeasible wrong and make LTL synthesis, in
spite of its high worst-case complexity, applicable in practice.

In this work, we focus on a third facet of synthesis besides expressiveness
and complexity: the quality of a controller. For many winning conditions
there exist one or more natural preference orders on winning strategies. For
example, for a request-response condition of the form “every request of a
resource has to be granted eventually”, we might be interested in a strategy
that answers requests as soon as possible or in minimizing the average waiting
time between a request and a response. Computing (approximatively) opti-
mal winning strategies with respect to a quality measure is another challenge
that has to be met in order to make synthesis viable in practical applications.

This aspect is not addressed by classical solution algorithms, which de-
termine a winning strategy with no (explicit) regard to optimality according
to quality measures. Furthermore, it could be the case that there are trade-
offs between different quality measures, which would require the application
of different algorithms depending on the measure under consideration. The
situation changed in the last years, when more and more attention was be-
ing paid to synthesizing optimal winning strategies. This includes the use of
weighted automata to measure the quality of plays and strategies [BCHJ09,
CHJS11, CH+11] and work on request-response games [HTW08] and their
extensions [Zim09].

We consider two types of winning conditions, each equipped with a natu-
ral quality measure that allows to investigate the existence of optimal (with
respect to the measure) winning strategies and the complexity of finding and
implementing them. We begin with an extension of LTL with parameterized
operators which allow to formulate explicit timing constraints in a specifi-
cation. Here, we are interested in minimizing or maximizing these bounds.
Our work on this high-level specification language is complemented by work
on Muller games, a low-level, but still expressive and challenging automata-
theoretic winning condition. Here, we use scoring functions for Muller games
and aim to minimize the losing player’s scores.

Synthesis from Parametric Linear Temporal Logics

The first extension of LTL by operators for explicit timing constraints was
Metric Temporal Logic [Koy90, AH93] which allows to restrict the scope of
temporal operators with intervals of natural numbers. For example, the for-
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mula F(a,b)ϕ is satisfied at a position n, if ϕ holds at least once between
the positions n+ a and n+ b. This allows to verify whether a given bound
is guaranteed, but finding one is cumbersome and its value depends on the
granularity of the model. To overcome these shortcomings, Alur et al. intro-
duced Parametric Linear Temporal Logic [AETP01] with parametric bounds
of the form F≤x (the parameterized eventually operator) and G≤y (the pa-
rameterized always operator), where x and y are variables. Thus, satisfaction
is defined with respect to a variable valuation α mapping variables to natural
numbers: F≤xϕ is satisfied with respect to α, if ϕ holds at least once during
the next α(x) steps. Dually, G≤yϕ is satisfied with respect to α, if ϕ holds
throughout the next α(y) positions. This formalism allows to ask whether
there exists a variable valuation such that a given PLTL formula is satisfied
and even ask for optimal variable valuations: for parameterized eventually
operators we are interested in minimizing the variable values while we want
to maximize the values for parameterized always operators. This allows to
specify that we want requests to be served as soon as possible or that we
want to maximize the uptime of a system.

Alur et al. showed that the analogues of LTL model-checking – deter-
mining whether a transition system satisfies a PLTL formula with respect
to some, infinitely many, or all variable valuations – are Pspace-complete,
which is also the complexity of LTL model-checking. Thus, adding param-
eterized operators to LTL does not increase the computational complexity
of the model-checking problem. For two important fragments of PLTL they
even showed how to solve optimization problems: if a formula contains only
parameterized eventually operators or only parameterized always operators,
then optimal variable valuations (according to several natural notions of op-
timality) can be computed in polynomial space.

Later, Kupferman et al. [KPV09] considered the fragment of PLTL con-
taining no parameterized always’ (called PROMPT–LTL in their work), gave
an alternative model-checking algorithm, and solved the assume-guarantee
model-checking and the realizability problem for PROMPT–LTL.

We lift these results to infinite games by showing that determining wheth-
er a given player wins a game with PLTL winning condition with respect
to some, infinitely many, or all variable valuations is 2Exptime-complete,
which matches the complexity of solving games with LTL winning conditions.
For the optimization problems for infinite games with winning conditions in
the fragments described above, we give an algorithm that determines optimal
variable valuations in triply-exponential time. Hence, there is an exponen-
tial gap between the lower bound obtained by the 2Exptime-hardness of
solving LTL games and our algorithm. We complement this with doubly-
exponential upper and lower bounds on the values of optimal valuations.

The results on the decision and optimization problems for PLTL were
published in [Zim11] while the lower bounds on optimal variable valuations
are unpublished joint work with Christof Löding.
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Optimal Strategies for Muller Games

A Muller game consists of graph with vertex set V and a partition (F0,F1) of
the power set of V . Player i wins a play if the set of vertices that are visited
infinitely often by the play is in Fi. Therefore, Muller games generalize
every other type of game in which the winner of a play only depends on the
set of vertices visited infinitely often, e.g., Büchi, co-Büchi, parity, Rabin,
and Streett games. The complexity of solving Muller games depends on
how succinct the partition (F0,F1) is encoded, but is Pspace-complete for
concise encodings [HD05], and in NP [DJW97] respectively in P [Hor08]
for (more or less) explicit encodings. Muller games can either be solved by
direct algorithms [McN93, Zie98, Hor08] or by reductions to parity games.
As a consequence of these reductions, Muller games are determined with
finite-state strategies of size n!, where n is the size of the game graph, and
there are matching lower bounds [DJW97].

While investigating the interest of Muller games for “casual living-room
recreation” [McN00], McNaughton introduced scoring functions to describe
the progress a player is making towards winning a play. The score for a set F
of vertices measures how often F has been visited completely since the last
visit of a vertex that is not in F . If such a vertex is visited, then the score
is reset to zero. Player i wins a play if and only if there is an F ∈ Fi such
that the score for F tends to infinity while being reset only finitely often.
Hence, the winning player of a play can be characterized by the evolution of
the scores during the play.

McNaughton used these functions to propose a finite-duration variant of
Muller games to be played by humans: the players construct a play until
some score for a set F reaches a predefined threshold score. At this point,
the play is stopped and Player i with F ∈ Fi wins this finite play. By proving
the existence of strategies for the winning player of the Muller game that
bound her opponent’s scores for each set F by |F |! – which are winning for
both games – McNaughton showed that Player i wins the Muller game from a
vertex v if and only if she wins the finite-duration game with threshold |F |!+1
from v.

In this work, we improve the bound |F |! by showing that the losing
player’s score can even be bounded by two, no matter how large the graph
is and how complicated the partition (F0,F1) is. This shows that Mc-
Naughton’s threshold scores can lowered from |F |! + 1 to three while re-
taining the fact that from a given vertex, the same player wins both games.
We complement this by showing that the losing player can enforce of a score
of two in some games, which proves our results to be optimal in this sense.
Furthermore, we provide tight upper and lower bounds on the length of plays
that avoid a score of |F |! + 1 respectively three.

Using the existence of winning strategies that bound the losing player’s
scores by two, we show how to determine the winning regions of a Muller
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game and a finite-state winning strategy for one player by solving a safety
game. This extends previous work on reductions from co-Büchi and parity
games to safety games having the same properties. As a byproduct of our
construction, we obtain a new memory structure for Muller games and a
natural generalization of permissive strategies from parity games to Muller
games. In a parity game, a non-deterministic strategy is permissive if it sub-
sumes the behavior of every positional (non-deterministic) winning strategy.
We show that this definition can be rephrased in terms of scoring functions
for parity games and then generalize this new definition to Muller games.

Finally, we present a new notion of reduction from arbitrary games to
safety games which encompasses all reductions mentioned above and present
several other applications. Unlike classical game reductions, which are lim-
ited by topological properties of the winning plays, our reduction overcomes
these obstacles. However, a price has to be paid: our reductions only yield
the winning regions and a winning strategy for one player, while classical
reductions yield both winning regions and strategies for both players. This
is made up for by the fact that safety games can be solved by a simple, linear
time algorithm, whereas, e.g., solving Muller games by classical game reduc-
tions requires to solve a parity game, a task for which only superpolynomial
algorithms are known.

The existence of strategies bounding the losing player’s scores by two was
obtained in collaboration with John Fearnley [FZ12] while the reduction from
Muller to safety games was developed in collaboration with Daniel Neider
and Roman Rabinovich [NRZ11].

Outline

This work is organized as follows. In Chapter 2, we formalize notions like
games, strategies, and game reductions, and conclude by listing some results
about finite games. In Chapter 3, we present our results on games with PLTL
winning conditions. We define the syntax and semantics and state some ba-
sic properties of PLTL and of games with winning conditions in PLTL in
Section 3.1. Then, we solve the decision problems in Section 3.2 and the
optimization problems in Section 3.3. In Chapter 4, we recap McNaughton’s
work on scoring functions in Section 4.1 and prove the existence of strategies
that bound the losing player’s score by two in Section 4.2. Then, in Chap-
ter 5, after a short introduction to the Borel hierarchy in Section 5.1, we
show how to reduce parity and Muller games to safety games using scoring
functions in Section 5.2 and Section 5.3, respectively. We conclude this chap-
ter by a new notion of game reduction that encompasses these constructions
in Section 5.4. Finally, in Chapter 6, we give a conclusion and list some open
questions and pointers to further research.

6



1 Introduction

Acknowledgments

I want to thank my advisor Wolfgang Thomas for his constant support and
for giving me advice and guidance whenever I needed it. Furthermore, he
brought McNaughton’s work on playing infinite games in finite time to my
attention and encouraged me to work on this question, which led to the
results presented in Chapter 4 and thereby a substantial part of this thesis.

Furthermore, I want to thank the external reviewer Jean-François Raskin
for readily taking on this task and Joost-Pieter Katoen and Thomas Seidl
for completing my thesis committee.

Many of the results presented here were obtained in collaborations: I
want to thank my co-authors John Fearnley, Daniel Neider, and Roman Ra-
binovich, and the following people who directly contributed to this thesis:
Namit Chaturvedi for proving the lower bound presented in the appendix,
Christof Löding for a discussion that led to Theorem 3.43 (and to a white-
board falling on my forehead), and Roman Rabinovich for a fruitful train ride
after the GAMES Workshop 2010 during which we found the Muller game
presented in Theorem 4.16 and for coining the term “blinking semantics”.

The results presented in Chapter 4 are the outcome of a visit in Warwick.
I am grateful to Marcin Jurdziński for inviting me to visit him and John.

Furthermore, I want to thank Wladimir Fridman for innumerable dis-
cussions and for drawing large graphs way beyond the call of duty. Finally,
Namit Chaturvedi, Wladimir Fridman, Daniel Neider, Jörg Olschewski, Ste-
fan Repke, and Roman Rabinovich earned my gratitude for proof-reading
parts of this thesis.

Finally, I want to thank my wife Nadine Wacker for still challenging me
every day and still just being the way you are. Good times lie ahead of us.
But no basketball scores this time, stupid lockout.

7





Chapter 2

Preliminaries

This chapter is devoted to presenting definitions and notations used through-
out this work. After some preliminaries and after fixing our notation for au-
tomata on finite and infinite words, we give a thorough introduction to infi-
nite games comprising winning conditions, strategies, and finite-state strate-
gies, as well as game reductions. We conclude by listing some known results
about infinite games which are used in the remainder of this work.

2.1 Basic Definitions

The set of non-negative integers is denoted by N. We denote the parity of
an integer n by Par(n), i.e., Par(n) = 0 if n is even, and Par(n) = 1 if n is
odd. For n ∈ N, let [n] = {0, . . . , n− 1}; especially, [0] = ∅. The cardinality
of a set S is denoted by |S|, and its power set by 2S .

An alphabet Σ is a non-empty, finite set of letters or symbols. The set
of finite words over Σ is denoted by Σ∗, the set of non-empty words by Σ+,
and the empty word by ε. Furthermore, the set of ω-words over Σ is denoted
by Σω. A language1 is either a subset of Σ∗ or a subset of Σω.

The length of a finite word w is denoted by |w|. Given a finite or infinite
word w, we denote its n-th letter by wn, where the first letter of a non-empty
word is w0. Furthermore, we also use the notation Lst(w) to denote the last
letter of a non-empty finite word w.

Concatenation of a finite word w and a (finite or infinite) word w′ is
denoted by ww′. Similarly, concatenation of a language L of finite words
and a language L′ of (finite or infinite) words is denoted by L ·L′. The prefix
relation on words is denoted by v. The set of prefixes of a (finite or infinite)
word w is denoted by Pref(w). If w = xy, then x−1w = y and wy−1 = x.

The occurrence set Occ(w) of a finite or infinite word w over an alpha-

1When we speak of a language, it is always clear from the context whether it contains
finite or infinite words.
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bet Σ is defined by

Occ(w) = {a ∈ Σ | there exists an n such that wn = a} ,

and the infinity set Inf(w) of an infinite word w is defined by

Inf(w) = {a ∈ Σ | there exist infinitely many n such that wn = a} .

The following complexity classes of decision problems appear in this work.
We refrain from giving formal definitions (see, e.g., [Pap94]), since we only
use them to classify the complexity of solving the games we consider here.

� P: deterministic polynomial time.

� UP: unambiguous2 non-deterministic polynomial time.

� NP: non-deterministic polynomial time.

� Pspace: polynomial space.

� 2Exptime: deterministic doubly-exponential time, i.e., running time
bounded by 22p(n) for some polynomial p.

Furthermore, Co-UP and Co-NP denote the complement classes of UP
and NP, respectively. For example, Co-NP contains all decision prob-
lems whose complement problem is in NP. The following inclusions hold:
P ⊆ UP ⊆ NP ⊆ Pspace, P ⊆ Co-UP ⊆ Co-NP ⊆ Pspace, and
Pspace ⊆ 2Exptime.

2.2 Automata

In this section, we introduce our notation for automata on finite (Subsec-
tion 2.2.1) and infinite (Subsection 2.2.2) words. Furthermore, we define
unambiguity and non-confluence of ω-automata, which play an important
role when we determinize them in a later chapter.

2.2.1 Automata on Finite Words

A (non-deterministic) finite automaton A = (Q,Σ, Q0,∆, F ) consists of a
finite set Q of states, an alphabet Σ, a set Q0 ⊆ Q of initial states, a
transition relation ∆ ⊆ Q × Σ × Q, and a set F ⊆ Q of final states. The
automaton is deterministic, if |Q0| = 1 and if for every q ∈ Q and every
a ∈ Σ there is a unique q′ ∈ Q such that (q, a, q′) ∈ ∆. In this case, we

2A Turing machine is unambiguous if it has at most one accepting computation on
every input.
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denote Q0 = {q0} by q0 and ∆ as function δ : Q × Σ → Q. The size of A,
denoted by |A|, is the number |Q| of states of A.

A run of A on a word w ∈ Σ∗ is a sequence of states q0 · · · q|w| such that
q0 ∈ Q0 and (qn, wn, qn+1) ∈ ∆ for every n in the range 0 ≤ n < |w|; it
is accepting if q|w| ∈ F . A deterministic automaton has a unique run on
every w. A word w is accepted by A, if there exists an accepting run of A

on w. The language recognized by A is L(A) = {w ∈ Σ∗ | A accepts w}.

2.2.2 Automata on Infinite Words

In this subsection, we give a general definition of ω-automata which en-
compasses all types of ω-automata that appear in the literature. However,
according to our definition, such an ω-automaton is an infinite object, since
we specify the set of accepting runs explicitly. This is useful here, since it
allows us to state definitions and properties as general as possible. Later,
we introduce (generalized) Büchi and parity automata as special cases and
easily obtain some useful facts about them by applying the results about
general ω-automata.

A (non-deterministic) ω-automaton3 A = (Q,Σ, Q0,∆,Acpt) consists of
a finite set Q of states, an alphabet Σ, a set Q0 ⊆ Q of initial states, a
transition relation ∆ ⊆ Q× Σ×Q, and a set Acpt ⊆ Qω of accepting runs.
Again, A is deterministic, if |Q0| = 1 and if for every q ∈ Q and every a ∈ Σ
there is a unique q′ ∈ Q such that (q, a, q′) ∈ ∆. In this case, we denote
Q0 = {q0} by q0 and ∆ as function δ : Q × Σ → Q. The size of A, denoted
by |A|, is the number |Q| of states of A.

A run of A on an ω-word w ∈ Σω is an infinite sequence ζ of states
satisfying ζ0 ∈ Q0 and (ζn, wn, ζn+1) ∈ ∆ for every n ∈ N; it is accepting if
ζ ∈ Acpt. A deterministic ω-automaton has a unique run on every w. An
ω-word w is accepted by A if there exists an accepting run ζ of A on w. The
language recognized by A is defined as L(A) = {w ∈ Σω | A accepts w}.

An ω-automaton A = (Q,Σ, Q0,∆,Acpt) is strong4 if we have for all
runs ζ, ζ ′ of A: if Inf(ζ) = Inf(ζ ′), then ζ ∈ Acpt if and only if ζ ′ ∈ Acpt,
i.e., acceptance depends only on the infinity set of a run. A state q of an
ω-automaton is productive, if there is at least one accepting run ζ with
q ∈ Occ(ζ). A state that is not productive is unproductive.

Remark 2.1. Let A = (Q,Σ, Q0,∆,Acpt) be an ω-automaton, let P be its
set of productive states, and let A′ = (P,Σ, Q0∩P,∆∩P ×Σ×P,Acpt∩Pω)
be the automaton obtained from A by removing all unproductive states.
Then, L(A) = L(A′).

3For notational convenience, we use the same notation for automata on finite and
infinite words. It is always clear from the context which type of automaton is meant.

4As opposed to weak automata, where acceptance depends only on the occurrence set
of a run.
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An ω-automaton is unambiguous if every ω-word has at most one accept-
ing run. Furthermore, it is non-confluent if it satisfies the following property
for every ω-word w, every pair of runs ζ and ζ ′ of A on w, and every n:
if ζn = ζ ′n, then ζm = ζ ′m for every m < n. Intuitively, if there is a non-
deterministic choice that splits a run prefix into two, then these runs can
never join at a later position. A useful property of a non-confluent automa-
ton is that it has at most |Q| different run prefixes on a prefix w ∈ Σ∗ of an
ω-word, each of which can be identified uniquely by the last state of the run.

Lemma 2.2. Let A be a strong automaton without unproductive states. If
A is unambiguous, then it is non-confluent.

Proof. Towards a contradiction, assume that A is unambiguous but not non-
confluent. Then, there exists an ω-word w and runs q0q1q2 · · · and q′0q′1q′2 · · ·
of A on w such that qm 6= q′m and qn = q′n for indices m < n. As qn is
productive, there exists an accepting run ζ on some ω-word x such that
qn ∈ Occ(ζ). We denote the suffix of ζ that begins with the first occurrence
of qn by ζ ′, and we denote the suffix of x that is read during ζ ′ by x′.
Consider the ω-word w0 · · ·wn−1x

′: it has two distinct runs q0 · · · qn−1ζ
′ and

q′0 · · · q′n−1ζ
′ which are both accepting, since they have the same infinity set

as ζ. This yields the desired contradiction, since A is unambiguous.

In the remainder of this work, we consider the following types of ω-
automata, each of which defines the set Acpt of accepting runs implicitly
using a finite description. A Büchi automaton (Q,Σ, Q0,∆, F ) has a set F ⊆
Q of accepting states. A run ζ is accepting, if a state from F occurs infinitely
often in ζ, i.e.,

Acpt = {ζ ∈ Qω | Inf(ζ) ∩ F 6= ∅} .

A generalized Büchi automaton (Q,Σ, Q0,∆,F) has a family F ⊆ 2Q of
sets of accepting states. A run ζ is accepting, if from every F ∈ F a state
occurs infinitely often in ζ, i.e.,

Acpt = {ζ ∈ Qω | Inf(ζ) ∩ F 6= ∅ for every F ∈ F} .

A parity automaton (Q,Σ, Q0,∆,Ω) has a priority function Ω: Q → [k]
for some k ∈ N. The value Ω(q) is the priority of the state q. A run ζ is
accepting, if the maximal priority that occurs infinitely often in ζ is even,
i.e.,

Acpt = {ζ ∈ Qω | max(Ω(Inf(ζ))) is even} .

By definition, Büchi, generalized Büchi, and parity automata are strong.
Hence, we obtain a simple corollary of Lemma 2.2.

Corollary 2.3. Let A be a Büchi, generalized Büchi, or parity automaton
without unproductive states. If A is unambiguous, then it is non-confluent.
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For all three types of ω-automata a simple reachability analysis suffices
to determine the set of productive states. Hence, we can always assume our
automata to only have productive states.

2.3 Infinite Games

In this work, we consider turn-based, two-player, zero-sum games of perfect
information and infinite duration played on finite graphs. To this end, a
graph is equipped with a partition of its set of vertices into the positions of
Player 0 and the positions of Player 1. To start a play, a token is placed at
some vertex and the players build an infinite path through the graph accord-
ing to the following rule: whenever the token is at a position of Player i, she
moves the token along an outgoing edge to an adjacent vertex. The winning
condition of the game determines the winner of each infinite path.

For pronominal convenience [McN00], we assume Player 0 and the in-
determined Player i ∈ {0, 1} to be female, and we assume Player 1 and
Player 1− i ∈ {0, 1} to be male.

2.3.1 Arenas and Games

We begin by introducing our notation for arenas, the graphs in which the
games are played. Then, we present several types of winning conditions that
appear in this work.

An arena A = (V, V0, V1, E) consists of a finite directed graph (V,E),
a set V0 ⊆ V of vertices of Player 0 (drawn as elliptical vertices), and the
set V1 = V \ V0 of vertices of Player 1 (drawn as rectangular vertices). To
avoid the nuisance of dealing with plays ending prematurely in a dead end,
we assume every vertex to have at least one outgoing edge. The size |A| of
A is the cardinality of V . A set X ⊆ V induces the subarena

A[X] = (V ∩X,V0 ∩X,V1 ∩X,E ∩ (X ×X)) ,

if every vertex in X has at least one successor in X. An arena is solitary for
Player i if V1−i = ∅. A play in A starting in v ∈ V is an infinite sequence ρ
of vertices with ρ0 = v and (ρn, ρn+1) ∈ E for all n ∈ N. We illustrate these
definitions in the following example which runs through the whole section.

Example 2.4. Figure 2.1 shows an arena A. It is Player 0’s turn at the
vertices 0 and 2 while it is Player 1’s turn at the vertices 1, 3, and 4. The
set {0, 2} induces a subarena which is solitary for Player 0. However, the set
{1, 3, 4} does not induce a subarena, since the vertex 4 has no successor in
this set. The path 320(142)ω is a play in A starting in vertex 3. 3

After we have explained the interaction between the players we need to
specify how the winner of a play is determined. A game G = (A,Win)

13
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2

0 1

3 4

Figure 2.1: The arena A for the running example in Section 2.3

consists of an arena A with vertex set V and a set Win ⊆ V ω of winning
plays for Player 0. The set of winning plays for Player 1 is V ω \Win.

At the moment, a game is an infinite object, thus it is not suited to serve
as an input to an algorithm. In the remainder of this work, we deal with the
following types of games, each defining the set of winning plays implicitly by
some finite object. Let G = (A,Win) be a game with vertex set V . We say
that G is a reachability game if there exists a set F ⊆ V such that

Win = {ρ ∈ V ω | Occ(ρ) ∩ F 6= ∅} ,

i.e., a play in a reachability game is winning for Player 0 if a vertex from F
occurs. We say that G is a safety game if there exists a set F ⊆ V such that

Win = {ρ ∈ V ω | Occ(ρ) ⊆ F} ,

i.e., a play in a safety game is winning for Player 0 if only vertices from F
occur. We say that G is a Büchi game if there exists a set F ⊆ V such that

Win = {ρ ∈ V ω | Inf(ρ) ∩ F 6= ∅} ,

i.e., a play in a Büchi game is winning for Player 0 if a vertex from F occurs
infinitely often. Finally, we say that G is a co-Büchi game if there exists a
set F ⊆ V such that

Win = {ρ ∈ V ω | Inf(ρ) ⊆ F} ,

i.e., a play in a co-Büchi game is winning for Player 0 if only vertices from
F occur infinitely often. Reachability, safety, Büchi, and co-Büchi games are
all denoted by (A, F ).

Furthermore, we say that G is a parity game if there exists a priority
function Ω: V → [k] for some k ∈ N such that

Win = {ρ ∈ V ω | max(Ω(Inf(ρ))) is even} .

The value Ω(v) is the priority of the vertex v. Player 0 wins a play if and
only if the parity of the maximal priority that occurs infinitely often is 0.
Thus, Player 1 wins a play ρ if max(Ω(Inf(ρ))) is odd. Parity games are
denoted by (A,Ω).
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A loop of A is a non-empty strongly connected set C of vertices, i.e., for
all vertices v, v′ ∈ C, there is a path from v to v′ that only visits vertices in
C. G is a Muller game if there exists a family F0 of loops of A such that

Win = {ρ ∈ V ω | Inf(ρ) ∈ F0} ,

i.e., a play is winning for Player 0 in G if its infinity set is in F0. Muller
games are denoted by G = (A,F0,F1) where F1 contains all loops of the
arena that are not in F0. Since the infinity set of a play is always a loop of
A, a play ρ is winning for Player 1 if Inf(ρ) ∈ F1.

In the literature, there appear at least two other definitions of Muller
games. The first one uses a coloring Ω: V → [k] of the vertices and a
partition (F0,F1) of 2[k]. In this version, Player i wins a play ρ if and
only if Ω(Inf(ρ)) ∈ Fi. The other definition uses a subset W ⊆ V and a
partition (F0,F1) of 2W . In this version, Player i wins a play ρ if and only
if (Inf(ρ) ∩W ) ∈ Fi. It is easy to verify that if a game can be expressed as
Muller game in one of the three definitions, then also in both other versions.
For reasons that become apparent in Chapter 4, we prefer the first one.

According to our definition, every Büchi or co-Büchi game is a parity
game (label the vertices in F by 2 and every other vertex by 1 for Büchi
games, and label the vertices in F by 0 and every other vertex by 1 for
co-Büchi games) and every parity game is a Muller game. Also, the repre-
sentation of parity games introduced above is not necessarily unique, i.e.,
there is more than one way to label the vertices with priorities that defines a
certain set Win. Our way of introducing these games, which might seem un-
necessarily complicated at the moment, turns out to be useful in Section 5.1,
where we classify the sets Win in the Borel hierarchy. For the time being,
we do not distinguish between a game and its representation.

Reachability and safety games are duals of each other in the sense that
Player 1’s objective in a reachability game is to avoid F (a safety condition)
and Player 1’s objective in a safety game is to reach V \ F (a reachability
condition). The same holds true for Büchi and co-Büchi games: to win a
play in a Büchi game, Player 1 has to visit F only finitely often (a co-Büchi
condition) respectively to win in a co-Büchi game he has to visit V \ F
infinitely often (a Büchi condition). In this regard, parity and Muller games
are self-dual as evident from the definitions above.

The size of a reachability, safety, Büchi, co-Büchi, or parity game is the
number of its vertices. The situation for Muller games is more intricate since
the winning condition (F0,F1) can be encoded in various ways. The suc-
cinctness of these encodings influences the algorithmic properties of Muller
games. We briefly discuss this at the end of Subsection 2.3.4.

We close this subsection by giving some example games in the arena A
of Example 2.4.
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Example 2.5. The play 421420(142)ω is winning for Player 0 in the reach-
ability game (A, {0}), since it visits the vertex 0 once. The play (214)ω is
winning for Player 1, since it never visits 0. Hence, it is winning for Player 0
in the safety game (A, {1, 2, 3, 4}). 3

Example 2.6. Consider the parity game (A,Ω) with Ω(v) = v for each
vertex v. The play 21420(142)ω is winning for Player 0, since the maximal
priority that occurs infinitely often, which is 4, is even. The play (32)ω is
winning for Player 1 since the maximal priority that occurs infinitely often
is odd. Hence, it is winning for Player 0 in the parity game (A,Ω) with
Ω′(v) = Ω(v) + 1 = v + 1. 3

Example 2.7. Let G = (A,F0,F1) be a Muller game with F0 = {{1, 2, 3, 4}}
and where F1 contains every other loop of A. The play 000(142342)ω is
winning for Player 0 since exactly the vertices 1, 2, 3, and 4 are visited
infinitely often. The play (32)ω is winning for Player 1 since its infinity set is
in F1. Hence, it is winning for Player 0 in the Muller game (A,F1,F0). 3

2.3.2 Strategies

What makes games interesting is their strategic nature: a move may depend
on the history of the play, and has consequences for the future of the play.
In an infinite game, a strategy is a mapping that determines the next move
of Player i depending on the play prefix constructed so far. It is a winning
strategy if every play that is played according to the strategy is won by
Player i. Furthermore, if games are used to synthesize controllers for reactive
systems, it is a winning strategy that is turned into a controller. For these
reasons, the notion of strategy lies at the heart of game theory.

Fix an arena A = (V, V0, V1, E). A strategy for Player i is a map-
ping σ : V ∗Vi → V satisfying (ρn, σ(ρ0 · · · ρn)) ∈ E for every play pre-
fix ρ0 · · · ρn, i.e., the next move the strategy prescribes is a legal one. The set
of all strategies for Player i for A is denoted by ΠAi . If the arena we consider
is clear from the context, we omit the superscriptA and just write Πi. We say
that σ is positional if we have σ(ρ0 · · · ρn) = σ(ρn) for every ρ0 · · · ρn ∈ V ∗Vi.
Since the value of such a strategy only depends on the last vertex of the play
prefix, we also denote positional strategies as mappings σ : Vi → V .

A play ρ is consistent with a strategy σ for Player i if ρn+1 = σ(ρ0 · · · ρn)
for every n with ρn ∈ Vi. Sometimes, we also use the notion of consistency for
play prefixes: such a prefix ρ0 · · · ρm is consistent with σ if ρn+1 = σ(ρ0 · · · ρn)
for every n < m with ρn ∈ Vi. If we fix an initial vertex v and strategies σ ∈
Πi and τ ∈ Π1−i for the players, there is a unique play ρ(v, σ, τ) = v0v1v2 · · ·
that is consistent with both strategies and starts in v, i.e., we have v0 = v
and

vn+1 =

{
σ(v0 · · · vn) if vn ∈ Vi,
τ(v0 · · · vn) if vn ∈ V1−i.
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Given a vertex v and a strategy σ for Player i in A, we denote the set of
plays of A starting in v that are consistent with σ by BehA(v, σ); for σ
and W ⊆ V we define BehA(W,σ) =

⋃
v∈W BehA(v, σ). If A is clear from

the context, we drop the subscript for the sake of readability and just write
Beh(v, σ) and Beh(W,σ).

We illustrate these definitions by two example strategies for the arena A
of Example 2.4.

Example 2.8. The strategy σ1 ∈ ΠA0 defined by σ1(w0) = 0 and σ1(w2) = 0
is positional. We have BehA({2, 3, 4}, σ1) = {20ω, 320ω, 3420ω, 420ω}. 3

Example 2.9. Let σ2 ∈ ΠA0 be defined by

σ2(w) =

{
3 if w ends with 142,
1 if w ends with 0, 2, 32, 42, or 342.

The strategy alternates at vertex 2 between moving to 1 and moving to
3. The play ρ = 014(23421423214)ω is consistent with σ2. We have ρ =
ρ(0, σ2, τ) where τ is the strategy for Player 1 that alternates between moving
to 2 and to 4 when at vertex 3, starting with moving to 4. Note that all
other vertices in V1 have only one successor. Hence, the strategy has no
choice but to prescribe a move to this successor. Neither of these strategies
is positional. 3

Consider a game G = (A,Win) with vertex set V . A strategy σ for
Player i is a winning strategy for her from a set of vertices W ⊆ V if every
play starting in W that is consistent with σ is winning for Player i, i.e.,
Beh(W,σ) ⊆Win if i = 0, and Beh(W,σ) ⊆ V ω \Win if i = 1. We say that
σ is a winning strategy for Player i from a vertex v if it is winning from {v}.
The winning region Wi(G) of Player i contains all vertices of A from which
she has a winning strategy – but not necessarily the same from every vertex.
However, if she has a winning strategy σ that is winning from Wi(G), then
we say that σ is a uniform winning strategy.

Remark 2.10. Let G be a game. Then, W0(G) ∩W1(G) = ∅.

On the other hand, we say that G is determined if V = W0(G) ∪W1(G),
i.e., from each vertex one of the players has a winning strategy. Furthermore,
we say that a game is determined with positional strategies if it is determined
and both players have positional winning strategies from each vertex of their
winning region. Solving a game amounts to determining the winning regions
and corresponding winning strategies for both players.

Example 2.11. We show that the strategy σ1 defined in Example 2.8 is a
uniform winning strategy for Player 0 from every vertex of the reachability
game (A, {0}): if the play starts at any vertex but 0 and 2, then Player 1
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has no choice but to move the token to vertex 2 in at most two steps. Then,
from vertex 2, σ1 prescribes to move the token to 0. Hence, every play that
is consistent with σ1 visits 0 and we have W0(A, {0}) = {0, 1, 2, 3, 4}. Thus,
the game is positionally determined. 3

Example 2.12. The strategy σ2 defined in Example 2.9 is a uniform winning
strategy for Player 0 from every vertex of the Muller game G defined in
Example 2.7. Remember that it is Player 0’s objective to enforce the infinity
set {1, 2, 3, 4}. By always alternating between moving to 1 and 3, when the
token is at vertex 2, she achieves her objective: from vertex 1 and 3, Player 1
has no choice but to move the token (directly or indirectly) to 2. Also, when
the token is at vertex 1, he cannot avoid a visit to 4. Finally, Player 0 moves
the token from 0 to 1 if the play starts there. Hence, every play that is
consistent with σ visits 2 infinitely often, and therefore also 1 (and thus 4)
and 3 infinitely often, but 0 at most once. Hence, the infinity set of such a
play is {1, 2, 3, 4}. Hence, we have W0(G) = {0, 1, 2, 3, 4} and conclude that
G is determined. 3

2.3.3 Finite-state Strategies and Game Reductions

As defined above, a strategy may take into account the whole play prefix
constructed so far when it determines a successor to move the token to. Thus,
a strategy is in general an infinite object. In contrast, a positional strategy
is a finite object. However, positional strategies are often too weak to be
winning, e.g., we have seen in Example 2.12 that σ2 is a winning strategy
for Player 0 in the Muller game G defined in Example 2.7, but it is easy to
see that she has no positional winning strategy. But still, σ2 does not need
to know the whole play prefix, a finite abstraction suffices: the value of the
strategy at vertex 2 depends only on whether vertex 1 or vertex 3 was seen
last among the two. This idea is formalized by finite-state strategies which
are introduced in the following. In the second part of this subsection, we
define game reductions using the machinery of finite-state strategies. Such
a reduction allows to solve a game with “complicated” winning condition by
solving a game with a “simpler” winning condition in a larger arena.

A memory structureM = (M, init,upd) for an arena (V, V0, V1, E) con-
sists of a finite set M of memory states, an initialization function init : V →
M , and an update function upd: M ×V →M . The update function can be
extended to upd∗ : V + →M by upd∗(ρ0) = init(ρ0) and

upd∗(ρ0 . . . ρnρn+1) = upd(upd∗(ρ0 . . . ρn), ρn+1) .

A next-move function for Player i is a function nxt: Vi × M → V that
satisfies (v,nxt(v,m)) ∈ E for every v ∈ Vi and every m ∈M . It implements
a strategy σ for Player i with memoryM via

σ(ρ0 . . . ρn) = nxt(ρn,upd∗(ρ0 . . . ρn)) .
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The size ofM (and, slightly abusive, σ) is |M |. A strategy is called finite-
state if it can be implemented with a memory structure and some next-move
function.

Remark 2.13. A strategy σ is positional if and only if it can be implemented
with a single memory state.

We say that a game is determined with finite-state strategies, if the game
is determined and both players have a finite-state winning strategy from each
vertex of their winning region.

Example 2.14. We show that the strategy σ2 defined in Example 2.9 is
finite-state: let M = {m1,m3}, init(v) = m3 for every v, and

upd(m, v) =


m3 if v = 3,
m1 if v = 1,
m otherwise.

The memory structure stores whether 1 or 3 was visited last between the
two of them. Hence, we define the next-move function by

nxt(v,m) =


3 if (v,m) = (2,m1),
1 if (v,m) = (2,m3),
1 if v = 0.

Simple calculations show that the strategy σ implemented by (M, init, upd)
and nxt is indeed equal to σ2. Thus, G2 is determined with finite-state
strategies. 3

Next, we introduce game reductions. An arena A = (V, V0, V1, E) and a
memory structureM = (M, init, upd) for A induce the extended arena

A×M = (V ×M,V0 ×M,V1 ×M,E′) ,

where ((s,m), (s′,m′)) ∈ E′ if and only if (s, s′) ∈ E and upd(m, s′) = m′.
For every ρ ∈ V ω, we define ρ′ ∈ (V ×M)ω by

ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · ·

with m0 = init(ρ0) and mn+1 = upd(mn, ρn+1), i.e., mn = upd∗(ρ0 · · · ρn).
If ρ is a play in A, then ρ′ is a play in A ×M, which we refer to as the
extended play of ρ.

A game G = (A,Win) is reducible to a game G′ = (A′,Win′) via M,
written G ≤M G′, if A′ = A ×M, and if ρ ∈ Win if and only if ρ′ ∈ Win′

for every ρ ∈ V ω. In this situation, a play ρ in G is won by the player who
wins the extended play ρ′ in G′.
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Lemma 2.15. Let M = (M, init,upd), let G be a game with vertex set V ,
and let W ⊆ V . If G ≤M G′ and if Player i has a positional winning strategy
for G′ from {(v, init(v)) | v ∈ W}, then she also has a finite-state winning
strategy with memoryM for G from W .

Proof. Let σ′ : Vi×M → V ×M be a positional winning strategy for Player i
for G′ from {(v, init(v)) | v ∈W}. We define a next-move function nxt: Vi×
M → V by nxt(v,m) = v′ if σ′(v,m) = (v′,m′). We have (v, v′) ∈ E as
required, since ((v,m), (v′,m′)) ∈ E′ implies the former claim by definition
of E′. We denote the strategy for G implemented by M and nxt by σ. It
remains to show that σ is a winning strategy for Player i for G from W .

Consider a play ρ that starts inW and is consistent with σ. We show that
its extended play ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · · in A ×M is consistent
with σ′. This suffices, since ρ is winning for Player i in G if and only if ρ′ is
winning for Player i in G′. The latter proposition is then true, since σ′ is a
winning strategy for Player i for G′ from (ρ0, init(ρ0)) = (ρ0,m0).

So, let (ρn,mn) ∈ V ′i and σ′(ρn,mn) = (v,m). We have to show (v,m) =
(ρn+1,mn+1). We have

ρn+1 = σ(ρ0 · · · ρn) = nxt(ρn,upd∗(ρ0 · · · ρn)) .

By definition of ρ′, we have mn = upd∗(ρ0 · · · ρn), i.e., ρn+1 = nxt(ρn,mn).
Since nxt is defined by σ′, we obtain v = ρn+1. Finally, by definition of E′,
we obtain m = upd(mn, ρn+1) = mn+1. Thus, ρ′ is consistent with σ′.

Corollary 2.16. Let G be a game that is reducible to a positionally de-
termined game via a memory structure M. Then, G is determined with
finite-state strategies implemented byM.

We conclude this subsection by discussing the tight connection between
memory structures that implement winning strategies and deterministic ω-
automata that recognize the set of winning plays of Player 0. We state the
following result for the parity condition, but similar results can be obtained
for every other acceptance and winning conditions, respectively.

Lemma 2.17. Let G = (A,Win) be a game and let A be a deterministic
parity automaton such that L(A) = Win. Then, G can be reduced to a parity
game via a memory structure of size |A|.

Proof. Let A = (Q,V, q0, δ,Ω) and define M = (M, init, upd) by M = Q,
init(v) = δ(q0, v) and upd(m, v) = δ(m, v). We show G ≤M G′, where
G′ = (A×M,Ω′) with Ω′(v,m) = Ω(m). The condition on the arena of G′
is met and we just have to show that ρ ∈ Win if and only if the maximal
priority that appears infinitely often in ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · · is
even. By construction, the sequence m0m1m2 · · · is the unique run of A on
ρ and we have

max(Ω(Inf(m0m1m2 · · · ))) = max(Ω′(Inf(ρ′))) .
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Hence, ρ ∈Win = L(A) if and only if max(Ω′(Inf(ρ′))) is even.

A converse of Lemma 2.17 holds as well: if (A,Win) ≤M G′, then A×M
can be turned into a deterministic ω-automaton A of the same size and with
the same acceptance condition as the winning condition of G′ such that the
language of A contains exactly the plays of A that are winning for Player 0.

2.3.4 Some Results about Infinite Games

We conclude this introductory chapter with some results about the games
mentioned above.

We begin by defining attractors and attractor strategies, which are im-
portant concepts that are the basis of many solution algorithms for infinite
games. Let A = (V, V0, V1, E) be an arena and let X ⊆ V induce a subarena.
The attractor for Player i of a set F ⊆ V inX is AttrXi (F ) =

⋃|V |
n=0An, where

A0 = F ∩X and

An+1 = An ∪{v ∈ Vi ∩X | ∃v′ ∈ An such that (v, v′) ∈ E}
∪ {v ∈ V1−i ∩X | ∀v′ ∈ X with (v, v′) ∈ E : v′ ∈ An} .

The attractor contains exactly the vertices of A[X] from which Player i can
enforce a visit to F in the subarena induced by X. If X = V , we omit
the superscript and write Attri(F ) for short. Using backwards breadth-first
search, attractors can be computed in linear time in the number of edges of
the arena A[X] [NRY96].

A set X ⊆ V is a trap for Player i in A if all outgoing edges of the
vertices in Vi ∩ X lead to X and at least one successor of every vertex in
V1−i ∩X is in X. By definition, every trap induces a subarena. Player 1− i
can ensure that a play starting in X is confined to X by always picking a
successor that is in X. The following lemma formalizes the properties of
attractors and traps discussed above.

Lemma 2.18. Let A be an arena with vertex set V , let F ⊆ V , and let
X ⊆ V induce a subarena of A. We denote AttrXi (F ) by A.

i. Player i has a positional strategy σ ∈ ΠA[X]
i such that each play in

BehA[X](A, σ) visits F .

ii. Player 1 − i has a positional strategy τ ∈ ΠA[X]
1−i such that each play

in BehA[X](X \ A, τ) never visits F . Furthermore, X \ A induces a
subarena of A[X] and is a trap for Player i in A[X].

Let us stress that these properties only hold in the subarena A[X], but
not necessarily in the original arena A (see, e.g., Example 2.19).

A strategy for Player i as in i.) is called attractor strategy and proceeds
by decreasing the distance to F in each move. Let v ∈ A: if v ∈ F there is
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nothing to show. Otherwise, let n be the iteration in which v is added to A,
i.e., v ∈ An \ An−1. If v ∈ Vi, there is some successor at a smaller level An′
for some n′ < n to which the strategy moves the token. On the other hand,
if v ∈ V1−i, then all successors in X are at a smaller level. Hence, by always
moving to a smaller level, Player i ensures a visit to F . Furthermore, this
ensures that each vertex in A is visited at most once before a vertex in F is
reached.

The strategy for Player 1− i as in ii.) is obtained by keeping the token
in X \ A. Every vertex v of Player 1− i in X \ A has a successor in X \ A
(if not, then v would have been added to the attractor) and all successors of
a vertex v of Player i in X \A are in X \A or not even in X (again, if not,
v would have been added to the attractor). Since, F ∩X ⊆ A, a play in the
subarena induced by X that never leaves X \A never visits F .

Example 2.19. One last time consider the arena A defined in Example 2.4
and let F = {0} and X = {0, 2, 4} (note that X induces a subarena). Then,
we have AttrX1 (F ) = X. Player 1 can enforce a visit to {0} in A[X] from
every vertex by moving from 4 to 2, which has only one successor in A[X],
namely 0. However, in the original arena A, Player 1 cannot enforce a visit
to 0 from 4, since Player 0 can always move from vertex 2 to 3 or to 1.

On the other hand, for X = {0, 2, 3} (which again induces a subarena),
we have that

V \AttrX1 ({0}) = X \ {0} = {2, 3}

is a trap for Player 1 in the arena induced by X. However, {2, 3} is not a
trap in the original arena A, since Player 1 can move the token from 3 to 4,
thereby escaping the set {2, 3}. 3

Applying Lemma 2.18 with V = X solves reachability and safety games.

Theorem 2.20. Reachability and safety games are determined with uniform
positional strategies and can be solved in linear time (in the number of edges
of the arena).

Hence, the winning region of Player 0 in a safety game is a trap for
Player 1 due to Remark 2.18(ii). For games in which the winner of a play
only depends on the vertices visited infinitely often, both winning regions
are traps. Since Büchi, co-Büchi, and parity conditions can be translated
into Muller conditions, we only remark the following.

Remark 2.21. In every Muller game G, Wi(G) is a trap for Player 1− i.

Now, let us turn our attention to solution algorithms for parity games.

Theorem 2.22. Parity games are determined with uniform positional strate-
gies [EJ91, Mos91] and can be solved in time O(m(n/d)dd/2e), where n, m,
and d are the number of vertices, edges, and priorities of the arena [Jur00].
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Solving parity games is in UP ∩ Co-UP [Jur98], and whether parity
games can be solved in polynomial time is one of the most interesting open
questions in the theory of infinite games due to its intriguing status in terms
of computational complexity (see above), and due to the fact that model-
checking the modal µ-calculus [Koz83] and solving parity games are poly-
nomially interreducible [EJS01]. Depending on the number of priorities in
proportion to the number of vertices, there are algorithms that solve parity
games faster than the bound stated in Theorem 2.22 (e.g., see [Sch07, JPZ08]
and the references therein). However, the result stated above suffices for our
purposes.

Since Büchi and co-Büchi conditions can be expressed by parity con-
ditions with only two priorities, we obtain positional determinacy of these
games as corollary of Theorem 2.22.

Corollary 2.23. Büchi and co-Büchi games are determined with uniform
positional strategies and can be solved in polynomial time.

Finally, we consider Muller games.

Theorem 2.24. Muller games are determined with uniform finite-state stra-
tegies of size n!, where n is the number of vertices of the arena.

This result can be shown by a game reduction to parity games using
either latest appearance records [GH82] or by directly constructing a winning
strategy of this size [DJW97]. Furthermore, there are matching lower bounds
on the memory size needed to win a Muller game [DJW97].

The computational complexity of determining the winning regions of
Muller games depends very much on the encoding of the winning condi-
tion (F0,F1). The more succinctly it is encoded the harder it is to solve
the game. The problem is in P, if F0 (or F1) is given as explicit list of
sets [Hor08]; it is in NP ∩ Co-NP, if (F0,F1) is encoded by a Zielonka-
tree [DJW97] (see Subsection 4.2.1); and it is Pspace-complete if (F0,F1)
is encoded by one of the following five formalisms [HD05]: a boolean formula
with variables V (also called Emerson-Lei games [EL85]), a boolean circuit
over the input variables V , a Zielonka-DAG (a more compact representation
of the Zielonka-tree), an explicit list of sets of colors or an explicit list of
subsets of W , which itself is a subset of V . The latter two encodings refer to
the alternative definitions of Muller games mentioned in Subsection 2.3.1.
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Chapter 3

Synthesis from Parametric
Linear Time Specifications

A crucial aspect of automated verification and synthesis is the choice of
a specification formalism; a decision which is subject to several conflicting
objectives. On the one hand, the formalism should be expressive enough to
specify desirable properties of reactive systems, but at the same time simple
enough to be employed by practitioners without formal training in automata
theory or logics. Furthermore, the formalism should have nice algorithmic
properties such as a feasible model-checking problem. In practice, Linear
Temporal Logic (LTL) has emerged as a good compromise: it is expressively
equivalent to first-order logic (with order-relation) over words [Kam68], its
model-checking problem is Pspace-complete [SC85], and it has a compact,
variable-free syntax and intuitive semantics: for example, the specification
“every request q is answered by a response p” is expressed by the formula

G(q → Fp) .

However, LTL lacks capabilities to express timing constraints, e.g., the
request-response condition is satisfied even if the response time doubles with
each request. Similarly, when synthesizing a controller for the request-
response specification, we prefer an implementation that answers every re-
quest as soon as possible, but there is no guarantee that such an optimal
controller is computed when solving a game with this winning condition.

The simplest way to enrich LTL with timing constraints is to add the
operator F≤k, where k ∈ N is an arbitrary, but fixed constant, with the
expected semantics: the formula F≤kϕ is satisfied, if ϕ holds at least once
within the next k steps. Koymans [Koy90] and Alur and Henzinger [AH93]
investigated generalizations of this approach in the form of logics with tem-
poral operators bounded by constant intervals of natural numbers. This
allows to infer some quantitative information about a system: the formula

G(q → F≤kp)
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is satisfied if every request is answered within k steps. But finding the right
bound k is not practicable: it is generally not known beforehand and depends
on the granularity of the model of the system. On the other hand, adding
F≤k does not increase the expressiveness of LTL, as it can be expressed by
a disjunction of nested next-operators.

To overcome these shortcomings, several parameterized temporal log-
ics [AETP01, KPV09, GTN10] were introduced for the verification of closed
systems: here, constant bounds on the temporal operators are replaced by
parametric bounds. In this formalism, we can ask whether there exists a
bound on the response time, as opposed to asking whether some fixed k is a
bound. Furthermore, we can ask for optimal bounds.

We are mainly concerned with Parametric Linear Temporal Logic (PLTL)
introduced by Alur et al. [AETP01], which adds the operators F≤x and G≤y
to LTL. In PLTL, the request-response specification is expressed by

G(q → F≤xp) ,

stating that every request is answered within the next x steps, where x is
a variable. Hence, satisfaction of a formula is defined with respect to a
variable valuation α mapping variables to natural numbers: F≤xϕ holds, if
ϕ is satisfied at least once within the next α(x) steps, while G≤yϕ holds, if
ϕ is satisfied for the next α(y) steps.

The model-checking problem for a parameterized temporal logic is typ-
ically no harder than the model-checking problem for the unparameterized
fragment, e.g., Alur et al. showed that deciding whether a transition system
satisfies a PLTL formula with respect to some, infinitely many, or all variable
valuations is Pspace-complete [AETP01], as is LTL model-checking [SC85].
Furthermore, for two interesting fragments of PLTL and several notions of
optimality, they showed that optimal variable valuations for which a formula
is satisfied by a given transition system can be determined in polynomial
space as well.

In this chapter, we consider infinite games with winning conditions in
PLTL and lift the results on model-checking parameterized specifications
to synthesis from parameterized specifications. We show that determining
whether a player wins a PLTL game with respect to some, infinitely many, or
all variable valuations is 2Exptime-complete, as is determining the winner
of an LTL game [PR89b]. Again, we observe the same phenomenon as in
model-checking: the addition of parameterized operators does not increase
the computational complexity of the decision problems. Afterwards, we give
an algorithm with triply-exponential running time to compute optimal win-
ning strategies in the two fragments of PLTL already considered by Alur et
al. for model-checking. We complement this with doubly-exponential upper
and lower bounds on values of optimal variable valuations for games in these
fragments.
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3.1 Parametric Linear Temporal Logics

In this section, we introduce two parameterized temporal logics we use to
specify winning conditions for infinite games. The main focus is on Para-
metric Linear Temporal Logic (PLTL) as introduced above.

Our definition of the syntax of PLTL differs in several aspects from the
original definition of Alur et al.: we add the release operator to have a
dual operator for the until operator, but disregard several parameterized
operators that were shown to be syntactic sugar. Similarly, we disallow
constant bounds since they do not add expressiveness. Finally, we do not
use two disjoint sets of variables – one for parameterized eventually operators
and the other one for parameterized always operator – as it is done in the
original definition. Instead, we use only one set and later restrict ourselves
by defining a notion of well-formedness, which exactly simulates the use of
two sets of variables. Each of these differences is discussed in detail below.

Additionally, we consider PROMPT–LTL, which can be seen as the frag-
ment of PLTL in which only eventually operators may be parameterized, all
by the same variable. For the sake of simplicity, we use this characterization
to define PROMPT–LTL. We briefly explain the original definition below.

In Subsection 3.1.1 we introduce the syntax and in Subsection 3.1.2 the
semantics of PLTL and define LTL and PROMPT–LTL as fragments of
PLTL. Then, in Subsection 3.1.3 we discuss some properties of PLTL such
as negation of formulae and the monotonicity of parameterized operators.
Finally, in Subsection 3.1.4, we define games with winning conditions in
PLTL and state some basic results.

3.1.1 Syntax of PLTL

In this subsection, we introduce the syntax of Parametric Linear Temporal
Logic (PLTL). The logic is obtained by adding parameterized eventually
operators F≤z and parameterized always operators G≤z to LTL in negation
normal form.

Formally, let V be an infinite set of variables and let us fix a finite5 set P
of atomic propositions which we use to build our formulae and to label arenas
in which we evaluate them. The formulae of PLTL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ | ϕR ϕ | F≤zϕ | G≤zϕ ,

where p ∈ P and z ∈ V. We use the derived operators tt := p ∨ ¬p and
ff := p ∧ ¬p for some fixed p ∈ P , Fϕ := tt U ϕ, and Gϕ := ff R ϕ. Further-
more, we use ϕ→ ψ as shorthand for ¬ϕ ∨ ψ, where we have to require the
antecedent ϕ to be a (negated) atomic proposition and identify ¬¬p with

5We require P to be finite so that its power set is an alphabet. This greatly simplifies
our notation and exposition when we translate formulae into automata, but is not essential.
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p. We assume negation to bind stronger than every other connective and
operator, which allows us to omit some brackets.

In the original work on PLTL [AETP01], the operators U≤x, F>y, G>x,
and U>y as well as constant bounds of the form F≤k, G≤k, etc. for k ∈ N
are also allowed. However, since these operators do not add expressiveness
(see Lemma 3.2 and Lemma 3.8) we treat them as derived operators instead
of adding them as primitive operators.

The set of subformulae of a PLTL formula ϕ, denoted by cl(ϕ), is defined
inductively by

� cl(p) = {p} and cl(¬p) = {¬p},

� cl(ϕ ∧ ψ) = {ϕ ∧ ψ} ∪ cl(ϕ) ∪ cl(ψ),

� cl(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ cl(ϕ) ∪ cl(ψ),

� cl(Xϕ) = {Xϕ} ∪ cl(ϕ),

� cl(ϕU ψ) = {ϕU ψ} ∪ cl(ϕ) ∪ cl(ψ),

� cl(ϕR ψ) = {ϕR ψ} ∪ cl(ϕ) ∪ cl(ψ),

� cl(F≤zϕ) = {F≤zϕ} ∪ cl(ϕ), and

� cl(G≤zϕ) = {G≤zϕ} ∪ cl(ϕ).

We define the size of a PLTL formula ϕ, denoted by |ϕ|, to be the cardinality
of cl(ϕ). Furthermore, we define

varF(ϕ) = {z ∈ V | F≤zψ ∈ cl(ϕ)}

to be the set of variables parameterizing eventually operators in ϕ,

varG(ϕ) = {z ∈ V | G≤zψ ∈ cl(ϕ)}

to be the set of variables parameterizing always operators in ϕ, and we define

var(ϕ) = varF(ϕ) ∪ varG(ϕ)

to be the set of variables occurring in ϕ. From now on, we denote variables
in varF(ϕ) by x and variables in varG(ϕ) by y. A formula ϕ is variable-free,
if var(ϕ) = ∅.
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3.1.2 Semantics of PLTL

In this subsection, we present the semantics of PLTL, explain the differences
to the original definition of PLTL, and introduce LTL and PROMPT–LTL
as fragments of PLTL.

In order to evaluate PLTL formulae, we need to specify the values of the
variables appearing as bounds in the parameterized operators. To this end,
we define a variable valuation to be a mapping α : V → N. Now, we can
define the model relation between an ω-word w ∈

(
2P
)ω, a position n ∈ N

of w, a variable valuation α : V → N, and a PLTL formula as follows:

� (w, n, α) |= p if and only if p ∈ wn,

� (w, n, α) |= ¬p if and only if p /∈ wn,

� (w, n, α) |= ϕ ∧ ψ if and only if (w, n, α) |= ϕ and (w, n, α) |= ψ,

� (w, n, α) |= ϕ ∨ ψ if and only if (w, n, α) |= ϕ or (w, n, α) |= ψ,

� (w, n, α) |= Xϕ if and only if (w, n+ 1, α) |= ϕ,

� (w, n, α) |= ϕU ψ if and only if there exists a k ≥ 0 such that (w, n+
k, α) |= ψ and (w, n+ j, α) |= ϕ for every j in the range 0 ≤ j < k,

� (w, n, α) |= ϕRψ if and only if for every k ≥ 0: either (w, n+k, α) |= ψ
or there exists a j in the range 0 ≤ j < k such that (w, n+ j, α) |= ϕ,

� (w, n, α) |= F≤xϕ if and only if there exists a j in the range 0 ≤ j ≤
α(x) such that (w, n+ j, α) |= ϕ, and

� (w, n, α) |= G≤yϕ if and only if for every j in the range 0 ≤ j ≤ α(y):
(w, n+ j, α) |= ϕ.

For the sake of brevity, we write (w,α) |= ϕ instead of (w, 0, α) |= ϕ and say
that w is a model of ϕ with respect to α. Furthermore, as the satisfaction
of a variable-free formula ϕ is independent of the variable valuation α, we
omit α and write (w, n) |= ϕ instead of (w, n, α) |= ϕ and accordingly w |= ϕ
instead of (w, 0) |= ϕ.

Example 3.1. Let w1 = ({q}∅∅∅{p})ω and

w2 =
∏
j≥0

({q}∅j{p}) = {q}{p}{q}∅{p}{q}∅∅{p}{q}∅∅∅{p} · · · .

The formula ϕ1 = GFp is satisfied if p holds true infinitely often. Hence,
we have w1 |= ϕ1 and w2 |= ϕ1. The formula ϕ2 = G(q → Fp) requires
every position at which q holds to be followed by a position at which p
holds. We have w1 |= ϕ2 and w2 |= ϕ2. Finally, consider the formula ϕ3 =
G(q → F≤xp) obtained by parameterizing the eventually operator in ϕ2.
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It is satisfied with respect to a variable valuation α if for every position at
which q holds one of the next α(x) + 1 positions (including the current one)
satisfies p. Hence, we have (w1, α) |= ϕ3 provided α(x) ≥ 4, but we have
(w2, α) 6|= ϕ3 for every α. 3

As mentioned above, the original work on PLTL also introduced the
operators U≤x, F>y, G>x, and U>y with the following semantics.

� (w, n, α) |= ϕ U≤x ψ if and only if there exists a k in the range 0 ≤
k ≤ α(x) such that (w, n + k, α) |= ψ and (w, n + j, α) |= ϕ for every
j in the range 0 ≤ j < k,

� (w, n, α) |= F>yϕ if and only if there exists a j > α(y) such that
(w, n+ j, α) |= ϕ,

� (w, n, α) |= G>xϕ if and only if for every j > α(x): (w, n+ j, α) |= ϕ,
and

� (w, n, α) |= ϕ U>y ψ if and only if there exists a k > α(y) such that
(w, n + k, α) |= ψ and (w, n + j, α) |= ϕ for every j in the range
0 ≤ j < k.

We ignore these parameterized operators, since they can be expressed using
F≤x and G≤y, at the cost of a linear increase of the formula’s size.

Lemma 3.2 ([AETP01]). The following equivalences hold.

i. (w, n, α) |= ϕU≤x ψ if and only if (w, n, α) |= (ϕU ψ) ∧ F≤xψ.

ii. (w, n, α) |= F>yϕ if and only if (w, n, α) |= G≤yFXϕ.

iii. (w, n, α) |= G>xϕ if and only if (w, n, α) |= F≤xGXϕ.

iv. (w, n, α) |= ϕU>y ψ if and only if (w, n, α) |= G≤y (ϕ ∧X (ϕU ψ)).

Furthermore, the original definition of PLTL included constant bounds
of the form F≤k, G≤k, etc. for k ∈ N with the expected semantics, although
the main reason to introduce parameterized operators was the inadequacy
of the constant bounds. Thus, we ignore them too, as they do not add
expressiveness (see the proof of Lemma 3.8). However, if the bounds are
encoded in binary, the logic with constant bounds is exponentially more
succinct than PLTL as defined here. Nevertheless, it turns out that this gap
in succinctness does not affect the complexity of solving games with winning
conditions in these logics. This can be shown by combining the alternating
color technique presented in Subsection 3.2.1 and the construction of parity
automata for PLTL formulae presented in Subsection 3.3.2.

As usual for parameterized temporal logics, the use of variables in pa-
rameterized operators has to be restricted to avoid undecidability of the
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satisfiability problem. Our definition of a PLTL-formula is too general as it
allows to parameterize an eventually operator and an always operator by the
same variable: consider the formula

ψ = XF≤zp ∧G≤z¬p ,

which expresses that the proposition p holds within the next α(z) + 1 po-
sitions, but not in the next α(z) positions, i.e., p holds for the first time
exactly α(z) + 1 positions after the current one. This allows to divide an
infinite word into infinitely many blocks of the same length using the for-
mula p ∧G(p→ Xψ). These blocks allow to encode the terminating run of
a two-counter machine [SS63]. To this end, the correct updates of the state
of the machine can be enforced by an LTL formula while the correct updates
of the counters are enforced using the parameterized operators. Hence, for
a given two-counter machine we can construct a PLTL formula ϕ that has
a model w with respect to some variable valuation α if and only if the ma-
chine terminates when started in the initial configuration. Here, α(z) has
to be the maximal value one of the counters assumes during the computa-
tion of the machine. Hence, the question whether a PLTL formula (in the
current definition) has a model with respect to some variable valuation is
undecidable. A detailed proof6 can be found in [AETP01]. We just note
the following consequence that we use below. It is obtained by replacing the
variable parameterizing the eventually operator in ψ by x and replacing the
variable parameterizing the always operator by y.

Corollary 3.3 ([AETP01]). The following problem is undecidable: given
a PLTL formula ϕ with varF(ϕ) = {x} and varG(ϕ) = {y}, is there a
w ∈

(
2P
)ω and a variable valuation α such that α(x) = α(y) and (w,α) |= ϕ?

For the reason just discussed, the original definition of PLTL uses two
disjoint sets of variables: one to parameterize eventually operators and the
other one to parameterize always operators. Alur et al. showed that satisfi-
ability and validity of PLTL as well as PLTL model-checking are decidable
when separating the variables for eventually and always operators. However,
Corollary 3.3 is still valid in this setting.

Unlike in the original definition of PLTL, we choose to use a single set of
variables for reasons that become apparent in Subsection 3.1.3. Hence, we
have to restrict ourselves to formulae that do not use a variable to param-
eterize both an eventually and an always operator to simulate the original
definition.

Definition 3.4. A PLTL formula ϕ is well-formed, if varF(ϕ)∩varG(ϕ) = ∅.

6This proof uses the operator U=x with the expected semantics. However, it can easily
be adapted to use F≤z and G≤z as done here.
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Several linear temporal logics are syntactic fragments of PLTL. First
of all, linear temporal logic (LTL) is the fragment containing the formulae
without parameterized operators. Second, PROMPT–LTL of Kupferman
et al. [KPV09] can be seen as the fragment containing the formulae with-
out parameterized always operators and a single variable for the parameter-
ized eventually operators. Furthermore, we consider two fragments of PLTL
introduced in [AETP01]: the fragment of formulae without parameterized
always operators and the fragment of formulae without parameterized even-
tually operators.

Let ϕ be a PLTL formula.

� ϕ is an LTL formula, if var(ϕ) = ∅.

� ϕ is a PROMPT–LTL formula, if varG(ϕ) = ∅ and |varF(ϕ)| ≤ 1, i.e.,
ϕ contains no parameterized always operator and all parameterized
eventually operators have the same variable.

� ϕ is a PLTLF formula, if varG(ϕ) = ∅, i.e., ϕ contains no parameterized
always operators.

� ϕ is a PLTLG formula, if varF(ϕ) = ∅, i.e., ϕ contains no parameterized
eventually operators.

� ϕ is a unipolar formula, if it is either a PLTLF or a PLTLG formula.

Since a PROMPT–LTL formula contains at most one variable x, there is no
need to name it explicitly and a variable valuation α can be replaced by the
value k = α(x). Hence, the original definition of PROMPT–LTL [KPV09]
uses the unary operator FP (called prompt-eventually) instead of F≤x and
the semantics is defined with respect to a non-negative integer k:

� (w, n, k) |= FPϕ if and only if there is a j in the range 0 ≤ j ≤ k such
that (w, n+ j, k) |= ϕ.

The semantics of all other connectives and operators is independent of k and
defined as for PLTL. Our definition of PROMPT–LTL in terms of F≤x as
syntactic fragment is equivalent to the original definition.

By definition, every LTL formula is a PROMPT–LTL formula and a
PLTLG formula, and every PROMPT–LTL formula is a PLTLF formula.
Another simple consequence of the definitions of these fragments is that they
only contain well-formed formulae. Since the unipolar formulae subsume all
other fragments we just remark the following.

Remark 3.5. Every unipolar formula is well-formed.
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3.1.3 Properties of PLTL

In this subsection we present some basic properties of PLTL that we utilize
throughout this chapter.

We begin by discussing the role of negation: remember that formulae
of PLTL are defined in negation normal form. This restriction is closely re-
lated to the need for separating variables parameterizing eventually operators
and variables parameterizing always operators. A negation flips the polar-
ity of an operator: (w, n, α) |= ¬F≤xϕ is equivalent to (w, n, α) |= G≤x¬ϕ
and (w, n, α) |= ¬G≤yϕ is equivalent to (w, n, α) |= F≤y¬ϕ. Hence, allow-
ing arbitrary negation would complicate the notion of well-formed formulae.
However, we have just seen how to push a negation over a parameterized
temporal operator: F≤z and G≤z are dual. Hence, it is possible to define
the negation of a formula by pushing the negation to the atomic proposi-
tions. Here, it is crucial that we add the release-operator to have a dual to
the until-operator.

Lemma 3.6. For every PLTL formula ϕ there exists an PLTL formula ϕ′

with (w, n, α) |= ϕ if and only if (w, n, α) 6|= ϕ′. Furthermore, ϕ′ is con-
structible in linear time (in |ϕ|).

Proof. The proof relies on the duality of the pairs (p,¬p), (∧,∨), (X,X)
(U,R), and (F≤z,G≤z). We define ϕ′ inductively by

� p′ = ¬p and (¬p)′ = p,

� (ϕ ∧ ψ)′ = ϕ′ ∨ ψ′,

� (ϕ ∨ ψ)′ = ϕ′ ∧ ψ′,

� (Xϕ)′ = Xϕ′,

� (ϕU ψ)′ = ϕ′ R ψ′,

� (ϕR ψ)′ = ϕ′ U ψ′,

� (F≤xϕ)′ = G≤xϕ′, and

� (G≤yϕ)′ = F≤yϕ′.

Using these rewriting rules, ϕ′ can be constructed in linear time in the
size of ϕ. It remains to prove that we have (w, n, α) |= ϕ if and only if
(w, n, α) 6|= ϕ′. This is done by structural induction over the construction
of ϕ. The cases of atomic formulae, boolean connectives, and unparame-
terized temporal operators are straightforward applications of the induction
hypothesis and duality of these connectives and operators. Thus, we only
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consider the case of parameterized temporal operators. We have

(w, n, α) |= F≤xϕ
Def.⇐⇒ there is a j in the range 0 ≤ j ≤ α(x) s. t. (w, n+ j, α) |= ϕ

I.H.⇐⇒ there is a j in the range 0 ≤ j ≤ α(x) s. t. (w, n+ j, α) 6|= ϕ′

⇐⇒ not for every j in the range 0 ≤ j ≤ α(x): (w, n+ j, α) |= ϕ′

Def.⇐⇒ (w, n, α) 6|= G≤xϕ′

Def.⇐⇒ (w, n, α) 6|= (F≤xϕ)′

and dually

(w, n, α) |= G≤yϕ
Def.⇐⇒ for every j in the range 0 ≤ j ≤ α(y): (w, n+ j, α) |= ϕ

I.H.⇐⇒ for every j in the range 0 ≤ j ≤ α(y): (w, n+ j, α) 6|= ϕ′

⇐⇒ there is no j in the range 0 ≤ j ≤ α(y) s. t. (w, n+ j, α) |= ϕ′

Def.⇐⇒ (w, n, α) 6|= F≤yϕ′

Def.⇐⇒ (w, n, α) 6|= (G≤yϕ)′ .

Here it becomes apparent why we prefer to use a single set of variables
and consider only well-formed formulae instead of using two disjoint sets of
variables, one for parameterized eventually operators and one for parame-
terized always operators: the definition of well-formedness is independent of
variable names, which allows us to leave the variable names unchanged when
pushing negations over parameterized operators. If we would use two sets,
we would need to use a name from the other set of variables when pushing
a negation over a parameterized operator. This would require notational
overhead when working with the negation of a formula.

In the following, we freely use ¬ϕ as shorthand for the formula ϕ′ as in
Lemma 3.6. A formula ϕ and its “negation” ϕ′ satisfy the following useful
properties: most importantly, the negation of a well-formed formula is well-
formed as well.

Remark 3.7. Let ϕ be a PLTL formula and let ¬ϕ be its negation as defined
in the proof of Lemma 3.6.

i. ¬¬ϕ = ϕ, i.e., (w, n, α) |= ϕ if and only if (w, n, α) |= ¬¬ϕ.

ii. |¬ϕ| = |ϕ|.

iii. varF(¬ϕ) = varG(ϕ) and varG(¬ϕ) = varF(ϕ).
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iv. If ϕ is well-formed, then so is ¬ϕ.

v. If ϕ is an LTL formula, then so is ¬ϕ.

vi. If ϕ is a PLTLF formula, then ¬ϕ is a PLTLG formula.

vii. If ϕ is a PLTLG formula, then ¬ϕ is a PLTLF formula.

Note that the first statement means that double negation is a syntactic
equivalence, not only a semantic one. The first three statements are simple
consequences of the definition of ϕ′ and the last four statements are appli-
cations of the third one.

When we consider a PLTL formula with respect to a fixed variable val-
uation, all bounds are determined, e.g., F≤xϕ expresses that ϕ is satisfied
at least once within the next α(x) steps. Since α is fixed, this property can
be expressed by an LTL formula using a disjunction of nested next opera-
tors, i.e., without the use of parameterized operators. Dually, G≤yϕ can be
expressed using a conjunction of nested next operators, if α is fixed.

Lemma 3.8. For every PLTL formula ϕ and every valuation α, there exists
an effectively constructible LTL formula ϕα of size |ϕ| · O(maxz∈var(ϕ) α(z))
such that (w, n, α) |= ϕ if and only if (w, n) |= ϕα.

Proof. Given a PLTL formula ψ and k ∈ N, we define the formula Xk
∨ψ

inductively by X0
∨ψ = ψ and Xk+1

∨ ψ = ψ ∨ X(Xk
∨ψ). It is satisfied at a

position n, if ψ holds at a position n+ j for some j in the range 0 ≤ j ≤ k.
Similarly, we define the formula Xk

∧ψ inductively by X0
∧ψ = ψ and Xk+1

∧ ψ =
ψ∧X(Xk

∧ψ). It is satisfied at a position n, if ψ holds at every position n+ j
for j in the range 0 ≤ j ≤ k.

Now, fix some variable valuation α. We define ϕα by inductively replacing
every parameterized subformula F≤xψ by Xα(x)

∨ ψ and G≤yψ by Xα(y)
∧ ψ,

respectively. Formally, we define

� (p)α = p and (¬p)α = ¬p,

� (ϕ ∧ ψ)α = ϕα ∧ ψα,

� (ϕ ∨ ψ)α = ϕα ∨ ψα,

� (Xϕ)α = Xϕα,

� (ϕU ψ)α = ϕα U ψα,

� (ϕR ψ)α = ϕα R ψα

� (F≤xϕ)α = Xα(x)
∨ ϕα, and

� (G≤yϕ)α = Xα(y)
∧ ϕα.
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Since we have |Xk
∨ψ| = |Xk

∧ψ| = |ψ| + O(k), the size of ϕα is bounded by
|ϕ| ·O

(
maxz∈var(ϕ) α(z)

)
. Now, it remains to show (w, n, α) |= ϕ if and only

if (w, n) |= ϕα by structural induction over the construction of ϕ. The only
non-trivial cases are the parameterized operators. We have

(w, n, α) |= F≤xϕ
Def.⇐⇒ there is a j in the range 0 ≤ j ≤ α(x) s. t. (w, n+ j, α) |= ϕ

I.H.⇐⇒ there is a j in the range 0 ≤ j ≤ α(x) s. t. (w, n+ j) |= ϕα

⇐⇒ (w, n) |= Xα(x)
∨ ϕα

Def.⇐⇒ (w, n) |= (F≤xϕ)α

and

(w, n, α) |= G≤yϕ
Def.⇐⇒ for all j in the range 0 ≤ j ≤ α(x): (w, n+ j, α) |= ϕ

I.H.⇐⇒ for all j in the range 0 ≤ j ≤ α(x): (w, n+ j) |= ϕα

⇐⇒ (w, n) |= Xα(y)
∧ ϕα

Def.⇐⇒ (w, n) |= (G≤yϕ)α .

Due to Lemma 3.8, we do not consider a fixed variable valuation when
defining games with winning conditions in PLTL, but ask whether Player 0
can win a game with respect to some, infinitely many, or all variable valua-
tions or ask for optimal variable valuations.

A simple, but very useful property of PLTL is the monotonicity of the
parameterized operators. If ϕ is satisfied at least once within in the next
k steps, then it is also satisfied at least once within in the next k′ steps,
provided we have k′ > k. Dually, if ϕ is satisfied during each of the next k
steps, then also during the next k′ steps, provided k′ < k. Hence, the set
of variable valuations α such that a formula ϕ is satisfied by w with respect
to α is upwards-closed for variables x ∈ varF(ϕ) and downwards-closed for
variables y ∈ varG(ϕ).

Lemma 3.9 ([AETP01]). Let ϕ be a PLTL formula and let α and β be
variable valuations satisfying β(x) ≥ α(x) for every x ∈ varF(ϕ) and β(y) ≤
α(y) for every y ∈ varG(ϕ). If (w, n, α) |= ϕ, then (w, n, β) |= ϕ.

Finally, it is well-known that LTL formulae can be translated into ω-
automata. The translation into Büchi automata is the basis of LTL model-
checking while the translation into deterministic automata is the basis of
solving LTL games. Since we are concerned with games, we only state the
second translation (see also Subsection 3.3.2), which can be obtained by
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combining a translation from LTL to (generalized) Büchi automata [VW94]
(see also [BK08] and the references therein) and a determinization procedure
for Büchi automata to deterministic automata [Saf88, MS95, Pit07, MS08].

Theorem 3.10. For every LTL formula ϕ, there exists an effectively con-
structible deterministic parity automaton A of size 22O(|ϕ|) with O(2|ϕ|) pri-
orities such that L(A) = {w ∈

(
2P
)ω | w |= ϕ}.

3.1.4 PLTL Games

After we have introduced PLTL, we are now able to define infinite games
with winning conditions in PLTL in this subsection. Then, we discuss some
basic properties of these games.

To evaluate the winning condition – which is a PLTL formula – on a
play, we have to label the arena with atomic propositions from the set P
we use to build our formulae. Thus, a labeled arena A = (V, V0, V1, E, `)
consists of an arena (V, V0, V1, E) as defined in Subsection 2.3.1 and a labeling
function ` : V → 2P . In figures, we denote the labeling of a vertex v by a set
of propositions above or below v, where we omit empty labels. The trace of
a play ρ is tr(ρ) = `(ρ0)`(ρ1)`(ρ2) · · · . In this chapter, we mainly deal with
labeled arenas. To keep things simple, we refer to them as arenas, too, as
long as no confusion can arise. Furthermore, it is also convenient to consider
a designated initial vertex in which every play starts.

Definition 3.11. A PLTL game G = (A, v0, ϕ) consists of a (labeled)
arena A = (V, V0, V1, E, `), an initial vertex v0 ∈ V , and a well-formed7

PLTL formula ϕ.

The size of G, denoted by |G|, is defined as |G| = |A| + |ϕ|. LTL,
PROMPT–LTL, PLTLF, PLTLG, and unipolar games are defined by re-
stricting the winning conditions to LTL, PROMPT–LTL, PLTLF, PLTLG,
and unipolar formulae, respectively.

A play in (A, v0, ϕ) is an infinite path through A starting in v0. To define
the notions of winning a play and of winning strategies, we need to evaluate
ϕ on a trace or a set of traces. Thus, both notions are defined with respect to
a variable valuation which allows the evaluation. We say that Player 0 wins
a play ρ with respect to a variable valuation α if (tr(ρ), α) |= ϕ, otherwise
Player 1 wins ρ with respect to α. A strategy σ for Player i is a winning
strategy for her with respect to α if every play that is consistent with σ is won
by Player i with respect to α. If Player i has such a winning strategy, then
we say that she wins G with respect to α. Again, winning an LTL game G
is independent of α, hence we are justified to say that Player i wins G.

7The need for the restriction to well-formed formulae is discussed in Subsection 3.1.2.
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Definition 3.12. Let G be a PLTL game. The setWi(G) of winning variable
valuations for Player i is

Wi(G) = {α | Player i wins G with respect to α} .

If G is an LTL game, thenWi(G) contains either every variable valuation
– which is the case if Player i wins G – or it is empty – which is the case if
Player 1− i wins G.

We illustrate these definitions with two example games in the arena A
depicted in Figure 3.1. Here, the propositions q0 and q1 represent requests
of some resources and p0 and p1 represent the corresponding responses. At
vertex v0, Player 1 can choose to request one or both of q0 and q1, and at
vertex v5, Player 0 can respond to at most one of the requests. Furthermore,
at vertex v4, Player 1 can choose to delay the play as long as he wants to,
even preventing Player 1 from responding to requests. To avoid this kind of
behavior, all our example winning conditions have a fairness condition which
guarantees a win for Player 0, if the play stays in v4 ad infinitum.

v0

v1

{q0}

v3

{q1}

v2

{q0, q1}
v4

{d}
v5

v6

{p0}

v7

{p1}

v8

Figure 3.1: The arena A for Example 3.13 and Example 3.14

Example 3.13. Player 0 wins the LTL game (A, v0, ϕ1) with

ϕ1 = FGd ∨
∧

i∈{0,1}

G(qi → Fpi) .

In this game, Player 0 wins a play if it eventually stays in v4 ad infinitum
or if she is able to answer every request. One possible winning strategy
proceeds by alternatingly moving to v6 and v7 when the token is at v5,
thereby answering every request eventually, if the play does not end up
staying in v4 ad infinitum. 3

Example 3.14. Now, consider the formula

ϕ2 = FGd ∨
∧

i∈{0,1}

G(qi → F≤xipi)
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obtained by parameterizing the eventually operators of ϕ1. To win the
PLTLF game G2 = (A, v0, ϕ2) with respect to a variable valuation α, Player 0
has to answer every request qi within α(xi) positions. We claimW0(G2) = ∅:
fix some variable valuation α and let k = max{2, α(x0), α(x1)} and consider
the play in which Player 1 activates both requests by moving to v2 and then
uses the self-loop at vertex v4 (k − 2) times and then moves to v5. Then,
both requests qi are not answered within α(xi) positions. For the remain-
der of the play, Player 1 just has to make sure to leave v4 infinitely often.
This strategy is winning against every strategy of Player 0. Hence, we have
α ∈ W1(G2). 3

LTL games were – in a more general framework – investigated by Pnueli
and Rosner, who showed them to be 2Exptime-complete. Their results
hold in the setting of graph-based games, too, and serves as the yardstick
we measure our results about PLTL games against.

Theorem 3.15 ([PR89a, PR89b, Ros91]). LTL games are determined with
uniform finite-state strategies of size 22O(|ϕ|) and determining the winner of
an LTL game is 2Exptime-complete.

2Exptime-membership can be proven by applying Lemma 2.17 to re-
duce an LTL game to a parity game using a deterministic parity automa-
ton A as in Theorem 3.10. The automaton A is of doubly-exponential size
and has exponentially many priorities (both measured in |ϕ|). Hence, the
parity game obtained in the reduction can be solved in doubly-exponential
time due to Theorem 2.22.

Furthermore, Alur et al. [ATM03, AT04] refined the work of Pnueli and
Rosner and determined the complexity of solving games with winning condi-
tions in several fragments of LTL obtained by restricting the set of boolean
connectives and temporal operators used to built formulae.

A simple consequence of Lemma 3.8 is that a PLTL game with winning
condition ϕ with respect to a fixed variable valuation α is nothing more than
an LTL game with winning condition ϕα. This is formally stated in the next
lemma. Hence, we are not interested in games with a fixed valuation but
ask whether a player can win with respect to some, infinitely many, or all
variable valuations or want to compute optimal valuations.

Lemma 3.16. Let G = (A, v0, ϕ) be a PLTL game and let α be a vari-
able valuation. We have α ∈ Wi(G) if and only if Player i wins the LTL
game (A, v0, ϕα).

We obtain a determinacy result for PLTL games as a corollary of the
previous lemma.

Corollary 3.17. Let G be a PLTL game and let α be a variable valuation.
Then, one of the players has a finite-state winning strategy for G with respect
to α.
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We have already seen that a PLTL formula ϕ can be negated such that
(w, n, α) |= ¬ϕ if and only if (w, n, α) 6|= ϕ. Hence, we can dualize PLTL
games. This is especially useful when considering unipolar games, since the
negation of a PLTLF formula is a PLTLG formula and vice versa. Hence,
we can solve many problems by only considering one type of unipolar game.

Definition 3.18. Let A = (V, V0, V1, E, `) be an arena and G = (A, v0, ϕ)
be a PLTL game. Then, A = (V, V1, V0, E, `) is the dual arena of A, and
G = (A, v0,¬ϕ) is the dual game of G.

Since the negation of a well-formed formula is well-formed, too, the dual
game satisfies the definition of a PLTL game. Furthermore, the dual of
a PLTLF game is a PLTLG game and vice versa. Both facts are direct
consequences of Remark 3.7. Let α be a variable valuation: since we negate
the winning condition and swap the player’s positions, we have α ∈ Wi(G) if
and only if α ∈ W1−i(G). Our first results are a consequence of Corollary 3.17
and of the previous observation, respectively.

Lemma 3.19. Let G be a PLTL game.

i. Wi(G) is the complement of W1−i(G).

ii. Wi(G) =W1−i(G).

Finally, Lemma 3.9 can easily be lifted to games.

Lemma 3.20. Let G = (A, v0, ϕ) be a PLTL game.

i. Let α and β be variable valuations satisfying β(x) ≥ α(x) for every
x ∈ varF(ϕ) and β(y) ≤ α(y) for every y ∈ varG(ϕ). If α ∈ W0(G),
then β ∈ W0(G).

ii. Let α and β be variable valuations satisfying β(x) ≤ α(x) for every
x ∈ varF(ϕ) and β(y) ≥ α(y) for every y ∈ varG(ϕ). If α ∈ W1(G),
then β ∈ W1(G).

Hence, W0(G) is upwards-closed for variables parameterizing eventually
operators and downwards-closed for variables parameterizing always oper-
ators. For a unipolar game G, this means that Wi(G) has a very simple
structure and can be represented finitely as a semilinear set. After we have
proved this, we discuss the general case of non-unipolar games.

In the following, we assume var(ϕ) = {z0, . . . , zk−1} and identify a vari-
able valuation α (restricted to the variables occurring in ϕ) by a vector a =
(α(z0), . . . , α(zk−1)) ∈ Nk. Accordingly, we think of Wi(G) as subset of Nk,
if the winning condition of G has k variables. To state our results, we need
some additional notation.
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Given two vectors a = (a0, . . . , ak−1) ∈ Nk and b = (b0, . . . bk−1) ∈ Nk,
and a scalar s ∈ N, we denote the componentwise addition of a and b by

a + b = (a0 + b0, . . . , ak−1 + bk−1)

and the scalar multiplication of s and a by

s · a = (s · a0, . . . , s · ak−1) .

Moreover, we compare vectors componentwise, i.e., we have a ≤ b if aj ≤ bj
for every j ∈ [k]. The upwards-closure of the vector a is the set a↑= {b ∈
Nk | a ≤ b}. A set A ⊆ Nk is upwards-closed, if a ∈ A implies a↑⊆ A. A
set is downwards-closed, if it is the complement of an upwards-closed set8.
A simple corollary of Lemma 3.20 is that the sets of winning valuations for
a player in a unipolar game are closed. Due to duality, we state the result
for Player 0 only.

Corollary 3.21.

i. Let G be a PLTLF game. Then, W0(G) is upwards-closed.

ii. Let G be a PLTLG game. Then, W0(G) is downwards-closed.

A set A ⊆ Nk is linear if there exist vectors a0,a1, . . . ,an such that

A = {a ∈ Nk | a = a0 +
n∑
j=1

sj · aj for some scalars s1, . . . , sn ∈ N} ,

and a subset of Nk is semilinear, if it is a finite union of linear sets. It is easy
to see that the upwards-closure a↑ of a vector a ∈ Nk is linear. A semilinear
set can be represented finitely by the generators of its constituting linear sets
or by a Presburger formula [Pre29], a first-order formula in which addition
emerges as the only operator.

Lemma 3.22. Every upwards- or downwards-closed subset of Nk is semilin-
ear.

Proof. We show that an upwards-closed set A is semilinear. This suffices,
since every downwards-closed set is the complement of an upwards-closed set
and since the semilinear sets are closed under complementation [GS64].

Let A′ ⊆ A be the set of ≤-minimal elements of A, which is finite due
to Dickson’s Lemma [Dic13]. Then, we have A =

⋃
a∈A′ a ↑ . As every

upwards-closure is linear, A is semilinear.
8Alternatively, one could require the downwards-closure of each element to be contained

in the set, where the downwards-closure of a vector is defined analogously to the upwards-
closure.
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Our result is now a simple consequence of Corollary 3.21 and Lemma 3.22.

Theorem 3.23. Let G be a unipolar PLTL game. Then, Wi(G) is semilin-
ear.

The exact structural complexity of the set of winning valuations for a non-
unipolar PLTL game is open. This is even the case for PLTL model-checking,
i.e., solitary games [AETP01]. Furthermore, the undecidability results for
formulae that are not well-formed imply that ifW0(G) were semilinear, then
a finite representation cannot be effectively computable: remember that it
is undecidable, whether a PLTL formula has a model with respect to a
variable valuation α such that α(x) = α(y) for some variables x ∈ varF(ϕ)
and y ∈ varG(ϕ). Since this question can easily be answered for linear sets
represented by its generators using linear equations (and therefore also for
semilinear sets), there is no algorithm that computes a finite representation
of W0(G) as semilinear set.

Nevertheless, using the monotonicity of the parameterized always oper-
ators and the alternating color technique presented in Subsection 3.2.2 we
can compute projections of Wi(G) to the coordinates representing variables
from varF(ϕ) and varG(ϕ), respectively. Here, we only explain the first
case. For the second case, we need additional tools and refer to the end of
Subsection 3.2.2 for the time being.

Let G = (A, v0, ϕ) be a PLTL game such that varF(ϕ) = {z0, . . . , zk−1}
and varG(ϕ) = {zk, . . . , zk+k′−1}. Now, let ϕF be the formula obtained
by inductively replacing every subformula G≤yψ by ψ and consider the
PLTLF game G′ = (A, v0, ϕF). Due to downwards-closure, we have that
(n1, . . . , nk−1) ∈ W0(G′) if and only if (n1, . . . , nk−1, nk, . . . , nk+k′−1) ∈
W0(G) for some nk, . . . , nk+k′−1 ∈ N.

Note that the dual construction for the coordinates representing variables
from varG(ϕ) does not work: the next example shows that replacing param-
eterized eventually operators by unparameterized eventually operators does
not yield the projection. Using the tools developed in the next section we
give a correct construction.

Example 3.24. Consider the solitary PLTL game G = (A, v0, ϕ) where A
is depicted in Figure 3.2 and ϕ = (FGp ∨GF≤xq) ∧G≤ytt.

v0

{p}
v1

{q}

Figure 3.2: The arena A for Example 3.24

Since the second conjunct is satisfied with respect to every variable val-
uation, Player 0 wins with respect to a variable valuation α, if p is satisfied
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continuously from some position onwards or if q is satisfied at least once in
every infix of length α(x) + 1. Thus, the play

∏
j≥0((v0)jv1) is winning for

Player 1 with respect to every variable valuation, since its trace contains
arbitrary long infixes in which q does not hold, but ¬p holds infinitely often.
Hence, we have W0(G) = ∅.

Now, consider the game G′ = (A, v0, ϕ′) obtained by replacing the pa-
rameterized eventually operator by an unparameterized one, i.e., ϕ′ is the
PLTLG formula (FGp ∨ GFq) ∧ G≤ytt. We claim that W0(G′) contains
every variable valuation. We have already seen that the second conjunct is
satisfied with respect to every variable valuation. Thus, we only have to con-
sider the first conjunct, which is variable-free. Consider a play in A: either it
visits v1 infinitely often, which means its trace satisfies GFq, or it stays from
some point onwards in v0, which means its trace satisfies FGp. Hence, every
play is winning for Player 0 with respect to every variable valuation. Thus,
W0(G′) is not the projection of W0(G) to the coordinate representing y. 3

Let us conclude this introductory subsection about PLTL games by
discussing how to adapt game reductions to initialized games of the form
G = (A, v0,Win), where Win is the set of winning plays for Player 0. We say
that G is reducible to G′ = (A′, v′0,Win′) via memory M = (M, init, upd),
again written G ≤M G′, if A′ is the extended arena9 A ×M, if the initial
vertex10 v′0 is (v0, init(v0)), and if every play in A (which starts in v0) is won
by the same player who wins the extended play in A′ (which starts in v′0).
We obtain the correctness of this construction as corollary of Lemma 2.15.

Corollary 3.25. Let G be an initialized game. If G ≤M G′ and Player i has
a positional winning strategy for G′, then she also has a finite-state winning
strategy with memoryM for G.

Furthermore, Lemma 2.17 can be formulated for initialized games as well.

Corollary 3.26. Let G = (A, v0,Win) and let A be a deterministic parity
automaton such that L(A) = Win. Then, G can be reduced to a parity game
via a memory structure of size |A|.

3.2 Solving Games with PLTL Winning Conditions

In this section, we show how to solve PLTL games. Since we consider ini-
tialized games, solving them only requires to determine the winner from the
initial vertex and a corresponding winning strategy. However, winning a

9When defining the product of a labeled arena and a memory structure, we ignore the
labeling function and use the definition presented in Subsection 2.3.3.

10Since a play always begins in the initial vertex we could replace the initialization
function by an initial memory state m0. To avoid notational overhead, we choose to stick
to the function, even if it is only applied to v0.
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PLTL game (and being a winning strategy) is defined with respect to a vari-
able valuation. Hence, solving a PLTL game G refers to properties of the
sets Wi(G) of winning valuations. The membership question for a variable
valuation α asks whether a given player wins the game with respect to α.
However, this question is not very interesting since we have seen that a PLTL
game with respect to a fixed variable valuation is equivalent to an LTL game.
Hence, we are interested in the emptiness, finiteness, and universality prob-
lem for Wi(G), i.e., the question whether Player i can win G with respect
some, infinitely many, or all variable valuations. In this section, we show
that all three problems are not harder than solving LTL games. Formally,
we are interested in the following decision problems.

� Membership: given a PLTL game G, i ∈ {0, 1}, and a variable valua-
tion α, does α ∈ Wi(G) hold?

� Emptiness: given a PLTL game G and i ∈ {0, 1}, is Wi(G) empty?

� Finiteness: given a PLTL game G and i ∈ {0, 1}, is Wi(G) finite?

� Universality: given a PLTL game G and i ∈ {0, 1}, doesWi(G) contain
every variable valuation?

As already defined earlier, the size of a game is the sum of the sizes of its
arena and its winning condition. Furthermore, we encode variable valuations
in binary (and restrict them to variables occurring in the winning condition).
Hence, we measure the running time of algorithms for the membership prob-
lem in

|G|+
∑

z∈var(ϕ)

dlog2(α(z) + 1)e

and the running time of algorithms for the latter three problems in |G|.
Our first result is a simple consequence of Lemma 3.16 and Theorem 3.15:

a PLTL formula ϕ with respect to a fixed variable valuation α is equivalent
to an LTL formula ϕα. Hence, to determine membership of α in Wi(G) it
suffices to solve the LTL game with winning condition ϕα. Since the size
of ϕα is exponential in the binary representation of α and linear in the size
of ϕ, the algorithm sketched here has triply-exponential running time. We
obtain an algorithm with doubly-exponential running time when we compute
optimal winning strategies in Section 3.3. For the time being, we just remark
that the membership problem is trivially 2Exptime-hard. Let G be an
LTL game: then, W0(G) contains the empty variable valuation if and only
if Player 0 wins G.

Remark 3.27. The membership problem for PLTL is 2Exptime-hard.
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In the remainder of this section we consider the latter three problems.
In Subsection 3.2.1, we extend the alternating color technique of Kupferman
et al. [KPV09] for PROMPT–LTL to PLTLF. Then, in Subsection 3.2.2,
we apply this technique to solve the emptiness problem for PLTLF games
in doubly-exponential time by a reduction to solving LTL games. Finally,
in Subsection 3.2.3, we prove that this result and the monotonicity of PLTL
suffice to solve the latter three problems for full PLTL in doubly-exponential
time as well.

3.2.1 Digression: The Alternating Color Technique

Kupferman et al. introduced PROMPT–LTL and solved several of its de-
cision problems – among them model-checking, assume-guarantee model-
checking, and the realizability problem – by using their alternating color
technique [KPV09]. Although the technique in its original formulation is
only applicable to PROMPT–LTL formulae it is easy to see that the re-
striction to a single variable is not necessary. Furthermore, it turns out
to be useful to abandon the restriction when we consider the optimization
problems for PLTL games in Section 3.3. Hence, we state the technique
here in a more general version than it was presented in the original work
on PROMPT–LTL. We discuss the extent of these generalizations after the
proof of Lemma 3.28, which states the correctness of the extended technique.

Intuitively, the alternating color technique allows to replace a parame-
terized eventually operator by an LTL formula: consider a PROMPT–LTL
formula ϕ and let p be an atomic proposition that does not appear in ϕ.
We say that a position n of a trace w is green, if p holds at it, otherwise
we say that n is red. Hence, p induces a decomposition of w into (maxi-
mal) monochromatic blocks. Now, we relativize ϕ by inductively replacing
a subformula F≤xψ by an LTL formula specifying that ψ is satisfied within
one color change, i.e., ψ is either satisfied in the current or in the following
block. If the distance between color changes is bounded, then the original
PROMPT–LTL formula is satisfied with respect to some variable valuation,
if the relativized LTL formula is satisfied. Dually, if the blocks are not shorter
than the value of α for the variable occurring in ϕ, then the relativized LTL
formula is satisfied, if the original PROMPT–LTL formula is satisfied with
respect to α. Hence, the problem of finding a bound for the parameterized
eventually operators is reducible to the problem of satisfying an LTL formula
while ensuring a bound on the color changes; the alternating color technique
simplifies the dependencies between parameterized subformulae.

After introducing the alternating color technique formally, we end this
subsection by presenting an application to the PROMPT–LTL realizability
problem due to Kupferman et al. [KPV09]. Then, in the following subsection,
we extend the solution of the realizability problem to the emptiness problem
for graph-based PLTLF games and subsequently use this result to solve the
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emptiness, finiteness, and universality problem for PLTL games.
Let p /∈ P be a fixed fresh proposition. An ω-word w′ ∈

(
2P∪{p}

)ω is
a p-coloring of w ∈

(
2P
)ω if w′n ∩ P = wn, i.e., wn and w′n coincide on all

propositions in P . The additional proposition p can be thought of as the
color of w′n: we say that a position n is green if p ∈ w′n, and say that it is red
if p /∈ w′n. Furthermore, we say that the color changes at position n, if n = 0
or if the colors of w′n−1 and w′n are not equal. In this situation, we say that
n is a change point A p-block is a maximal monochromatic infix w′m · · ·w′n of
w′, i.e., the color changes at m and n+ 1 but not in between. Let k ≥ 1: we
say that w′ is k-spaced, if the color changes infinitely often and each p-block
has length at least k; we say that w′ is k-bounded, if each p-block has length
at most k (which implies that the color changes infinitely often).

Now, we introduce the relativization that replaces a parameterized even-
tually operator F≤xψ by an LTL formula requiring ψ to be satisfied within
one color change. Then, we only need to bound the distance between color
changes while satisfying an LTL formula, which turns out to be much simpler.
To be as general as possible, we allow to remove only a subset of the parame-
terized eventually operators. Given a PLTL formula ϕ and X ⊆ varF(ϕ), let
ϕX denote the relativized formula obtained by inductively replacing every
subformula F≤xψ with x /∈ X by

(p→ (pU (¬pU ψX))) ∧ (¬p→ (¬pU (pU ψX))) .

We have varF(ϕX) = X (i.e., X denotes the variables that are not re-
placed), varG(ϕX) = varG(ϕ), and |ϕX | ∈ O(|ϕ|). Furthermore, the formula
altp = GFp∧GF¬p is satisfied if the colors change infinitely often. Finally,
consider the formula ϕX ∧altp. It is satisfied by w with respect to a variable
valuation α, if the following holds:

� The color changes infinitely often.

� Every subformula F≤xψ with x /∈ X is satisfied within one color
change.

� The parameterized eventually operators with variables x ∈ X – which
are not replaced in ϕX – are satisfied within the bounds specified by
α.

� The parameterized always operators are satisfied with respect to the
bounds specified by α.

The application of the alternating color technique allows to remove some
variables from varF(ϕ). Next, we show that ϕ and ϕX are “equivalent” on
ω-words which are bounded and spaced at the same time. Our correctness
lemma differs from the original one presented in [KPV09], since we generalize
the technique to PLTL formulae and allow to replace just some parameterized
eventually operators. However, the proof itself is similar to the original one.
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Lemma 3.28 (cf. Lemma 2.1 of [KPV09]). Let ϕ be a PLTL formula, let
X ⊆ varF(ϕ), and let w ∈

(
2P
)ω.

i. If (w,α) |= ϕ, then (w′, α) |= ϕX∧altp for every k-spaced p-coloring w′

of w, where k = maxx∈varF(ϕ)\X α(x).

ii. Let k ∈ N. If w′ is a k-bounded p-coloring of w with (w′, α) |= ϕX ,

then (w, β) |= ϕ, where β(z) =

{
2k if z ∈ varF(ϕ) \X,
α(z) otherwise.

Proof. i.) Let w′ be a k-spaced p-coloring of w. By definition, the for-
mula altp is satisfied by every k-spaced p-coloring. Hence, it remains to
show (w, n, α) |= ϕ implies (w′, n, α) |= ϕX by structural induction over the
construction of ϕ.

The cases of atomic formulae, boolean connectives, unparameterized
temporal operators, and F≤x with x ∈ X as well as G≤y are straightfor-
ward applications of the induction hypothesis, since we only replace param-
eterized eventually operators with variable x /∈ X. So, suppose we have
(w, n, α) |= F≤xψ with x /∈ X. We have to show

(w′, n, α) |= (p→ (pU (¬pU ψX))) ∧ (¬p→ (¬pU (pU ψX))) , (3.1)

where ψX is the relativization of ψ. Assume p ∈ w′n; the case p /∈ w′n is
analogous. Then, we just have to show that the first conjunct is satisfied.
Since (w, n, α) |= F≤xψ, there is a j in the range 0 ≤ j ≤ α(x) such that
(w, n + j, α) |= ψ and thus (w′, n + j, α) |= ψX by induction hypothesis.
Since k ≥ α(x) and since w′ is k-spaced, there is at most one change point in
between n and n+j in w′. If there is no such change point, then (w′, n, α) |=
p → (p U ψX) and thus also (w′, n, α) |= p → (p U (¬p U ψX)). Hence,
we have shown (3.1). If there is a change point at a position n + c with
n < n+ c ≤ n+ j, then (w′, n+ c, α) |= ¬pU ψX and therefore (w′, n, α) |=
p→ pU (¬pU ψX), which again suffices to show (3.1).

ii.) Let w′ be a k-bounded p-coloring of w. We show by induction over
the construction of ϕ that (w′, n, α) |= ϕX implies (w, n, β) |= ϕ. Again, the
cases of atomic formulae, boolean connectives, unparameterized temporal
operators, and F≤x with x ∈ X as well as G≤y are straightforward applica-
tions of the induction hypothesis. So, consider the case F≤xψ with x /∈ X.
Then, we have (w′, n, α) |= (F≤xψ)X , i.e.,

(w′, n, α) |= (p→ (pU (¬pU ψX))) ∧ (¬p→ (¬pU (pU ψX))) .

We have to show (w, n, β) |= F≤xψ. Assume p ∈ w′n; the case p /∈ w′n is again
analogous. Then, we have (w′, n, α) |= pU (¬pUψX)). As w′ is k-bounded,
there are change points n+ c and n+ c+ c′ with 0 ≤ c, c′ ≤ k. Hence, there
has to be a j ≤ c + c′ ≤ 2k such that (w′, n + j, α) |= ψX . Applying the
induction hypothesis, we obtain (w, n+j, β) |= ψ and thus (w, n, β) |= F≤xψ
due to j ≤ 2k = β(x).
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The original alternating color technique as introduced in [KPV09] is de-
fined for PROMPT–LTL and replaces all parameterized operators at once,
i.e., the case X = ∅ in our formulation. By reflecting on the previous proof
it becomes clear that our extensions did not complicate it in any way: they
can all be proven to be correct by applications of the induction hypothesis.

We conclude by discussing the application of the alternating color tech-
nique to the PROMPT–LTL realizability problem. An adaption of this proof
allows us to solve the emptiness problem for PLTLF games (which is closely
related to the PLTLF realizability problem) and then all decision problems.

A realizability problem for a logic is concerned with determining the
winner of an abstract two-player game without underlying arena, i.e., the
game consists only of a formula ϕ specifying the winning plays for one of the
players. In this game, two players 0 and 1 alternatingly pick propositions,
Player 0 from a set I of inputs and Player 1 from a set O of outputs. Hence,
by picking in each round n a set in ⊆ I respectively on ⊆ O they construct an
infinite word ρ = (i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · . Consider a PROMPT–LTL
winning condition ϕ over the atomic propositions I ∪ O. The play ρ is
winning for Player 1 with respect to a variable valuation α if (ρ, α) |= ϕ.
A strategy for Player 1 for such a game is a mapping σ :

(
2I
)∗ → 2O and

(i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · is consistent with σ, if on = σ(i0 · · · in) for
every n. The realizability problem for PROMPT–LTL asks, whether there
exists a variable valuation α and a strategy for Player 1 such that each
consistent play is winning for him with respect to α. In this case we say
that ϕ is realizable. Note that this formulation is already very close to the
emptiness problem for PROMPT–LTL games as defined above.

Kupferman et al. [KPV09] applied the alternating color technique to show
that a PROMPT–LTL formula ϕ with var(ϕ) = {x} is realizable if and only
if the LTL formula ϕ∅∧altp is realizable. The crucial insight is that a finite-
state strategy – which suffices to realize ϕ∅∧altp – only produces k-bounded
plays, where k only depends on the size of the finite-state strategy, which in
turn only depends on the size of ϕ∅ ∧ altp. Due to Lemma 3.28(ii), such a
strategy also realizes ϕ with respect to a variable valuation that maps x to
2k. For the other direction, Lemma 3.28(i) shows that a strategy realizing
ϕ with respect to some variable valuation α can be turned into a strategy
realizing ϕ∅ ∧ altp by outputting an α(x)-spaced p-coloring of the original
output.

As LTL realizability is 2Exptime-hard [PR89b, Ros91] and as ϕ∅∧altp
is only linearly larger than ϕ, it follows that PROMPT–LTL realizability is in
2Exptime as well. Furthermore, as LTL is a fragment of PROMPT–LTL,
the PROMPT–LTL realizability problem is trivially 2Exptime-hard as
well. Thus, adding parameterized eventually operators to LTL does not
increase the asymptotic complexity of the realizability problem.
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3.2.2 Solving the Emptiness Problem for PLTLF Games

The proof of 2Exptime-membership of the PROMPT–LTL realizability
problem can be adapted to solve the emptiness problem for PLTLF games:
instead of applying the original alternating color technique we use the ex-
tended one presented in the previous subsection. The proof presented here
is similar to the one of Kupferman et al. for the PROMPT–LTL realizability
problem [KPV09], but the presentation is more involved, since we consider
graph-based games11. Most importantly, we have to allow Player 0 to pro-
duce p-colorings of plays. Since she has to be able to change the color while
its not her turn, we have to add choice vertices to the arena that allow her
to produce change points at any time. However, adding the choice vertices
requires to ignore them when evaluating a formula to determine the winner
of a play. Thus, we introduce blinking semantics for infinite games: under
this semantics, only every other vertex contributes to the trace of a play.
So, to show that the emptiness problem for PLTLF games can be solved in
doubly-exponential time, we add the choice vertices to the arena and apply
the alternating color technique to obtain a polynomially larger LTL game
under blinking semantics. As a corollary, we derive an upper bound on the
values of a variable valuation that is winning for Player 0, provided there
exists one at all.

We also use the construction presented here for the solution of the PLTL
optimization problems and to construct the projection of W0(G) to coor-
dinates representing variables parameterizing always operators. Therefore,
we present a more general reduction than we would need if we just want to
prove the following result.

Theorem 3.29. The emptiness problem for PLTLF games is in 2Exptime.

As already hinted at above, we proceed as follows: given a PLTLF game G
we apply the alternating color technique for PLTL by constructing an LTL
game G′ under blinking semantics with |G′| ∈ O(|G|2) such that W0(G) 6= ∅
if and only if Player 0 wins G′.

Lemma 3.28 shows how to replace (on suitably bounded and spaced p-
colorings) a parameterized eventually operator by an LTL formula, while
still ensuring a bound on the satisfaction of the parameterized operator. So,
we begin by transforming the original arena A into an arena Ab in which
Player 0 produces p-colorings of the plays of the original arena, i.e., Ab will
consist of two disjoint copies of A, one labeled by p, the other one not.
Assume a play is in vertex v in one component. Then, the player whose
turn it is at v chooses a successor v′ of v and Player 0 picks a component.
The play then continues in this component’s vertex v′. We split this into
two sequential moves: first, the player whose turn it is chooses a successor

11Alternatively, one could encode the arena into the winning condition ϕ, which also
entails some technical difficulties.

49



3 Synthesis from Parametric LTL Specifications

and then Player 0 chooses the component. Thus, we have to introduce a
new choice vertex for every edge of A which allows Player 0 to choose the
component.

Formally, given an arena A = (V, V0, V1, E, `), we define the extended
arena Ab = (V ′, V ′0 , V

′
1 , E

′, `′) by

� V ′ = V × {0, 1} ∪ E,

� V ′0 = V0 × {0, 1} ∪ E,

� V ′1 = V1 × {0, 1},

� E′ = {((v, 0), e), ((v, 1), e), (e, (v′, 0)), (e, (v′, 1)) | e = (v, v′) ∈ E}, and

� `′(e) = ∅ for every e ∈ E and `′(v, b) =

{
`(v) ∪ {p} if b = 0,
`(v) if b = 1.

x y z  

(x, 0)

(x, 1)

(x, y)

(y, 0)

(y, 1)

(y, z)

(z, 0)

(z, 1)

AbA

{q, r}

{q, r, p}

{q, r}

{q}

{q, p}

{q}

{r, s}

{r, s, p}

{r, s}

∅ ∅

Figure 3.3: The construction of Ab, (x, y) and (y, z) are choice vertices

For every vertex v ofAb we have two copies (v, 0) and (v, 1) inA and every
edge e in A is turned into a choice vertex named e in Ab. The construction is
illustrated in Figure 3.3: instead of moving the token from v to v′ in A, the
token inAb is moved from (v, b) for some b ∈ {0, 1} to the choice vertex (v, v′)
from which Player 0 then can either move the token to (v′, 0) or to (v′, 1).
Thus, a path through Ab has the form (ρ0, b0)e0(ρ1, b1)e1(ρ2, b2) · · · where
ρ0ρ1ρ2 · · · is a path through A, en = (ρn, ρn+1), and the bn are in {0, 1}.
Also, we have |Ab| ∈ O(|A|2).

The definition of Ab necessitates a modification of the game’s semantics:
only every other vertex is significant when it comes to determining the winner
of a play in Ab, the choice vertices have to be ignored. This motivates
blinking semantics for PLTL games. Let G = (A, v0, ϕ) be a PLTL game
and let ρ = ρ0ρ1ρ2 · · · be a play. Player 0 wins ρ under blinking semantics
with respect to α, if (tr(ρ0ρ2ρ4 · · · ), α) |= ϕ. Analogously, Player 1 wins ρ
under blinking semantics with respect to α, if (tr(ρ0ρ2ρ4 · · · ), α) 6|= ϕ. The

50



3.2 Solving PLTL Games

notions of winning strategies and winning G under blinking semantics with
respect to α are defined as for games with standard semantics.

Alternatively, we could avoid using blinking semantics by rewriting an
LTL formula ϕ to a formula ϕb such that w0w1w2 · · · |= ψ if and only if
w0{o}w1{o}w2{o} · · · |= ϕb for some fresh proposition o. For unparame-
terized operators, this is straightforward since we mark the odd positions
by o. For example, for atomic propositions p and q, Xp is rewritten to
XXp and pU q is rewritten to (p ∨ o) U (q ∧Xo). However, to extend this
transformation to parameterized operators, we have to adjust the variable
valuations as well. If (w0w1w2 · · · , α) |= F≤xp, then we can only conclude
(w0{o}w1{o}w2{o} · · · , β) |= F≤xp if β satisfies β(x) ≥ 2α(x). Furthermore,
variable valuations mapping x to an odd value are useless in the padded
words, since the bounds are always satisfied by an even number of steps. To
save ourselves from dealing with these nuisances, we accept the notational
overhead of dealing with two semantics for PLTL games.

Finite-state determinacy of LTL games under blinking semantics (and
thus also finite-state determinacy of PLTL games under blinking semantics
with respect to a fixed variable valuation) can be proven analogously to the
case for LTL games under standard semantics.

Lemma 3.30. LTL games under blinking semantics are determined with
uniform finite-state strategies of size 22O(|ϕ|) and determining the winner is
2Exptime-complete.

Proof. Let G = (A, v0, ϕ) be an LTL game under blinking semantics and let
A = (Q, 2P , q0, δ,Ω) be a deterministic parity automaton that recognizes the
language of models of ϕ as in Theorem 3.10. By introducing new states we
can turn A into a deterministic parity automaton A′ recognizing the language

{w ∈
(
2P
)ω | w0w2w4 · · · |= ϕ} .

Formally, we define A′ = (Q× {0, 1}, 2P , (q0, 0), δ′,Ω′) where

δ′((q, i), a) =

{
(δ(q, a), 1) if i = 0,
(q, 0) if i = 1,

and Ω′(q, i) = Ω(q) for i ∈ {0, 1}. We have |A′| ∈ 22O(|ϕ|) .
The automaton A′ recognizes exactly those traces that satisfy ϕ under

blinking semantics. Hence, we can apply Corollary 3.26 to reduce G to a
parity game via a memory structure of size |A′|. Thus, we have shown
that there is a finite-state winning strategy of doubly-exponential size for G.
Furthermore, the parity game can be solved in doubly-exponential time in
the size of G due to Theorem 2.22, which also solves the original LTL game
under blinking semantics.

Finally, 2Exptime-hardness follows directly from 2Exptime-hardness
of solving LTL games: an LTL game under standard semantics can easily be
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turned into an equivalent LTL game under blinking semantics by subdividing
every edge of the arena by adding a new vertex.

Since a PLTL game G = (A, v0, ϕ) under blinking semantics with respect
to a fixed variable valuation α is nothing more than an LTL game with
winning condition ϕα (see Lemma 3.16) in the same arena, Lemma 3.30 yields
the following determinacy result for PLTL games under blinking semantics
with respect to a fixed variable valuation.

Corollary 3.31. PLTL games under blinking semantics with respect to a
fixed variable valuation α are determined with finite-state strategies.

Now, we can state the “equivalence” of a PLTLF game (A, v0, ϕ) and
its counterpart in Ab with blinking semantics obtained by replacing ev-
ery parameterized eventually operator. Analogously to the 2Exptime-
membership proof of the PROMPT–LTL realizability problem, the following
proof relies on the existence of finite-state winning strategies which neces-
sarily produce only k-bounded plays for some fixed k, if altp is part of the
winning condition. As already mentioned in the beginning of this subsection,
we state a more general result for full PLTL. This turns out to be useful
when we solve optimization problems for unipolar PLTL games in Section 3.3
and when we want to determine the projection of W0(G).

Lemma 3.32. Let G = (A, v0, ϕ) be a PLTL game, let X ⊆ varF(ϕ), and
let G′ = (Ab, (v0, 0), ϕX ∧ altp).

i. If Player 0 wins G with respect to a variable valuation α, then she also
wins G′ under blinking semantics with respect to α.

ii. If Player 0 wins G′ under blinking semantics with respect to a variable
valuation α, then there exists a variable valuation β with β(z) = α(z)
for every x ∈ X ∪ varG(ϕ) such that she wins G with respect to β.

Before we prove the lemma, let us mention that this suffices to prove
Theorem 3.29: let G = (A, v0, ϕ) be a PLTLF game and consider the case
X = ∅. Then, ϕX is an LTL formula and Player 0 wins G with respect
to some variable valuation α if and only if she wins the LTL game G′ =
(Ab, (v0, 0), ϕX ∧ altp) under blinking semantics. As G′ is only polynomially
larger than G and as LTL games under blinking semantics can be solved
in doubly-exponential time, we have shown 2Exptime-membership of the
emptiness problem for W0(G), if G is a PLTLF game.

Now, let us turn to the proof of Lemma 3.32.

Proof. i.) Let σ be a winning strategy for Player 0 for G with respect to
α and define k = maxx∈varF(ϕ)\X α(x). We turn σ into a strategy σ′ for
G′ that mimics the behavior of σ at vertices (v, b) and colors the play in
alternating p-blocks of length k at the choice vertices. Hence, the trace of
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the resulting play (without choice vertices) in Ab is a k-spaced p-coloring
of the trace of a play that is consistent with σ, which allows us to apply
Lemma 3.28(i) to show that σ′ is winning under blinking semantics with
respect to α. Formally, we define

σ′((ρ0, b0)(ρ0, ρ1) · · · (ρn−1, ρn)(ρn, bn)) = (ρn, σ(ρ0 · · · ρn))

if (ρn, bn) ∈ V ′0 , which implies ρn ∈ V0. Thus, at a non-choice vertex, Player 0
mimics the behavior of σ. At choice vertices, she alternates between the two
copies of the arena every k steps, i.e.,

σ′((ρ0, b0)(ρ0, ρ1) · · · (ρn, bn)(ρn, ρn+1)) =

{
(ρn+1, 0) if n mod 2k < k,
(ρn+1, 1) if n mod 2k ≥ k.

Let ρ = ρ0ρ1ρ2 · · · be a play in Ab that is consistent with σ′ and let

ρ′ = ρ0ρ2ρ4 · · · = (v0, b0)(v1, b1)(v2, b2) · · · .

By definition of σ′, the sequence v0v1v2 · · · is a play in A that is con-
sistent with σ and thus winning for Player 0 with respect to α, i.e., we
have (tr(v0v1v2 · · · ), α) |= ϕ. Furthermore, tr(ρ′) is a k-spaced p-coloring of
tr(v0v1v2 · · · ). Hence, (tr(ρ′), α) |= ϕX ∧ altp due to Lemma 3.28(i). Thus,
σ′ is a winning strategy for (Ab, (v0, 0), ϕX ∧ altp) under blinking semantics
with respect to α.

ii.) Assume that Player 0 wins (Ab, (v0, 0), ϕX ∧ altp) under blinking
semantics with respect to α. Then, due to Corollary 3.31, she also has
a finite-state winning strategy σ′ implemented by some memory structure
M′ = (M ′, init′,upd′) and some next-move function nxt′. Since such a
finite-state strategy only generates plays that are k-bounded p-colorings, for
some k that only depends on |M | and |Ab|, Lemma 3.28(ii) is applicable
to the plays that are consistent with σ′. We construct a strategy σ for G
by simulating σ′ such that each play in A that is consistent with σ has a
k-bounded p-coloring in Ab that is consistent with σ′. This suffices to show
that σ is winning with respect to a variable valuation β as required.

Let us sketch the intuition behind the simulation. Assume the token in
A is in the initial vertex v0 and the token in Ab in the initial vertex (v0, 0)
as well. If it is Player 0’s turn in v0, then it is also her turn in (v0, 0) and σ′

prescribes to move the token to some choice vertex (v0, v1). Since all choice
vertices belong to Player 0, there is some bit b1 such that σ prescribes to
move to (v1, b1). She mimics these moves in A by moving to v1 directly. On
the other hand, if it is Player 1’s turn at v0, he moves to some successor v1.
This move is simulated in Ab by letting him move the token from (v0, 0) to
(v0, v1). At this choice vertex, σ′ again prescribes Player 0 to move the token
to a vertex (v1, b1) for some bit b1. Hence, the token in A is at vertex v1 and
the token in Ab at vertex (v1, b1) for some b1 ∈ {0, 1}. Thus, we simulate
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a move in A by two moves in Ab and if its Player 0’s turn, we mimic σ′ to
pick a successor in A.

Since σ′ is implemented byM′, it suffices to keep track of the last vertex
of the simulated play – which is never a choice vertex – and the memory
state for the simulated play. Hence, we transformM′ into a memory struc-
tureM = (M, init, upd) for A with M = (V × {0, 1})×M ′,

init(v) = ((v, 0), init′(v, 0)) ,

and

upd(((v, b),m), v′) = (nxt′(e,m′),upd′(m′,nxt′(e,m′)))

where e = (v, v′) and m′ = upd′(m, e).
Let w be a play prefix of a play in A. The memory state upd∗(w) =

((v, b),m) encodes the following information: the simulated play w′ in Ab
ends in (v, b), where v = Lst(w), and we have upd∗(w′) = m. Hence, it con-
tains all information necessary to apply the next-move function nxt′ to mimic
σ′. Let us explain the simulation in some more detail: the initialization func-
tion maps v0 to the initial vertex of G′ and the initial memory state for this
vertex. Since we only consider initialized games, all other vertices can be
ignored when defining the initialization function. Now, suppose the players
have constructed a play prefix w with upd∗(w) = ((v, b),m) and the to-
ken is moved to v′. The new memory state upd∗(wv′) = upd(((v, b),m), v′)
is obtained as follows. In the simulated play in Ab, the token is moved
from (v, b) to the choice vertex e = (v, v′) and the memory is updated to
m′ = upd′(m, e). Then, σ′ prescribes to move the token to nxt(e,m′). This
is the first component of the updated memory state as defined above. Fur-
thermore, when moving the token to nxt′(e,m′), the memoryM′ is updated
from m′ to upd′(m′,nxt′(e,m′)), which is the second component of the up-
dated memory state for A.

Finally, we define a next-move function nxt: V0 ×M → V for Player 0
in A by

nxt(v, ((v′, b),m)) =

{
v′′ if v = v′ and nxt′((v′, b),m) = (v′, v′′),
v otherwise, for some v ∈ V with (v, v) ∈ E.

By definition ofM, the second case of the definition is never invoked, since
upd∗(wv) = ((v′, b),m) always satisfies v = v′. As explained above, the
next-move function for A mimics the behavior of σ′ for the simulated play
in Ab, which is sufficiently specified by its last vertex (v, b) and its memory
state m.

It remains to show that the strategy σ implemented by M and nxt is
indeed a winning strategy for Player 0 for (A, v0, ϕ) with respect to a variable
valuation β that coincides with α on all variables in X ∪ varG(ϕ). We begin
by relating plays consistent with σ to plays that are consistent with σ′, i.e.,
we prove that the simulation is working correctly.
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Lemma 3.33. Let ρ0ρ1ρ2 · · · be a play in A that is consistent with σ. Then,
there exist bits b0, b1, b2, · · · such that (ρ0, b0)(ρ0, ρ1)(ρ1, b1)(ρ1, ρ2)(ρ2, b2) · · ·
is a play in Ab that is consistent with σ′.

Proof. To prove the claim by induction over ρ0 · · · ρn, we need to strengthen
the statement by adding the following condition: if

upd′∗((ρ0, b0)(ρ0, ρ1)(ρ1, b1) · · · (ρn−1, ρn)(ρn, bn)) = m ,

then upd∗(ρ0 · · · ρn) = ((ρn, bn),m).
As a play in A always starts in v0, both claims are true for ρ0 = v0 with

b0 = 0, since the initial vertex of Ab is (v0, 0) and

upd∗(v0) = init(v0) = ((v0, 0), init′(v0, 0)) = ((v0, 0),upd′∗(v0, 0)) .

Now, let ρ0 · · · ρnρn+1 be a play prefix in A that is consistent with σ.
The induction hypothesis gives us bits b0, . . . , bn such that

(ρ0, b0)(ρ0, ρ1)(ρ1, b1) · · · (ρn−1, ρn)(ρn, bn)

is a play in Ab that is consistent with σ′ and

upd∗(ρ0 · · · ρn) = ((ρn, bn),m) , (3.2)

where m = upd′∗((ρ0, b0)(ρ0, ρ1)(ρ1, b1) · · · (ρn−1, ρn)(ρn, bn)). We consider
two cases depending on whose turn it is at ρn.

If ρn ∈ V0, which implies (ρn, bn) ∈ V ′0 , let

nxt′((ρn, bn),m) = (ρn, v) = e , (3.3)

m′ := upd′(m, e), and (v, b) = nxt′(e,m′). Then,

(ρ0, b0)(ρ0, ρ1)(ρ1, b1) · · · (ρn−1, ρn)(ρn, bn)e(v, b)

is consistent with σ′, that is we define bn+1 = b. We have to show v = ρn+1:
as ρ0 · · · ρnρn+1 is consistent with σ, we have

ρn+1 = nxt(ρn,upd∗(ρ0 · · · ρn)) = nxt(ρn, ((ρn, bn),m))

by (3.2). By definition of the next-move function, nxt(ρn, ((ρn, bn),m)) =
ρn+1 implies nxt′((ρn, bn),m) = (ρn, ρn+1). Applying (3.3) yields v = ρn+1.
It remains to prove upd(((ρn, bn),m), ρn+1) = ((ρn+1, bn+1),m′′), where we
write m′′ for upd′(m′, (ρn+1, bn+1)). We have

upd(((ρn, bn),m), ρn+1)
=(nxt′(e,upd′(m, e)),upd′(upd′(m, e),nxt′(e,upd′(m, e))))
=(nxt′(e,m′),upd′(m′,nxt′(e,m′)))
=((v, b),upd′(m′, (v, b)))
=((ρn+1, bn+1),m′′) .
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On the other hand, if ρn ∈ V1, let e = (ρn, ρn+1), m′ = upd′(m, e), and
(ρn+1, b) = nxt′(e,m′). Then,

(ρ0, b0)(ρ0, ρ1)(ρ1, b1) · · · (ρn−1, ρn)(ρn, bn)e(ρn+1, b)

is consistent with σ′, that is we define bn+1 := b.
It remains to show upd(((ρn, bn),m), ρn+1) = ((ρn+1, bn+1),m′′) where

m′′ = upd′(m′, (ρn+1, bn+1)). We skip the proof here, since the reasoning is
analogous to the one for ρn ∈ V0.

Now, we are able to finish the proof of Lemma 3.32(ii). Let ρ = ρ0ρ1ρ2 · · ·
be a play that is consistent with σ. Applying the lemma we have just proved
yields bits b0, b1, b2 · · · ∈ {0, 1} such that the play

ρ′ = (ρ0, b0)(ρ0, ρ1)(ρ1, b1)(ρ1, ρ2)(ρ2, b2) · · ·

is consistent with σ′. Hence, the trace of ρ′′ = (ρ0, b0)(ρ1, b1)(ρ2, b2) · · ·
satisfies ϕX ∧ altp with respect to α. We show that tr(ρ′′) is k-bounded,
where k = |V | · |M | + 1. This suffices to finish the proof: let β(x) = 2k
for x ∈ varF(ϕ) \ X and β(z) = α(z) for z ∈ X ∪ varG(ϕ). Then, we can
apply Lemma 3.28(ii) and obtain (tr(ρ), 0, β) |= ϕ, as tr(ρ′′) is a k-bounded
p-coloring of tr(ρ). Hence, σ is indeed a winning strategy for Player 0 for
(A, v0, ϕ) with respect to β.

Towards a contradiction assume that ρ′′ is not k-bounded. Then, there
exist consecutive change points i and j such that j − i ≥ k+ 1. Then, there
also exist i ≤ i′ < j′ < j such that ρi′ = ρj′ and

upd′∗((ρ0, b0) · · · (ρi′ , bi′)) = upd′∗((ρ0, b0) · · · (ρj′ , bj′)) ,

i.e., the last vertices of both play prefixes are equal and the memory states
after both play prefixes are equal, too. Hence, the play

ρ∗ = (ρ0, b0) · · · (ρi′−1, bi′−1)
[
(ρi′ , bi′) · · · (ρj′−1, bj′−1)(ρj′−1, ρj′)

]ω
,

obtained by traversing the cycle between (ρi′ , bi′) and (ρj′ , bj′) infinitely of-
ten, is consistent with σ′, since the memory states reached at the beginning
and the end of the loop are the same. Remember that the bits do not change
between i and j. Thus, ρ∗ has only finitely many change points and does
not satisfy altp under blinking semantics. This contradicts the fact that σ′ is
a winning strategy for (Ab, (v0, 0), ϕX ∧ altp) under blinking semantics with
respect to α.

Let G = (A, v0, ϕ) be a PLTL game. Lemma 3.30 allows us to bound
the size of a finite-state winning strategy for (Ab, (v0, 0), ϕ∅ ∧ altp), which in
turn bounds the values of a variable valuation that is winning for Player 0
for the game G.
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Theorem 3.34. Let G be a PLTLF game. If W0(G) 6= ∅, then there exists a
k ∈ 22O(|G|) such that Player 0 wins G with respect to the variable valuation
that maps every variable to k.

We shall see in Subsection 3.3.3 that the doubly-exponential upper bound
is asymptotically optimal. The previous theorem can also be formulated in
terms of PLTLG games: let G = (A, v0, ϕ) be a PLTLG game. There exists a
k ∈ 22O(|G|) such that if Player 0 wins G with respect to the variable valuation
mapping every variable to k, then she wins G with respect to every variable
valuation. This can be proven by considering the dual game of G, which is a
PLTLF game, and applying Theorem 3.34.

Let us conclude by briefly discussing how to apply the alternating color
technique to construct the projection of W0(G) to the variables in varG(ϕ)
to show that the projection is a semilinear set. Recall that we consider a
PLTL game G with winning condition ϕ with varF(ϕ) = {z0, . . . zk−1} and
varG(ϕ) = {zk, . . . , zk+k′−1}, and that we view a variable valuation α as vec-
tor in Nk+k′ whose j-th component is α(zj). Now, let ϕ∅ be the formula ob-
tained by inductively replacing every subformula F≤xψ as described in Sub-
section 3.2.1 and consider the PLTLG game G′ = (Ab, (v0, 0), ϕ∅∧altp) under
blinking semantics. Lemma 3.32 shows that Player 0 wins G′ under blink-
ing semantics with respect to the variable valuation (nk, . . . , nk+k′−1) if and
only if (n1, . . . , nk−1, nk, . . . , nk+k′−1) ∈ W0(G) for some n0, . . . , nk−1 ∈ N.
Since the monotonicity properties hold for games under blinking semantics
as well, we can apply Theorem 3.23 to show that the projection of W0(G) to
the variables in varG(ϕ) is semilinear.

3.2.3 Solving PLTL Games

The doubly-exponential time algorithm for the emptiness problem for PLTLF

games allows us to solve the emptiness, finiteness, and the universality prob-
lem for full PLTL as well. All three algorithms rely on the monotonicity of
the parameterized operators and on reductions to the emptiness problem for
PLTLF games.

Theorem 3.35. The emptiness, the finiteness, and the universality problem
for PLTL games are 2Exptime-complete.

Proof. We begin by showing 2Exptime-membership for all three problems.
Let G = (A, v0, ϕ) be a PLTL game. Due to duality (see Lemma 3.19(ii)), it
suffices to consider i = 0.

Emptiness of W0(G): Let ϕF be the formula obtained from ϕ by in-
ductively replacing every subformula G≤yψ by ψ, and let GF = (A, v0, ϕF),
which is a PLTLF game. Applying the monotonicity of G≤y, we obtain that
W0(G) is empty if and only if W0(GF) is empty.
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The latter problem can be decided in doubly-exponential time by Theo-
rem 3.29. Hence, the emptiness ofW0(G) can be decided in doubly-exponen-
tial time as well, since we have |ϕF| ≤ |ϕ|.

Universality of W0(G): Applying first complementarity and then du-
ality as stated in Lemma 3.19, we have thatW0(G) is universal if and only if
W1(G) is empty, which is the case if and only if W0(G) is empty. The latter
problem is decidable in doubly-exponential time as shown above.

Finiteness of W0(G): If varF(ϕ) 6= ∅, thenW0(G) is infinite, if and only
if it is non-empty, due to monotonicity of F≤x. The emptiness of W0(G) can
be decided in doubly-exponential time as discussed above.

If varF(ϕ) = ∅, then G is a PLTLG game. We assume that ϕ has at least
one parameterized temporal operator, since the problem is trivial otherwise.
Then, the set W0(G) is infinite if and only if there is a variable y ∈ varG(ϕ)
that is mapped to infinitely many values by the valuations in W0(G). By
downwards-closure, we can assume that all other variables are mapped to
zero. Furthermore, y is mapped to infinitely many values if and only if it
is mapped to all possible values, again by downwards-closure. To combine
this, we define ϕy to be the formula obtained from ϕ by inductively replacing
every subformula G≤y′ψ for y′ 6= y by ψ and define Gy = (A, v0, ϕy). Then,
W0(G) is infinite, if and only if there exists some variable y ∈ var(ϕ) such
thatW0(Gy) is universal. So, deciding whetherW0(G) is infinite can be done
in doubly-exponential time by solving |var(ϕ)| many universality problems
for PLTLG games, which were discussed above.

It remains to show 2Exptime-hardness of all three problems, which is a
simple consequence of the 2Exptime-hardness of determining the winner of
an LTL game. Let G = (A, v0, ϕ) be an LTL game. The following statements
are equivalent.

i. Player 0 wins G.

ii. W0(G) is non-empty.

iii. W0(G) is universal.

iv. W1(G) is finite.

The equivalence of the first two statements is by definition of W0(G), the
equivalence of the second and third statement is due to var(ϕ) = ∅, and the
equivalence of the last two statements is due to complementarity of W0(G)
and W1(G) and the fact that ϕ is variable-free. Hence, all three problems
are indeed 2Exptime-hard.

All but the finiteness problem for PLTLG games only require the solution
of a single LTL game under blinking semantics. Furthermore, all these LTL
games are only polynomially larger than the original game.
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3.3 Optimal Strategies for Games with PLTL Win-
ning conditions

The algorithms for the emptiness, finiteness, and universality problem rely
on the monotonicity of the parameterized operators, e.g., to check empti-
ness all parameterized always operator G≤yψ are replaced by ψ, thereby
trivializing the operator. It is more natural to view synthesis of PLTL spec-
ifications as optimization problem: which is the best variable valuation α
such that Player 0 can win G with respect to α? For unipolar games, we
consider two natural quality measures for a valuation α in a game with win-
ning condition ϕ: the maximal parameter maxz∈var(ϕ) α(z) and the minimal
parameter minz∈var(ϕ) α(z). For a PLTLF game, Player 0 tries to minimize
the waiting times. Hence, we are interested in minimizing the minimal or
maximal parameter. Dually, for PLTLG games, we are interested in maxi-
mizing the quality measures. The remaining problems, i.e., maximizing the
waiting times in a PLTLF game and minimizing the satisfaction time in a
PLTLG game, are trivial due to upwards- respectively downwards-closure of
the set of winning valuations.

The reason for only considering unipolar games is the undecidability re-
sult of Alur et al. formulated in Corollary 3.3: it is undecidable, for a given
formula ϕ with x ∈ varF(ϕ) and y ∈ varG(ϕ), to determine whether there
exists a w ∈ (2P )ω and a variable valuation α satisfying α(x) = α(y) and
(w,α) |= ϕ. Furthermore, by construction of the formula ϕ in the reduction,
we know that we have α(x) ≥ α(y). Now, assume we want to determine an
optimal variable valuation, i.e., one that minimizes x and maximizes y. The
best we can hope for is a variable valuation satisfying α(x) = α(y). Thus,
determining the maximal or minimal parameter value of an optimal valua-
tion is computationally infeasible: if we could determine this value, then we
could plug it into both x and y and check whether the resulting LTL for-
mula is satisfiable. This is the case if and only if there is a w and a variable
valuation α satisfying α(x) = α(y) and (w,α) |= ϕ.

The main result of this section states that all optimization problems for
unipolar games can be solved in triply-exponential time12. Furthermore, in
Subsection 3.3.3 we prove a doubly-exponential lower bound on the value
of an optimal variable valuation in a unipolar PLTL game, thereby showing
that the doubly-exponential upper bounds obtained in Subsection 3.2.1 are
(almost) tight.

3.3.1 PLTL Optimization Problems

In this subsection, we introduce the PLTL optimization problems and present
an algorithm with triply-exponential running time for solving them. As a

12In [Zim11], it is erroneously claimed that these problems can even be solved in doubly-
exponential time. We explain the bug in the proof on page 73.
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first step, we show that it suffices to consider games with winning conditions
in PROMPT–LTL, and then we show how to solve PROMPT–LTL opti-
mization problems in triply-exponential time by reductions to parity games.
The reduction relies on the existence of “small” automata that recognize the
language of traces that satisfy a formula with respect to a fixed variable
valuation.

In the remainder of this section, we require all our winning conditions to
have at least one parameterized operator, since the optimization problems
are trivial otherwise. Again, we only consider Player 0, as one can dualize
the game to obtain similar results for Player 1.

Theorem 3.36. Let GF be a PLTLF game with winning condition ϕF and
let GG be a PLTLG game with winning condition ϕG. The following values
(and winning strategies realizing them) can be computed in triply-exponential
time.

i. minα∈W0(GF) minx∈var(ϕF) α(x).

ii. minα∈W0(GF) maxx∈var(ϕF) α(x).

iii. maxα∈W0(GG) maxy∈var(ϕG) α(y).

iv. maxα∈W0(GG) miny∈var(ϕG) α(y).

A special case of the PLTLF optimization problems is the PROMPT–LTL
optimization problem. Due to our non-triviality requirement, the winning
condition in a PROMPT–LTL game has exactly one variable x. Hence, the
inner maximization or minimization becomes trivial and the problem asks to
determine minα∈W0(G) α(x) and a winning strategy for Player 0 realizing this
value. Dually, in a PLTLG optimization problem with a single variable y, the
inner maximization or minimization becomes trivial and the problem asks
to determine maxα∈W0(G) α(y) and a winning strategy for Player 0 realizing
this value.

Due to duality, there is a tight connection between PROMPT–LTL opti-
mization problems and PLTLG optimization problems with a single variable:
let G be a PLTLG game with winning condition ϕ with var(ϕ) = {y}. Then,
we have

max
α∈W0(G)

α(y) = max
α∈W1(G)

α(y) = min
α∈W0(G)

α(y) + 1 ,

due to the closure properties and Lemma 3.19. Here, G is a PROMPT–LTL
game. Thus, to compute the optimal variable valuation in a PLTLG game
with a single variable valuation, it suffices to solve a PROMPT–LTL op-
timization problem. We defer the computation of strategies realizing the
optimal values in both types of games to the end of this subsection.
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Let us begin by outlining the proof idea. First, we show that all four opti-
mization problems can be reduced to PROMPT–LTL optimization problems.
In this case, Corollary 3.44 yields a doubly-exponential (in the size of the
game) upper bound on an optimal variable valuation. Then, using binary
search, we determine the optimal value. To do this, we show that we can
solve the membership problem for PLTL games in triply-exponential time
in the size of the game, provided the variable valuation we are querying for
is doubly-exponentially (again, in the size of the game) bounded. This is
achieved by a reduction to a parity game using a deterministic automaton
that recognizes the models of the winning condition with respect to the vari-
able valuation we are interested in. As a corollary, we obtain a 2Exptime
algorithm for the membership problem for arbitrary formulae. Note that α
is part of the input for this problem. This explains why we save one expo-
nential compared to the algorithm mentioned above, whose input consists
only of a game.

We begin by showing that all four problems mentioned in Theorem 3.36
can be reduced to optimization problems with a single variable. As we have
shown above how to translate an optimization problem for a PLTLG game
with a single variable into a PROMPT–LTL optimization problem, it suffices
to solve PROMPT–LTL optimization problems. The latter three reductions
are simple applications of the monotonicity of the parameterized operators,
while the first one requires an application of the alternating color technique.

i.) For each x ∈ var(ϕF) we apply the alternating color technique (see
Subsection 3.2.1) to construct the projection of W0(GF) to the values of x:
let GF = (A, v0, ϕF) and define Gx = (Ab, (v0, 0), (ϕF){x} ∧ altp) where Ab
and the winning condition of Gx are defined as in Subsection 3.2.1. Applying
both directions of Lemma 3.32 yields

min
α∈W0(GF)

min
x∈var(ϕF)

α(x) = min
x∈var(ϕ)

min{α(x) | Player 0 wins Gx

under blinking semantics w.r.t. α} .

Since var((ϕF){x}) = {x}, we have reduced the minimization problem to
|var(ϕF)| many PROMPT–LTL optimization problems, albeit under blink-
ing semantics. We discuss the necessary adaptions to our proof, which is for
the non-blinking case, below.

Furthermore, a strategy realizing the optimum on the right-hand side
can be turned into a strategy realizing the optimum on the left-hand side
using the construction presented in the proof of Lemma 3.32(ii) which turns
a strategy for the expanded arena Ab into a strategy for the original arena A.

ii.) This problem can directly be reduced to a PROMPT–LTL optimiza-
tion problem: let ϕ′F be the PROMPT–LTL formula obtained from ϕF by
renaming each x ∈ var(ϕF) to z and let G′ = (A, v0, ϕ′F), where A and v0
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are the arena and the initial vertex of GF. Then,

min
α∈W0(GF)

max
x∈var(ϕF)

α(x) = min
α∈W0(G′)

α(z) ,

due to upwards-closure of W0(GF), and a strategy realizing the optimum on
the right-hand side also realizes the optimum on the left-hand side.

iii.) For every y ∈ var(ϕG) let ϕy be obtained from ϕG by replacing
every subformula G≤y′ψ with y′ 6= y by ψ and let Gy = (A, v0, ϕy), where A
and v0 are the arena and the initial vertex of GG. Then, we have

max
α∈W0(GG)

max
y∈var(ϕG)

α(y) = max
y∈var(ϕG)

max
α∈W0(Gy)

α(y) ,

due to downwards-closure of W0(GG), and a strategy realizing the optimum
on the right-hand side also realizes the optimum on the left-hand side.

iv.) Let ϕ′G be obtained from ϕG by renaming every variable in ϕG to z
and let G′ = (A, v0, ϕ′G), where A and v0 are the arena and the initial vertex
of GG. Then,

max
α∈W0(GG)

min
y∈var(ϕG)

α(y) = max
α∈W0(G′)

α(z) ,

due to downwards-closure of W0(GG) and a strategy realizing the optimum
on the right-hand side also realizes the optimum on the left-hand side.

All reductions increase the size of the arena at most quadratically and
the size of the winning condition at most linearly. Furthermore, to mini-
mize the minimal parameter value in a PLTLF game and to maximize the
maximal parameter value in a PLTLG game, we have to solve |var(ϕ)| many
PROMPT–LTL optimization problems (for the other two problems just one)
to solve the original unipolar optimization problem with winning condition ϕ.
Thus, due to the duality of unipolar optimization problems with a single vari-
able discussed above, it remains to show that a PROMPT–LTL optimization
problem can be solved in triply-exponential time.

So, let G = (A, v0, ϕ) be a PROMPT–LTL game with var(ϕ) = {x}. If
W0(G) 6= ∅ (which can be checked in doubly-exponential time), then The-
orem 3.34 yields a k ∈ 22O(|G|) such that minα∈W0(G) α(x) ≤ k. Hence, we
have a doubly-exponential upper bound on an optimal variable valuation.

In the following, we denote by αn the variable valuation mapping x to n
and every other variable to zero. Since ϕ only contains the variable x, the
smallest n < k such that αn ∈ W0(G) is equal to minα∈W0(G) α(x). As the
number of such valuations αn is doubly-exponential in |G|, it suffices to show
that αn ∈ W0(G) can be decided in triply-exponential time in the size of G,
provided that n < k. This is achieved by a game reduction to a parity game.

Fix a variable valuation αn and let Pϕ,αn = (Q, 2P , q0, δ,Ω) be a deter-
ministic parity automaton recognizing the language

L(Pϕ,αn) = {w ∈
(
2P
)ω | (w,αn) |= ϕ} .
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Note that the language is uniquely determined by ϕ and the value αn(x) = n,
where x is the variable appearing in ϕ. Now, consider the parity game Gn =
(A×M, (v0, init(v0)),Ω′) as defined in the proof of Lemma 2.17, i.e.,M =
(Q, init, δ) with init(v) = δ(q0, v) and Ω′(v, q) = Ω(q). We have αn ∈ W0(G)
if and only if Player 0 wins Gn due to Corollary 3.26. However, to meet our
time bounds, Pϕ,αn has to be of (at most) triply-exponential size (in |G|)
with (at most) doubly-exponentially many priorities, provided that we have
αn(x) < k. If this is the case, then we can solve the parity game Gn in triply-
exponential time due to Theorem 2.22. Furthermore, a winning strategy
for the parity game associated to the minimal n can be turned in triply-
exponential time into a finite-state winning strategy for the PROMPT–LTL
game G which realizes the optimal value. This strategy is implemented by a
memory induced by the automaton Pϕ,αn as explained above.

If the PROMPT–LTL game G has blinking semantics, then we have to
adapt the construction slightly: instead of using an automaton Pϕ,αn for the
language {w ∈

(
2P
)ω | (w,αn) |= ϕ} in the reduction, we turn Pϕ,αn into

a deterministic parity automaton P′ϕ,αn that recognizes the language {w ∈(
2P
)ω | (w0w2w4 · · · , αn) |= ϕ}, which doubles the size, but does not change

the number of priorities. Again, we denote by G′n the parity game obtained
in the reduction via memory induced by P′ϕ,αn . Then, Player 0 wins G with
respect to αn under blinking semantics if and only if she wins G′n, which can
again be determined in triply-exponential time.

Thus, the main step in the proof of Theorem 3.36 is to construct an
automaton that has the following properties.

Lemma 3.37. Let n ≤ k. We can construct in triply-exponential time a
deterministic parity automaton Pϕ,αn recognizing {w ∈

(
2P
)ω | (w,αn) |= ϕ}

such that

|Pϕ,αn | ∈ 222O(|G|)

and Pϕ,αn has at most 22O(|G|) many priorities.

If we were able to prove an exponential upper bound on the value of a
variable valuation in W0(G) for a PROMPT–LTL game G, then our tech-
nique would yield a doubly-exponential time algorithm for the optimization
problems. However, there is a doubly-exponential lower bound which we
present in Subsection 3.3.3.

Before we spend the next subsection proving the existence of an automa-
ton as claimed in Lemma 3.37, let us show that these automata implement
winning strategies realizing the optimal values. Due to the reductions, which
allow to transfer optimal strategies, we only have to consider games with a
single variable.

For a PROMPT–LTL game, we determine the optimal variable valua-
tion αn by reductions to parity games. The automaton Pϕ,αn for this opti-
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mum can be turned into a memory structure which implements a finite-state
winning strategy for Player 0 for G with respect to αn.

Now, consider a PLTLG game G whose winning condition ϕ has a single
variable and remember that we reduced the problem to a PROMPT–LTL
optimization problem via

max
α∈W0(G)

α(y) = max
α∈W1(G)

α(y) = min
α∈W0(G)

α(y) + 1 .

Hence, after we have determined the optimal variable valuation αn for G,
we construct the automaton Pϕ,αn−1 . This automaton can be turned into a
memory structure that implements a winning strategy for G with respect to
the variable valuation αn−1, which is optimal.

3.3.2 Translating PLTL into Small Automata

In this subsection, we show how to construct a deterministic parity automa-
ton recognizing the language {w ∈

(
2P
)ω | (w,α) |= ϕ} for a given pair

comprising an LTL formula ϕ and a variable valuation α. To solve the
optimization problems it suffices to consider the case of PROMPT–LTL for-
mulae. However, our construction is general enough to deal with full PLTL,
which yields a 2Exptime algorithm for the membership problem for PLTL.

When constructing the automaton, we have to make sure that we meet
the requirements formulated in Lemma 3.37. Recall that ϕ with respect
to a fixed variable valuation α is equivalent to an LTL formula, which we
denote by ϕα (cf. Lemma 3.8). Hence, to construct an automaton recogniz-
ing {w ∈ (2P )ω | (w,α) |= ϕ} we could translate the LTL formula ϕα into
a deterministic automaton. However, this is typically done by a two-step
translation via non-deterministic Büchi automata, where each step involves
an exponential blow-up. Hence, the naive approach of constructing a de-
terministic parity automaton for the LTL formula ϕαn yields an automaton
that recognizes the desired language, but is too large when n is close to k,
i.e., doubly exponential in |G|. The problem arises from the fact that ϕαn
uses a disjunction of nested next-operators of depth n to be able to count up
to n. This (in the worst case doubly-exponential) counter is hardwired into
the formula ϕαn and thus leads to a quadruply-exponential blowup (again,
in the worst case) when turning ϕαn into a deterministic parity automaton,
since turning LTL formulae into deterministic parity automata necessarily
incurs a doubly-exponential blowup [KR10]. We save one exponential com-
pared to the naive approach by adding the counters only after we have turned
the formula into a non-deterministic Büchi automaton. Thus, the Büchi au-
tomaton is at most of doubly-exponential size and yields a triply-exponential
deterministic automaton.

The construction is presented in three steps: we begin by translating a
PLTL formula and a variable valuation into a generalized Büchi automaton.
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By taking some care in the construction, we are able to obtain an unambigu-
ous automaton, which is typical for automata obtained from translating for-
mulae of linear temporal logics. Then, in the second step, we use a standard
construction to turn a generalized Büchi automaton into a Büchi automaton
while preserving unambiguity. Finally, we can apply the determinization
procedure of Morgenstern and Schneider [MS08, Mor10] for non-confluent
Büchi automata to obtain a deterministic parity automaton with the desired
properties in the third step. In the last step, we use Lemma 2.2: every
unambiguous automaton without unproductive states is non-confluent.

From PLTL to Generalized Büchi Automata

We begin by constructing a generalized Büchi automaton Aϕ,α recogniz-
ing the language {w ∈

(
2P
)ω | (w,α) |= ϕ} for a given PLTL formula ϕ

and a variable valuation α. The automaton guesses for each position of
w which subformulae of ϕ are satisfied with respect to α at this position
and verifies these guesses while processing w. Since there is only one way
to guess right, the automaton is unambiguous. Our construction for the
first step is the adaption of the tableaux construction for Metric Temporal
Logic [Koy90, AH93] to PLTL. This logic is defined by adding the opera-
tors UI (and a corresponding past temporal operator) to LTL, where I is
an arbitrary interval of N whose end-points are integer constants, with the
expected semantics. Since we are in this subsection interested in a PLTL
formula with respect to a fixed variable valuation, our problem refers to
constant bounds as well, and could therefore be expressed in MTL.

Let ϕ be a PLTL formula and recall that cl(ϕ) denotes the set of sub-
formulae of ϕ. A set B ⊆ cl(ϕ) is consistent, if the following conditions are
satisfied:

(C1) For all p,¬p ∈ cl(ϕ): p ∈ B if and only if ¬p /∈ B.

(C2) For all ψ1 ∧ψ2 ∈ cl(ϕ): ψ1 ∧ψ2 ∈ B if and only if ψ1 ∈ B and ψ2 ∈ B.

(C3) For all ψ1 ∨ ψ2 ∈ cl(ϕ): ψ1 ∨ ψ2 ∈ B if and only if ψ1 ∈ B or ψ2 ∈ B.

(C4) For all ψ1 U ψ2 ∈ cl(ϕ): ψ2 ∈ B implies ψ1 U ψ2 ∈ B.

(C5) For all ψ1 R ψ2 ∈ cl(ϕ): ψ1, ψ2 ∈ B implies ψ1 R ψ2 ∈ B.

(C6) For all F≤xψ1 ∈ cl(ϕ): ψ1 ∈ B implies F≤xψ1 ∈ B.

(C7) For all G≤yψ1 ∈ cl(ϕ): G≤yψ1 ∈ B implies ψ1 ∈ B.

These conditions capture the local properties of the semantics of PLTL. The
non-local properties are captured by the transition relation of the automaton
we are about to define. The set of consistent subsets is denoted by C(ϕ).
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Let us denote the set of parameterized subformulae of ϕ by clp(ϕ). The
states of our automaton are pairs (B, c) where B ∈ C(ϕ) and c : clp(ϕ) →
N∪{⊥}. The counter c(F≤xψ1) is used to verify that every position at which
F≤xψ1 is guessed to be satisfied, is followed within α(x) steps by a position
at which ψ1 is guessed to be satisfied. Dually, c(G≤yψ1) is used to verify
that at the next α(y) positions ψ1 is guessed to be satisfied, whenever G≤yψ1

is guessed to be satisfied. The value ⊥ denotes that a counter is inactive. A
pair (B, c) is consistent, if the following properties are satisfied:

(C8) For all F≤xψ1 ∈ cl(ϕ): ψ1 ∈ B if and only if c(F≤xψ1) = 0.

(C9) For all F≤xψ1 ∈ cl(ϕ): F≤xψ1 ∈ B if and only if c(F≤xψ1) 6= ⊥.

(C10) For all G≤yψ1 ∈ cl(ϕ): G≤yψ1 ∈ B if and only if c(G≤yψ1) = α(y).

(C11) For all G≤yψ1 ∈ cl(ϕ): ψ1 ∈ B if and only if c(G≤yψ1) 6= ⊥.

These conditions capture the relation between a parameterized subformula
and its associated counter: (C8) requires the counter for the formula F≤xψ1

to be zero if and only if the formula ψ1 is guessed to be satisfied while (C9)
requires the counter to be active if and only if the formula F≤xψ1 is guessed
to be satisfied. In this situation, the counter will be decremented in each
step until it reaches value zero. At such a position, ψ1 has to be guessed to
be satisfied due to the first condition. The requirements on the counters for
parameterized always operator are dual: if G≤yψ1 is guessed to be satisfied,
then the counter has to have value α(y) and is decremented in each step until
it reaches value zero. Furthermore, the formula ψ1 has to be guessed to be
satisfied at every position at which the counter is active. This ensures that
ψ1 is satisfied for α(y) consecutive positions. Decrementing the counters is
implemented in the transition relation.

Finally, given a variable valuation α, we say that a pair (B, c) is α-
bounded, if we have:

(C12) For all F≤xψ1 ∈ cl(ϕ): c(F≤xψ1) 6= ⊥ implies c(F≤xψ1) ≤ α(x).

(C13) For all G≤yψ1 ∈ cl(ϕ): c(G≤yψ1) 6= ⊥ implies c(G≤yψ1) ≤ α(y).

These conditions bound the counters associated to a subformula with pa-
rameter z by α(z).

We are now ready to construct a generalized Büchi automaton recogniz-
ing the language {w ∈

(
2P
)ω | (w,α) |= ϕ}. As already mentioned above,

the states are pairs (B, c) used to guess which subformulae of ϕ are satisfied
at a position of the input. The automaton has to verify that these guesses
are valid ones. The local aspects of the semantics for the unparameterized
operators are taken care of by the conditions (C1) up to (C5) while the local
aspects of parameterized operators are taken care of by the conditions (C6)
up to (C13). Finally, the global aspects of both types of operators are taken
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care of by the transition relation and the acceptance condition. This automa-
ton is unambiguous, since there is only one way to guess the truth values of
the subformulae correctly, every incorrect guess leads to a rejecting run.

Construction 1. Given a PLTL formula ϕ and a variable valuation α, we
define the generalized Büchi automaton Aϕ,α = (Q, 2P , Q0,∆,F) with the
following components.

� Q is the set of pairs (B, c), where B ∈ C(ϕ) and c : clp(ϕ)→ N ∪ {⊥},
such that (B, c) satisfies (C1) up to (C13).

� Q0 = {(B, c) ∈ Q | ϕ ∈ B}.

� ((B, c), a, (B′, c′)) ∈ ∆ if and only if

(T1) B ∩ P = a,

(T2) Xψ1 ∈ B if and only if ψ1 ∈ B′,
(T3) ψ1 Uψ2 ∈ B if and only if ψ2 ∈ B or (ψ1 ∈ B and ψ1 Uψ2 ∈ B′),
(T4) ψ1 Rψ2 ∈ B if and only if ψ2 ∈ B and (ψ1 ∈ B or ψ1 Rψ2 ∈ B′),
(T5) if α(x) > 0 and c(F≤xψ1) = ⊥, then c′(F≤xψ1) ∈ {α(x),⊥},
(T6) if α(x) > 0 and c(F≤xψ1) > 0, then c′(F≤xψ1) = c(F≤xψ1)− 1,

(T7) if α(y) > 0 and c(G≤yψ1) = 0, then c′(G≤yψ1) = ⊥,
(T8) if α(y) > 0 and 0 < c(G≤yψ1) < α(y), then c′(G≤yψ1) =

c(G≤yψ1)− 1, and

(T9) if α(y) > 0 and c(G≤yψ1) = α(y), then α(y)− 1 ≤ c′(G≤yψ1) ≤
α(y).

� F = FU ∪ FR where

♦ FU = {Fψ1Uψ2 | ψ1 U ψ2 ∈ cl(ϕ)} with Fψ1Uψ2 = {(B, c) ∈ Q |
ψ1 U ψ2 /∈ B or ψ2 ∈ B}, and

♦ FR = {Fψ1Rψ2 | ψ1 R ψ2 ∈ cl(ϕ)} with Fψ1Rψ2 = {(B, c) ∈ Q |
ψ1 R ψ2 ∈ B or ψ2 /∈ B}.

Let us explain the definition of ∆: the conditions (T1) up to (T4) are
standard for LTL and reflect the semantics of these operators. Hence, we
focus on the latter conditions for the parameterized operators. So, consider a
formula F≤xψ1 with α(x) > 0. If the counter for this subformula is inactive,
then the counter is either also inactive at the next position, or it is started
with value α(x) (which means F≤xψ1 is guessed to be satisfied). In the
second case, ψ1 has to be guessed true within α(x) steps. This is captured
by (T5). If the counter is active, but not zero, then it is decremented in the
next step, which is captured by (T6). Finally, if the counter is zero (which
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is equivalent to ψ1 is guessed to be satisfied at the current position, due to
(C8)), then it is zero in the next step (ψ1 is guessed to be satisfied in the next
step as well), inactive, or can be restart with any value k (meaning that ψ1 is
guessed to be satisfied for the next time in exactly k) positions. Hence, there
is no requirement on the counter in this case, any value is allowed. Note that
we require a counter to start with value α(x) after it is ⊥ in the previous
step, i.e., F≤xψ1 has to be guessed to be satisfied as soon as possible. This
property is crucial to obtain an unambiguous automaton.

The conditions for formulae G≤yψ1 are dual: as long as G≤yψ1 is guessed
to be satisfied, c(G≤yψ1) has value α(y) due to (C10). Beginning at the first
position where G≤yψ1 is no longer guessed to hold, the counter has to be
decremented in each step (due to (T8) and (T9)) and checks that the next
α(y) positions satisfy ψ1 due to (C11). Since the counter has to be inactive
after it has reached value zero (due to (T7)), the automaton cannot start
the decrement phase too early or too late.

The requirements on c and c′ in the definition are only phrased for pa-
rameterized formulae with variable z such that α(z) > 0. This is because
F≤xψ1 and G≤yψ1 are both equivalent to ψ1 if we have α(x) = 0 or α(y) = 0,
respectively. This is modeled by the fact that we have c(F≤xψ1) ∈ {0,⊥} for
such a formula. Hence, the consistency properties (C8) and (C9) make sure
that we have F≤xψ1 ∈ B if and only if ψ1 ∈ B. The reasoning for G≤yψ1 is
the same, but applies (C10) and (C11).

Example 3.38. Consider the subformulae F≤xp and G≤yq of some for-
mula ϕ and the variable valuation α with α(x) = 2 and α(y) = 3. Table 3.4
shows how the counters evolve during a run of the Büchi automaton Aϕ,α.

First, consider the parameterized eventually operator. The formula F≤xp
is in B if and only if the associated counter value is active, in which case it
is decremented in each step until it reaches value zero, which is exactly the
case when p holds. Afterwards, it is initialized with value k, if p holds for
the next time in exactly k positions; or it is initialized with ⊥, if p does not
hold within the next α(x) positions. Note that the same holds true at the
first position of the run.

Now, consider the parameterized always operator. The formula G≤yq is
in B if and only if the associated counter value has value α(y). Furthermore,
if the counter is active, then q has to be satisfied at this position. Finally,
the counter has value α(y) until it decremented to value 0. In this case, q
must not be satisfied at the next position. The counter is initialized with
value k at the first position of the run and after an inactive period, where k
is the maximal value smaller or equal to α(y), such that q holds throughout
the next k positions. 3

Now, we show that the automaton Aϕ,α recognizes the right language, is
unambiguous, and bound its size.
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w {q} {p, q} ∅ {p, q} {q} {q} {q} {p, q} ∅ω

p ∈ B n y n y n n n y n
F≤xp ∈ B y y y y n y y y n
c(F≤xp) 1 0 1 0 ⊥ 2 1 0 ⊥

q ∈ B y y n y y y y y n
G≤yq ∈ B n n n y y n n n n
c(G≤yq) 1 0 ⊥ 3 3 2 1 0 ⊥

Figure 3.4: A run of the automaton Aϕ,α

Lemma 3.39. Let ϕ be a PLTL formula, let α be a variable valuation, and
let Aϕ,α be the automaton obtained in Construction 1. Then,

i. L(Aϕ,α) = {w ∈
(
2P
)ω | (w,α) |= ϕ},

ii. Aϕ,α is unambiguous, and

iii. |Aϕ,α| ≤ 2|ϕ| ·
(
maxz∈var(ϕ) α(z) + 2

)|ϕ| and |F| < |ϕ|.
Proof. i.) First, we show L(Aϕ,α) ⊆ {w ∈

(
2P
)ω | (w,α) |= ϕ}. Thus, let

(B0, c0)(B1, c1)(B2, c2) · · · be an accepting run of Aϕ,α on w. We show by
structural induction over the construction of ϕ that ψ ∈ Bn if and only if
(w, n, α) |= ψ. This suffices to show (w,α) |= ϕ, since we have ϕ ∈ B0 by
definition of Q0.

� ψ = p ∈ P : we have p ∈ Bn if and only if p ∈ wn (by (T1)) if and only
if (w, n, α) |= p.

� ψ = ¬p for some p ∈ P : analogously to the case ψ = p.

� ψ = ψ1∧ψ2: we have ψ1∧ψ2 ∈ Bn if and only if ψ1 ∈ Bn and ψ2 ∈ Bn
(by (C2)) if and only if (w, n, α) |= ψ1 and (w, n, α) |= ψ2 (by induction
hypothesis) if and only if (w, n, α) |= ψ.

� ψ = ψ1 ∨ ψ2: analogously to the case of conjunction.

� ψ = Xψ1: we have Xψ1 ∈ Bn if and only if ψ1 ∈ Bn+1 (by (T2)) if
and only if (w, n+ 1, α) |= ψ1 (by induction hypothesis) if and only if
(w, n, α) |= Xψ1.

� ψ = ψ1 U ψ2: let ψ ∈ Bn. Then, we have either ψ2 ∈ Bn or ψ1 ∈ Bn
and ψ1 U ψ2 ∈ Bn+1, due to (T3). Iterating the second case either
yields a position n′ ≥ n such that ψ2 ∈ Bn′ and ψ1 ∈ Bj for every j
in the range n ≤ j < n′, or it yields ψ1 ∈ Bm and ψ1 U ψ2 ∈ Bm for
every m ≥ n. In this case, we use the fact that the run is accepting,
i.e., there is a position n′ > n such that Bn′ ∈ Fψ1Uψ2 . Then, we have
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ψ2 ∈ Bn′ . Thus, we can apply the induction hypothesis in every case
to obtain (w, n′, α) |= ψ2 and (w, j, α) |= ψ1 for every n ≤ j < n′.
Hence, (w, n, α) |= ψ1 U ψ2.

Now, let (w, n, α) |= ψ1 U ψ2, i.e., there is a position n′ such that
(w, n′, α) |= ψ2 and (w, j, α) |= ψ1 for every j in the range n ≤ j <
n′. The induction hypothesis and consistency condition (C4) yield
ψ1 U ψ2 ∈ Bn′ and applying (T3) repeatedly gives ψ1 U ψ2 ∈ Bj for
every j in the range n ≤ j < n′.

� ψ = ψ1Rψ2: note that we have (w, n, α) |= ψ1Rψ2 if and only if either
there exists an n′ ≥ n such that (w, n′, α) |= ψ1 and (w, j, α) |= ψ2 for
every j in the range n ≤ j ≤ n′, or if (w,m,α) |= ψ2 for every m ≥ n.
We use this formulation here.

Let ψ ∈ Bn. Then, we have ψ2 ∈ Bn and either ψ1 ∈ Bn or ψ1 R ψ2 ∈
Bn+1 due to (T4). Iterating the second case yields either a position
n′ ≥ n such that ψ1 ∈ Bn′ and ψ2 ∈ Bj for every j in the range n ≤
j ≤ n′, or it yields ψ2 ∈ Bm for every m ≥ n. Applying the induction
hypothesis in the first case yields (w, n′, α) |= ψ1 and (w, j, α) |= ψ2

for every j in the range n ≤ j ≤ n′, i.e., (w, n, α) |= ψ1 R ψ2. In
the second case, we obtain (w,m,α) |= ψ2 for every m ≥ n, i.e.,
(w, n, α) |= ψ1 R ψ2.

Now, let (w, n, α) |= ψ1Rψ2, i.e., either there exists an n′ ≥ n such that
(w, n′, α) |= ψ1 and (w, j, α) |= ψ2 for every j in the range n ≤ j ≤ n′,
or (w,m,α) |= ψ2 for every m ≥ n. In the first case, the induction
hypothesis and (C5) yield ψ1 Rψ2 ∈ Bn′ and applying (T4) repeatedly
shows ψ1 Rψ2 ∈ Bj for every j in the range n ≤ j ≤ n′. In the second
case, there is a minimal position m ≥ n such that Bm ∈ Fψ1Rψ2 , as
the run is accepting. Hence, we have ψ1 R ψ2 ∈ Bm. Thus, applying
the induction hypothesis and (T4) repeatedly shows ψ1 R ψ2 ∈ Bj for
every j in the range n ≤ j ≤ n′. Hence, we conclude ψ1 R ψ2 ∈ Bn in
both cases.

� ψ = F≤xψ1: let ψ ∈ Bn. Then, we have cn(ψ) = k 6= ⊥ by (C9) and
k ≤ α(x) by α-boundedness. We claim (w, n + k, α) |= ψ1: applying
(T6) inductively shows that we have cn+j(ψ) = k− j for every j in the
range 0 ≤ j ≤ k. Hence, we have cn+k(ψ) = 0 and therefore ψ1 ∈ Bn+k

by (C8). Applying the induction hypothesis yields (w, n+ k, α) |= ψ1

as claimed and therefore (w, n, α) |= ψ.

Now, let (w, n, α) |= ψ and let k be minimal in the range 0 ≤ k ≤ α(x)
with (w, n+ k, α) |= ψ1. Then, we have cn+k(ψ) = 0 by the induction
hypothesis and (C8) and due to (T6) and the minimality of k, we
have cn+(k−j)(ψ) = j for every j in the range 0 ≤ j ≤ k. Hence,
cn(ψ) = k ≤ α(x), which implies ψ ∈ Bn due to (C9).
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� ψ = G≤yψ1: let ψ ∈ Bn. Then, we have cn(ψ) = α(y) due to (C10).
Applying (T8) and (T9) inductively shows that we have cn+j(ψ) ≥
α(y)−j ≥ 0 for every j in the range 0 ≤ j ≤ α(y). Hence, (C11) implies
ψ1 ∈ Bn+j for every such j and applying the induction hypothesis
yields (w, n+ j, α) |= ψ1 for every j in the range 0 ≤ j ≤ α(y). Hence,
we have (w, n, α) |= ψ.

Now, let (w, n, α) |= ψ, i.e., we have (w, n + j, α) |= ψ1 for every j
in the range 0 ≤ j ≤ α(y). We have cn+α(y)(ψ) 6= ⊥ due to the
induction hypothesis and (C11). Furthermore, (T8) and (T9) imply
cn+α(y)−j(ψ) ≥ j for every j in the range 0 ≤ j ≤ α(y), as the counter
values cannot be ⊥ due to (C11). Thus, cn(ψ) = α(y), and therefore
ψ ∈ Bn due to (C10).

This finished the first inclusion. Now, let us prove the second inclusion
{w ∈

(
2P
)ω | (w,α) |= ϕ} ⊆ L(Aϕ,α). Let (w,α) |= ϕ and define for each n

Bn = {ψ ∈ cl(ϕ) | (w, n, α) |= ψ} ,

to be the set of subformulae that are satisfied at position n with respect to α.
Now, we need to define the counter cn for each n: for every F≤xψ1 ∈ clp(ϕ)
let

cn(F≤xψ1) = min{k | 0 ≤ k ≤ α(x) and (w, n+ k, α) |= ψ1} ,

where we set min ∅ = ⊥, be the minimal waiting times for the parameterized
eventually operators at position n. Dually, for every G≤yψ1 ∈ clp(ϕ) let

cn(G≤yψ1) = max{k |0 ≤ k ≤ α(y) and
(w, n+ j, α) |= ψ1 for every j ≤ k} ,

where we set max ∅ = ⊥, be the maximal satisfaction times for the parame-
terized always operators at position n.

We claim that (B0, c0)(B1, c1)(B2, c2) · · · is an accepting run of Aϕ,α.
The semantics of PLTL guarantee that each set Bn is consistent, i.e., the
local requirements (C1) up to (C7) are satisfied, and the cn are α-bounded
by definition, i.e., the conditions (C12) and (C13) are satisfied. It remains
to show that the consistency requirements (C8) up to (C11) are met.

� We have ψ1 ∈ Bn if and only if (w, n, α) |= ψ1, which is the case if and
only if cn(F≤xψ1) = 0, i.e., (C8) is satisfied.

� We have F≤xψ1 ∈ Bn if and only if (w, n, α) |= F≤xψ1 if and only if
cn(F≤xψ1) 6= ⊥, i.e., (C9) is satisfied.

� We have G≤yψ1 ∈ Bn if and only if (w, n, α) |= G≤yψ1 if and only if
cn(G≤yψ1) = α(y), i.e., (C10) is satisfied.
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� We have ψ1 ∈ Bn if and only if (w, n, α) |= ψ1, which is the case if and
only if cn(G≤yψ1) 6= ⊥, i.e., (C11) is satisfied.

Hence, each pair (Bn, cn) is a state of the automaton and we have
(B0, c0) ∈ Q0 due to (w, 0, α) |= ϕ. Next, we show that the sequence is
a run on w, i.e., ((Bn, cn), wn, (Bn+1, cn+1)) ∈ ∆ for every n ∈ N. The con-
ditions (T1) up to (T4) are satisfied due to the semantics of PLTL. So, let
us consider the requirements on the parameterized operators:

� Let cn(F≤xψ1) = ⊥, i.e., there is no k in the range 0 ≤ k ≤ α(x)
such that (w, n + k, α) |= ψ1. Now, assume we have cn+1(F≤xψ1) /∈
{α(x),⊥}, i.e., cn+1(F≤xψ1) = k′ < α(x). Then, (w, n + 1 + k′, α) |=
ψ1, which is a contradiction, since we have n + 1 + k′ ≤ α(x). Thus,
we have shown (T5).

� Let cn(F≤xψ1) = k > 0, i.e., k is minimal with (w, n + k, α) |=
ψ1. Then, we must have cn+1(F≤xψ1) = k − 1 by definition, i.e.,
cn+1(F≤xψ1) = cn(F≤xψ1)− 1. Thus, we have shown (T6).

� Let cn(G≤yψ1) = 0. Then, we have (w, n, α) |= ψ1, but (w, n+1, α) 6|=
ψ1. Hence, we have ψ1 /∈ Bn+1 and thus cn+1(G≤yψ1) = ⊥ by (C11).
Hence, (T7) is satisfied.

� Let 0 < cn(G≤yψ1) = k < α(y), i.e., we have (w, n+ j, α(y)) |= ψ1 for
every j in the range 0 ≤ j ≤ k, but (w, n + k + 1, α(y)) 6|= ψ1. Then,
we have cn+1(G≤yψ1) = k−1 by the maximality of the position k > 0.
Hence, cn+1(G≤yψ1) = cn(G≤yψ1)− 1 and we have shown (T8).

� Let c(G≤yψ1) = α(y), i.e., we have (w, n + j, α) |= ψ1 for every j in
the range 0 ≤ j ≤ α(y). Now, consider the position n+α(y) + 1. If we
have (w, n+α(y)+1, α) |= ψ1, then we have cn+1(G≤yψ1) = α(y). On
the other hand, if (w, n+ j+1, α) 6|= ψ1, then we have cn+1(G≤yψ1) =
α(y)− 1. Thus, we have shown (T9).

Hence, (B0, c0)(B1, c1)(B2, c2) · · · is a run of Aϕ,α. Furthermore, due to
condition (T1), it is a run on w. It remains to show that the run is accepting.
So, consider a set Fψ1Uψ2 ∈ F and assume that it is visited only finitely often,
i.e., there exists a position n such that for every n′ ≥ n we have ψ1Uψ2 ∈ Bn′
and ψ2 /∈ Bn′ . By definition of the sets Bn, we have (w, n′, α) |= ψ1 Uψ2 and
(w, n′, α) 6|= ψ2 for every n′ ≥ n. This contradicts the semantics of the until-
operator, which guarantees a position m ≥ n such that (w,m,α) |= ψ2,
if (w, n, α) |= ψ1 U ψ2. Now, assume that some Fψ1Rψ2 is visited only
finitely often, i.e., there exists a position n such that for every n′ ≥ n we
have ψ1 R ψ2 /∈ Bn′ and ψ2 ∈ Bn′ . Again, we have (w, n′, α) 6|= ψ1 R ψ2

and (w, n′, α) |= ψ2 for every n′ ≥ n. This contradicts the semantics of
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the release-operator, which states (w, n, α) |= ψ1 R ψ2, if ψ2 holds at every
position n′ ≥ n.

Hence, (B0, c0)(B1, c1)(B2, c2) · · · is an accepting run of Aϕ,α and we
conclude w ∈ L(Aϕ,α).

ii.) Assume Aϕ,α has two accepting runs (B0, c0)(B1, c1)(B2, c2) · · · and
(B′0, c

′
0)(B′1, c

′
1)(B′2, c

′
2) · · · on a word w, i.e., there is a position n such that

Bn 6= B′n or cn 6= c′n. We have shown above that we have ψ ∈ Bn if
and only if (w, n, α) |= ψ. Since the same holds true for the sets B′n, we
conclude Bn = B′n for every n. This leaves us with cn 6= c′n. The consistency
requirements (C9) and (C11) and the fact Bn = B′n imply cn(ψ) = ⊥ if and
only if c′n(ψ) = ⊥ for every parameterized formula ψ ∈ clp(ϕ). Hence, we
must have cn(ψ) = k 6= k′ = c′n(ψ) for some ψ ∈ clp(ϕ).

First, we consider the case ψ = F≤xψ1, which implies 0 ≤ k, k′ ≤ α(x).
We assume without loss of generality k < k′. Then, applying (T6) induc-
tively yields cn+j(F≤xψ1) = k − j for every j in the range 0 ≤ j ≤ k and
similarly c′n+j(F≤xψ1) = k′ − j for every j in the range 0 ≤ j ≤ k′. Hence,
we have cn+k(F≤xψ1) = 0, which implies ψ1 ∈ Bn+k due to (C8). On the
other hand, we have c′n+k(F≤xψ1) = k′ − k > 0, which implies ψ1 /∈ Bn+k,
again due to (C8). This yields the desired contradiction, since we have
Bn+k = B′n+k.

Now, we consider the case ψ = G≤yψ1, which implies 0 ≤ k, k′ ≤ α(y).
Again, we assume without loss of generality k < k′. Then, applying (T6)
inductively yields cn+j(G≤yψ1) = k − j for every j in the range 0 ≤ j ≤ k,
since we have k < α(y). Hence, we have cn+k(G≤yψ1) = 0, which implies
cn+k+1(G≤yψ1) = ⊥ due to (T7). Thus, we have ψ1 /∈ Bn+k+1 due to (C11).

Similarly, we have c′n+j(G≤yψ1) ≥ k′ − j for every j in the range 0 ≤
j ≤ k′ due to (T8) and (T9). Thus, c′n+k(G≤yψ1) ≥ k′ − k > 0. Condition
(T8) implies cn+k+1(G≤yψ1) ≥ 0 , which in turn implies ψ1 ∈ B′n+k+1 due
to (C11). Again, we have derived a contradiction, due to Bn+k+1 = B′n+k+1.

iii.) The number of consistent subsets of ϕ is bounded by 2|ϕ| and we
have c(F≤xψ1) ∈ {0, . . . , α(x)} ∪ {⊥} and c(G≤yψ1) ∈ {0, . . . , α(y)} ∪ {⊥},
respectively, if c is α-bounded. This proves the upper bound on the size of
Aϕ,α, since we have |clp(ϕ)| ≤ |ϕ|. Finally, we have |F| < |ϕ| = |cl(ϕ)|, since
cl(ϕ) contains at least one (negated) atomic proposition.

As already mentioned above, in [Zim11] it is claimed that the unipolar
PLTL optimization problems could be solved in doubly-exponential time as
well. The overall proof strategy there is the same as here: construct a small
deterministic parity automaton recognizing the models of a PROMPT–LTL
formula with respect to a fixed variable valuation. In [Zim11], the coun-
ters c(F≤xψ1) are not added to the generalized Büchi automaton (as we
have just done here), but the automaton without counters is determinized
and then the counters are added to the deterministic parity automaton. To
this end, every subformula F≤xψ1 is recursively replaced by Fψ1 and the re-
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sulting LTL formula is then translated into an unambiguous Büchi automa-
ton A using Construction 1 without the second component of the states. To
simulate the effect of α on the satisfaction of ϕ, an additional requirement
on accepting runs of A is formulated:

whenever a subformula Fψ1 obtained by removing a parameter is
guessed to be satisfied at position n, ψ1 has to be satisfied within
α(x) steps.

Since the automaton is unambiguous, and can therefore be assumed to be
non-confluent, it satisfies the following property: for every state q, a finite
word w has at most one run ending in q. Thus, the counters in the determin-
istic parity automaton have to track at most one run for each state, which
bounds the size of the deterministic parity automaton doubly-exponentially,
provided the counter values are bounded doubly-exponentially.

However, the requirement formulated above is too strong: to see this, con-
sider the formula p∨F≤xq. If p holds at the first position, then the formula is
satisfied with respect to every variable valuation, no matter whether q holds
within α(x) steps or not. However, even if q holds after more than α(x) steps
for the first time in a word w, then the only accepting run of A (rightfully)
guesses Fq to be satisfied at the first position of w. Hence, the run does
not satisfy our additional requirement. The problem is that (w, n, α) |= Fq
implies (w, n− 1, α) |= Fq, a property that has to be reflected in the defini-
tion of the transition relation in order to obtain an unambiguous automaton.
For a parameterized eventually operator, (w, n, α) |= F≤xq does not imply
(w, n− 1, α) |= F≤xq. To model this, one could let the automaton guess the
(minimal) positions n from which onwards F≤xq is satisfied. However, this
makes the automaton ambiguous. This means that an exponential number
of runs has to be tracked when the automaton is determinized. Each of these
runs could have a different configuration of the counter values which have to
be added to the deterministic parity automaton. This yields a deterministic
automaton of triply-exponential size as well.

From Generalized Büchi Automata to Büchi Automata

Now, we use a standard construction (see, e.g., [BK08]) to turn a generalized
Büchi automaton into a Büchi automaton while preserving its language and
its unambiguity. The Büchi automaton uses a cyclic counter to ensure that
each F ∈ F is visited infinitely often and accepts if the counter changes
its value infinitely often. We assume without loss of generality that the
generalized Büchi automaton has a non-empty family F of accepting sets.
If this is not the case, then every run is accepting and we can make every
state accepting to obtain an equivalent Büchi automaton, without having to
change the transition structure of the automaton.
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Construction 2. Let A = (Q,Σ, Q0,∆, {F1, . . . , Fk}) with k > 0 be a
generalized Büchi automaton. We construct the Büchi automaton A′ =
(Q′,Σ, q′0,∆

′, F ′) by

� Q′ = Q× {0, 1, . . . , k},

� Q′0 = Q0 × {1},

� if (q, a, q′) ∈ ∆, then ∆′ contains the following transition:

♦ ((q, j), a, (q′, j)) ∈ ∆′, if j > 0 and q′ /∈ Fj ,
♦ ((q, j), a, (q′, j + 1 mod (k + 1))) ∈ ∆′, if j > 0 and q′ ∈ Fj , and
♦ ((q, 0), a, (q′, 1)) ∈ ∆′.

� F ′ = Q× {0}.

A state (q, j) with j > 0 signals that the automaton is waiting for a visit
to Fj , while a state (q, 0) signals that every Fj was visited since the last
occurrence of a final state of A′. Such a state is left immediately. Note that
the value of the index j in the second component of the n-th state (q, j) of
a run of A′ depends only on the state q and the (n− 1)-st index.

Lemma 3.40. Let A = (Q,Σ, Q0,∆, {F1, . . . , Fk}) with k > 0 be a general-
ized Büchi automaton and let A′ be the Büchi automaton obtained by applying
Construction 2 to A.

i. L(A) = L(A′).

ii. If A is unambiguous, then A′ is unambiguous.

iii. |A′| = |A| · (k + 1)

Proof. i.) Let q0q1q2 · · · be an accepting run of A on an ω-word w. It
induces a unique run (q0, j0)(q1, j1)(q2, j2) · · · of A′ on w, as the second
component deterministically depends on the first component. As q0q1q2 · · ·
is accepting, every Fj ∈ F is visited infinitely often. Hence, the second
component jn cycles through its domain infinitely often, thereby being equal
to zero infinitely often. Hence, (q0, j0)(q1, j1)(q2, j2) · · · is an accepting run
of A′ on w.

Conversely, let (q0, j0)(q1, j1)(q2, j2) · · · be an accepting run of A′ on
an ω-word w. Then, the projection q0q1q2 · · · is a run of A on w, which
is accepting as every Fj ∈ F is visited infinitely often, as j0j1j2 · · · does
contain every j ∈ {1, . . . , k} infinitely often.

ii.) Let q = (q0, j0)(q1, j1)(q2, j2) · · · and q′ = (q′0,
′
0 )(q′1, j

′
1)(q′2, j

′
2) · · ·

be two accepting runs of A′ on a word w. Then, the runs q0q1q2 · · · and
q′0q
′
1q
′
2 · · · of A are also accepting runs on w. As A is unambiguous, we
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have q0q1q2 · · · = q′0q
′
1q
′
2 · · · . As the indices jn respectively j′n only de-

pend on the first components of a run, we get (q0, j0)(q1, j1)(q2, j2) · · · =
(q′0, j

′
0)(q′1, j

′
1)(q′2, j

′
2) · · · . Hence, A′ is unambiguous.

iii.) Clear.

From Büchi Automata to Deterministic Parity Automata

Given a PLTL formula ϕ and a variable valuation α, we have shown how to
construct an unambiguous Büchi automaton of size

|ϕ| · 2|ϕ| ·
(

max
z∈var(ϕ)

α(z) + 2
)|ϕ|

recognizing the language {w ∈
(
2P
)ω | (w,α) |= ϕ}. Due to Lemma 2.2, we

can assume this automaton to be non-confluent as well. In the next and last
step of the construction, we determinize the Büchi automaton into a parity
automaton. In order to meet the requirements formulated in Lemma 3.37
to solve the optimization problems in triply-exponential time, the deter-
minization procedure has to turn a Büchi automaton with n states into a
deterministic parity automaton of exponential size with linearly many prior-
ities. We apply the procedure of Morgenstern and Schneider [MS08, Mor10],
which turns a non-confluent Büchi automaton with n states into a determin-
istic parity automaton with 2O(n2) states and 2n + 1 priorities, and obtain
the following result.

Theorem 3.41. Let ϕ be a PLTL formula and let α be a variable valuation.
We denote maxz∈var(ϕ) α(z) + 2 by m. There exists a deterministic parity
automaton Pϕ,α of size

|Pϕ,α| ≤ 2O(|ϕ|2·(2m)2|ϕ|)

with 2 · |ϕ| · (2m)|ϕ| + 1 priorities and L(Pϕ,α) = {w ∈
(
2P
)ω | (w,α) |= ϕ}.

Note that this theorem proves Lemma 3.37, since we can construct the
automaton Pϕ,α in triply-exponential time.

Furthermore, the previous theorem allows us to give an upper bound on
the complexity of the membership problem for PLTL games. The problem
asks, given a PLTL game G = (A, v0, ϕ), i ∈ {0, 1}, and a variable valua-
tion α, to determine whether α ∈ W i

G holds. Remember that we measure
the size of a variable valuation α for ϕ by

|α| =
∑

x∈var(ϕ)

dlog2(α(x) + 1)e .

Hence, we have maxz∈var(ϕ) α(z) + 2 ∈ 2O(|α|) and therefore

|Pϕ,α| ≤ 22O((|ϕ|+|α|)2)
,
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while the number of priorities of Pϕ,α is bounded by

2O((|ϕ|+|α|)2) .

Thus, the membership problem can be reduced to the problem of solving a
parity game G of size |A| · |Pϕ,α| whose number of priorities is equal to the
number of priorities of Pϕ,α. This game can be constructed and solved in
doubly-exponential time due to Theorem 2.22. As we have already shown
that the membership problem is 2Exptime-hard, we obtain the following
result.

Theorem 3.42. The membership problem for PLTL games is 2Exptime-
complete.

3.3.3 Lower Bounds on Optimal Variable Valuations

A consequence of our algorithm for the PLTLF emptiness problem is a 22O(|G|)

upper bound on optimal variable valuations which allow Player 0 to win a
PLTLF game G. In this section, we present a 22

√
|G|

lower bound.

Theorem 3.43. For every n ≥ 1, there exists a PROMPT–LTL game Gn
with winning condition ϕn with |Gn| ∈ O(n2) and var(ϕn) = {x} such that
W0(Gn) 6= ∅, but Player 1 wins Gn with respect to every variable valuation α
such that α(x) ≤ 22n.

The idea of our proof is to encode a binary counter d0, d1, d2, . . . with
range [22n ] and require Player 0 to satisfy some obligation expressed by a
parameterized eventually operator, but only after the counter has reached
value 22n−1. However, such a counter requires 2n bits and exponentially long
formulae to check the desired behavior. The latter claim follows from the
fact that LTL formulae can be translated into Büchi automata of exponential
size. To remedy this, we make use of the interaction between the players:
Player 1 is in charge of maintaining the counter d and Player 0 has to check
whether he increments the counter correctly. If he does not, she may fulfill
her obligation earlier. Hence, by always incrementing correctly, he is able
to prevent Player 0 from satisfying the parameterized eventually operator in
less than 22n steps, but not longer than that.

Each value d` is encoded by 2n bits. To enable the winning condition
to check the faulty increment claimed by Player 0, Player 1 has to precede
every bit of d` by a binary representation of its position cj ∈ [2n], which is
of length n. Hence, the correct evolution of the cj can be checked by an LTL
formula of size O(n2). Then, Player 0 marks the position of a single bit of
some d`+1 witnessing the faulty increase of d` to d`+1. Using the addresses cj
the winning condition can verify whether the claim is correct or not. This
idea is formalized in the following.
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Figure 3.5: The arena An for Theorem 3.43

We begin the proof of Theorem 3.43 by fixing an n ≥ 1. The arena An
is depicted in Figure 3.5.

A play in this arena proceeds as follows: beginning in the initial vertex d1

the token is moved to the vertex s. From here onwards, Player 1 has to
specify n bits and one primed bit by moving through the vertices hm or lm
for 0 ≤ m ≤ n and then has to move the token to vertex e. From here,
Player 0 can choose to satisfy c or choose to not satisfy c. Afterwards,
Player 1 can choose to satisfy $ or choose to not satisfy $ and then has
to move the token back to s. Then, the process of specifying the bits and
whether c and $ hold is repeated. Hence, the trace w = tr(ρ) of a play has
the form

w ={$}{s}{b00} · · · {b0n−1}{b0n}{e}C0D0

{s}{b10} · · · {b1n−1}{b1n}{e}C1D1

{s}{b20} · · · {b2n−1}{b2n}{e}C2D2 · · ·

where each bjm with m in the range 0 ≤ m ≤ n− 1 is either 0 or 1, each bjn
is either 0′ or 1′, each Cj is either {c} or ∅, and each Dj is either {$} or ∅.
We interpret the sequence bj0 · · · b

j
n−1 as (big endian13) binary encoding of a

number cj ∈ {0, . . . , 2n − 1}. Note that we do not use the primed bits bjn to
define cj . These are the bits for the counter d and are discussed below.

To give the winning condition ϕn, we introduce some simplifying nota-
tion. For j ∈ N, we define

Xj = X · · ·X︸ ︷︷ ︸
j times

.

Hence, we have (w, n, α) |= Xjϕ if and only if (w, n+ j, α) |= ϕ, i.e., ϕ holds
j positions later. For a word of propositions p0 · · · pk ∈ P+, we define the
formula γp0···pk inductively by γp0 = p0 and for k ≥ 1 by

γp0···pk = p0 ∧Xγp1···pk .

13That is, b0 is the most significant bit.
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We have (w, n, α) |= γp0···pk if and only if for each j in the range 0 ≤ j ≤ k
the proposition pj holds at position n+ j.

We continue by defining some LTL formulae and by discussing the form
of the plays of An that satisfy them. Here, we use the implication δ → η as
shorthand for the formula ¬δ∨η, provided that δ is an LTL formula. In this
case, ¬δ is equivalent to an LTL formula (see Remark 3.7. Building on this,
we use δ ↔ η as shorthand for (δ → η) ∧ (η → δ), provided that both δ and
η are LTL formulae.

We begin by expressing some requirements on the bits produced by
Player 1 during a play. If w is a model of the formula ψ1 = GF$, then
there are infinitely many j such that Dj = {$}. In this case, we inter-
pret the primed bits between the j-th and the (j + 1)-st occurrence of {$}
as (big endian) binary encoding of a natural number d`. At the moment,
we cannot bound the size of these numbers, since there is no bound on
the distance between the occurrence of the dollars. Such a bound is en-
forced by the conjunction of the next three formulae, which require the
numbers cj between two occurrences of a dollar to implement a binary
counter. The formula ψ2 = G ($→ Xγs0n) formalizes the initialization of
the counter: after each dollar, the next number cj is zero. Dually, the
formula ψ3 = G

(
γs1n → Xn+4$

)
formalizes the reset of the counter: if a

number cj is equal to 2n− 1, then it is followed by a dollar (which has to be
followed by a zero due to ϕ2). Finally, we have to implement the increment
of the counter: if a number cj is strictly smaller than 2n − 1, then we have
cj+1 = cj + 1. This is formalized by the formula

ψ4 = G ((s ∧ ¬γs1n)→ Xψinc)

where

ψinc =
n−1∧
j=0

Xj(γ1n−j → Xn+50)∧

Xj(γ01n−(j+1) → Xn+51)∧
Xj((¬γ1n−j ∧ ¬γ01n−(j+1))→ (1↔ Xn+51)) .

Here, we again use the negation of an LTL as shorthand to simplify our
presentation. Let us quickly recall how a (big-endian) binary number is
incremented: going from right to left, each one is flipped to a zero until the
first zero occurs, which is flipped to a one. All bits to the left of the first
zero (from the right) are left unchanged. This is expressed by the formula
ψinc: if there is a one at a position and only ones to the right, then the next
number has a zero at this position. If a position is the first zero (from the
right), then the corresponding bit of the next number is a one. Any other
number is unchanged, which happens exactly if there is a zero to the right
of this bit.
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If we have w |= ψ1∧ψ2∧ψ3∧ψ4, then infinitely many dollars occur in w
and there are exactly 2n primed bits between each adjacent pair of dollars.
Hence, we have 0 ≤ d` ≤ 22n − 1 for every `.

All previous formulae express requirements on Player 1’s behavior since
he is in charge of producing the cj and d`. Now, we turn our attention to
Player 0. Her only task is to decide whether to move to c0 or to c1, thereby
producing a position at which the proposition c holds or does not hold. The
formula ψ5 = G(c → XG¬c) is satisfied, if there is at most one position at
which c holds. As last formula, consider ψ6 = Fψ′6 where

ψ′6 = s ∧ (¬$ U ($ ∧ ¬$ U c))∧

X(
n−1∧
j=0

(Xj0↔ F(0 ∧X(n−j)+2c)))∧

(ψmax ∨ ψfaulty−inc)

where

ψmax = ¬$ U ($ ∧ (¬0′ U $))

and

ψfaulty−inc =
[(
¬0′ U $

)
→ F

(
1′ ∧X2c

)]
∧[((

¬0′ ∧ ¬1′
)

U
(
0′ ∧

(
¬0′ U $

)))
→ F

(
0′ ∧X2c

)]
∧[((

¬0′ ∧ ¬1′
)

U
(
0′ ∧

(
¬$ U 0′

)))
→ F

(
1′ ∧X2c

)]
∧[((

¬0′ ∧ ¬1′
)

U
(
1′ ∧

(
¬$ U 0′

)))
→ F

(
0′ ∧X2c

)] .

Let us dissect the formula ψ6: assume we have (w,α) |= ψ6, i.e., there exists
a positionm such that (w,m,α) |= ψ′6. At this position, s holds true. Hence,
the next n positions encode a number cj . Furthermore, after the next dollar,
c holds true at least once before the next dollar occurs. If we assume ψ5 to
be satisfied by w, then this is the only c occurring in w. This c is preceded by
another sequence of bits which encode a number cj′ . The next subformula
of ψ′6 requires these values to be equal: here, we use the fact that at these
positions either 0 or 1 holds, but not both at the same time. Hence, the
next primed bit after the position n is the cj-th bit of some number d` and
the primed bit two positions before the position at which c holds is the cj-th
bit of d`+1. The final disjunction is satisfied, if these primed bits witness
d`+1 6= d` + 1 (by the disjunct ψfaulty−inc) or if we have d`+1 = 22n − 1
(by the disjunct ψmax): ψmax is satisfied, if there is no primed zero between
the next two dollars, which implies d`+1 = 22n − 1, since we still assume
ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 to be satisfied. Now consider the conjuncts of ψfaulty−inc:
the first one is satisfied if the bits right of (including) the cj-th one of d`
are all ones, but the cj-th bit of d`+1 is not flipped to zero. The second one
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is satisfied if the bits right of (excluding) the cj-th one of d`, which is zero,
are all ones, but the cj-th bit of d`+1 is not flipped to one. The last two
formulae are symmetric, thus we only explain the third one: it is satisfied, if
the cj-th bit of d` is a zero and is followed by another zero before the next
dollar occurs, and the cj-th bit of d`+1 is flipped. Thus, ψ′6 is indeed satisfied
at a position m if the next primed bit and the primed bit before the (only)
occurrence of c witness d`+1 6= d` + 1 or if we have d`+1 = 22n − 1.

Let us wrap things up and prove Theorem 3.43.

Proof. Consider the game Gn = (An, d1, ϕn) with

ϕn = (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4)→ (ψ5 ∧ ψ6 ∧ F≤xc) .

The arena has 2n+ 8 vertices and the size of ϕn is quadratic in n.
Next, we show thatW0(Gn) is non-empty. Let w be the trace of a play of

Gn. If it does not satisfy ψ1∧ψ2∧ψ3∧ψ4, then it is winning for Player 0. So,
assume we have w |= ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4. Then, w has the form as described
above: the cj ’s count from 0 to 2n − 1 and the numbers d` are in the range
0 ≤ d` ≤ 22n − 1. In this situation, Player 0 has to ensure that c holds
exactly once, at a position as described above: either after d` = 22n − 1 or
after a primed bit that witnesses a faulty increase by Player 1. Player 0 is
always able to find such a position since Player 1 can produce at most 22n

numbers d` without introducing a faulty increment. Hence, Player 0 wins Gn
with respect to some α. On the other hand, by always incrementing the d`
correctly until they reach 22n − 1, Player 1 is able to win Gn with respect to
(at least) every α such that α(x) ≤ n · 2n · 22n , since there are 22n values for
d, each having 2n bits which are encoded by one round through the arena,
each of which visits more than n vertices.

Recall that Theorem 3.34 can also be stated in terms of PLTLG games:
for every PLTLG game G, there is a k ∈ 22O(|G|) such that if Player 0 wins
G with respect to the variable valuation mapping every variable to k, then
W0(G) is actually universal. Due to duality, this bound must be asymp-
totically tight as well: the following corollary is obtained by formulating
Theorem 3.43 for the PLTLG game Gn.

Corollary 3.44. For every n ≥ 1, there exists a PLTLG game Gn with win-
ning condition ϕn with |Gn| ∈ O(n2) and var(ϕn) = {y} such that W0(Gn) is
not universal, but Player 0 wins Gn with respect to every variable valuation α
with α(y) ≤ 22n.

The doubly-exponential lower bound on an optimal variable valuation
in a PROMPT–LTL game presented in this subsection show that we can-
not prove the optimization problems for unipolar formulae to be solvable in
doubly-exponential time using the technique presented in Section 3.3.
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3.4 Summary of Results

We have shown the membership, emptiness, finiteness, and universality prob-
lem for PLTL games to be 2Exptime-complete. Thus, these problems are
not harder than solving LTL games without parameterized operators. Fur-
thermore, all but the finiteness problem for PLTLG games can be reduced to
solving a single LTL game. These results are in line with results on model-
checking PLTL [AETP01] and model-checking parameterized real-time log-
ics [GTN10]: on both cases, the addition of parameterized operators does not
increase the asymptotic complexity of solving the model-checking problem.

This has to be contrasted with the status of the PLTL optimization prob-
lems for which we presented an algorithm with triply-exponential running
time. The optimization problems for PLTL model-checking can be solved in
polynomial space, hence are not harder than LTL model-checking. It is open
whether the optimization problems for games can also be solved in doubly-
exponential time. We have complemented our algorithm for these problems
by a doubly-exponential lower bound on the value of an optimal variable
valuation for a unipolar game.

Furthermore, we have shown that the sets of winning valuations for both
players in a unipolar game are semilinear. The same applies to the projection
of the sets of winning valuations in a non-unipolar game to the variables in
varF(ϕ) or varG(ϕ), respectively. The structural complexity of the full set
of valuations is open, as it is already the case for PLTL model-checking.

Finally, by combining the alternating color technique and the construc-
tion of “small” automata for PLTL formulae with respect to a fixed variable
valuation, one can even show that adding operators like F≤k and G≤k, where
k ∈ N is an arbitrary, but constant bound (encoded in binary), does not in-
crease the complexity of the decision and optimization problems.
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Chapter 4

Playing Muller Games
in Finite Time

How can an infinite game be played in finite time? The winner of a single
play is typically only determined after ω steps, e.g., the winner of a play
in a Muller game depends on the infinity set of the play. In the following,
we change the rules of the game by defining a criterion that stops a play
after a bounded number of steps and then declares a winner. Here, we allow
a finite play to be declared winning for Player i although there might be
continuations of this play that are winning for Player 1 − i in the original
infinite game. Thus, we cannot hope to prove an equivalence between these
games on the level of plays14, but we can ask for an equivalence on the level
of the existence of winning strategies: a criterion is sound, if Player i has
a winning strategy from a vertex v in the infinite game if and only if she
has a winning strategy from v in the finite-duration version. Thus, a sound
criterion allows us to determine the winning region of an infinite game by
solving a finite game.

0 1 2 3 4

Figure 4.1: The arena A for the introductory example in Chapter 4

As an introductory example, consider the reachability game (A, F ) where
A is depicted in Figure 4.1 and F = {4}. Recall that Player 0 wins a play
in a reachability game if and only if at least one vertex from F is visited.
The following criterion is sound for reachability games: stop a play after |A|

14For Muller games (and many other games), the existence of such an equivalence is
even ruled out by the fact that the set of winning plays in a Muller game is on a higher
level of the Borel hierarchy than the one in a safety game. We discuss this in depth in
Chapter 5.
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steps and declare Player 0 to be the winner if and only if a vertex from F
is visited. In the example, the play 12342 is winning for Player 0, while the
play 12323 is winning for Player 1, although Player 0 could move from the
last vertex to vertex 4 in the next step. However, she could have done so
already when the play visited vertex 3 for the first time. By always moving
from 3 to 4 she wins the finite-duration game from the set {2, 3, 4}, which is
exactly her winning region in the original reachability game. The existence
of positional attractor strategies, which visit each vertex in the attractor
at most once before reaching F , and the existence of trap strategies, which
prevent the token from ever reaching F when starting in the complement of
the attractor, show this criterion to be sound for reachability games.

McNaughton considered the problem of playing infinite games in finite
time to make them suitable for “casual living room recreation” [McN00].
As human players cannot play infinitely long, he envisions a referee (a cri-
terion in our parlance) that stops a play at a certain time and declares a
winner. Since it is straightforward to give a sound criterion for positionally
determined games15, McNaughton considered Muller games. To this end, he
defined for every set of vertices F a scoring function ScF which keeps track
of the number of times the set F is visited entirely since the last visit of a
vertex that is not in F . To illustrate the scores of a play prefix, consider
the arena A in Figure 4.1. The score for the set {2, 3, 4} of the play pre-
fix 010123423234 is two, as it is visited twice since the last occurrence of a
vertex that is not in {2, 3, 4} (i.e., with the infixes 234 and 23234). After the
prefix 0101, the score for the set {0, 1} is two, but it is reset to zero by the
occurrence of vertex 2. In an infinite play, the set of vertices seen infinitely
often is the unique set F such that ScF tends to infinity after being reset to
zero only a finite number of times. Hence, the winner of a play in a Muller
game can be characterized by the evolution of the scores, albeit still only
after ω steps.

McNaughton proved the following criterion to be sound [McN00]: stop
a play after a score of |F |! + 1 for some set F is reached for the first time,
and declare the winner to be the Player i such that F ∈ Fi. However, it can
take a large number of steps for a play to reach a score of |F |! + 1, as scores
may increase slowly or be reset to zero.

In this chapter, we improve McNaughton’s result by showing that stop-
ping a play as soon as a score of three is reached for the first time is sound. To
prove this, we construct a winning strategy that bounds the losing player’s
scores by two. This is complemented by examples showing that both results
are optimal and by tight upper and lower bounds on the play length. Finally,
we discuss some obstacles one encounters when trying to play infinite games
in infinite arenas in finite time.

15Stop a play as soon as a vertex is visited for the second time and declare the winner
of the finite play to be the winner of the infinite play induced by the cycle.
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4.1 Scoring Functions

4.1 Scoring Functions

In this section, we formally introduce scoring functions for Muller games,
which were originally defined by McNaughton to make infinite games play-
able in finite time. For every set of vertices F , the score of a play prefix w is
the number of times F has been visited entirely since w visited for the last
time a vertex that is not in F . An occurrence of such a vertex is referred
to as a reset of the score for F . We extend the scores by the concept of an
accumulator, which can be seen as the fractional part of a score: in order
to increase the score for a set F , all vertices in F have to be visited at least
once. The accumulator of the set F measures the progress that has been
made towards the next increase by accumulating the vertices of F that were
visited since the last increase or reset, depending on which happened later.
McNaughton implicitly used accumulators to compute the scores inductively,
but was only interested in the scores of a play. This is in contrast to our work
which relies on accumulators as well, since they give a much finer description
of a play prefix.

McNaughton defined the score of a play prefix w by a maximization
over decompositions of w and gave a greedy recursive algorithm to compute
scores on the fly. This algorithm can easily be turned into an inductive
definition. Since it conveys more intuition and allows to introduce scores
and accumulators at the same time, we prefer to begin with this definition
and then show its equivalence to the original definition.

Let us fix some set V of vertices throughout this section. For every F ⊆ V
we inductively define the functions ScF : V ∗ → N and AccF : V ∗ → 2F as
follows: the score for the empty set is always zero and its accumulator is
always empty, i.e., we define Sc∅(w) = 0 and Acc∅(w) = ∅ for every w ∈ V +.

Now, we consider non-empty sets. For the empty word, all scores are
zero and all accumulators are empty. Now, consider a word wv with w ∈ V ∗
and v ∈ V . If v is not in F , then the score and the accumulator for F are
reset, i.e., for v /∈ F we define ScF (wv) = 0 and AccF (wv) = ∅. If v is in
F , then we have to consider two subcases: if the accumulator AccF (w) is
not equal to F \ {v} (i.e., some vertex v′ 6= v with v′ ∈ F has not occurred
since the last score increase or reset), then the score is left unchanged, but
v is added to the accumulator (in which it might already be contained): if
v ∈ F and AccF (w) 6= (F \ {v}), then ScF (wv) = ScF (w) and AccF (wv) =
AccF (w) ∪ {v}.

On the other hand, if the accumulator AccF (w) contains all elements
but v, then all elements of F occur at least once since the last score increase
or since the last reset. In this situation, the score is increased and the
accumulator is set to ∅ accordingly: if v ∈ F and AccF (w) = (F \ {v}), then
ScF (wv) = ScF (w) + 1 and AccF (wv) = ∅ . We summarize the previous
explanations in the following definition.
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Definition 4.1. For every F ⊆ V we inductively define the scoring function
ScF : V ∗ → N and the accumulator function AccF : V ∗ → 2F as follows:
ScF (ε) = 0 and AccF (ε) = ∅ and for w ∈ V ∗ and v ∈ V

ScF (wv) =


0 if F = ∅,
0 if F 6= ∅ and v /∈ F ,
ScF (w) if v ∈ F and AccF (w) 6= (F \ {v}),
ScF (w) + 1 if v ∈ F and AccF (w) = (F \ {v}),

and

AccF (wv) =


∅ if F = ∅,
∅ if F 6= ∅ and v /∈ F ,
AccF (w) ∪ {v} if v ∈ F and AccF (w) 6= (F \ {v}),
∅ if v ∈ F and AccF (w) = (F \ {v}).

By definition, the score for the empty set is always zero. This allows
us to formulate the following remark which states that the sets F that can
reach a score of two are exactly the loops of the arena, i.e., potential infinity
sets that determine the winner of a play.

Remark 4.2. Let A be an arena and let F a subset of its vertices. There
exists a play prefix w in A with ScF (w) ≥ 2 if and only if F is a loop in A.

Finally, for every family of sets F ⊆ 2V we define the maximum score
function which maps a (finite or infinite) word w to the highest score that
is reached during w for a set in F , and ∞, if arbitrarily large scores are
reached. By convention, we set MaxSc∅(w) = 0 for every finite or infinite
word w.

Definition 4.3. Let F ⊆ 2V . We define MaxScF : V ∗ ∪ V ω → N ∪ {∞} by

MaxScF (w) = max
F∈F

sup
w′vw

ScF (w′) .

We illustrate these definitions in the following example.

Example 4.4. Consider w = 12210122 and F = {1, 2}. We have ScF (w) =
1, because 122 is the longest suffix of w that is contained in F , and the
entire set {1, 2} occurs once during this suffix. We have AccF (w) = {2},
because only vertex 2 occurs after the score for F increased to 1. On the
other hand, we have MaxSc{F}(w) = 2 because the prefix w′ = 1221 of w
has ScF (w′) = 2. By visiting the vertex 0 the score for F is reset to 0, e.g.,
we have ScF (12210) = 0. 3
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The evolution of the scores during a play allows to determine the winner
of an infinite play ρ. First, let us consider the score for the set Inf(ρ). There
is a position n of ρ such that only vertices in Inf(ρ) are visited after n. Hence,
the score for Inf(ρ) is never reset after position n. This means that the score
for Inf(ρ) tends to infinity, since each vertex in Inf(ρ) is visited again and
again. On the other hand, for a set F 6= Inf(ρ), we distinguish two cases. If
there is a vertex v ∈ Inf(ρ) \ F , then the score for F is reset to 0 infinitely
often. On the other hand, a vertex v ∈ F \Inf(ρ) is occurs only finitely often,
say k times. Thus, the score for F is bounded by k throughout ρ. Hence, we
can characterize the infinity set of a play by the limit inferior of the scores.

Remark 4.5. Let ρ ∈ V ω. There is a unique set F ⊆ V such that

lim inf
n→∞

ScF (ρ0 · · · ρn) =∞ .

Furthermore, this set F is the infinity set of ρ.

The following example shows that there can be more than one set whose
score tends to infinity. Hence, we cannot replace the limit inferior by the
maximal score function in Remark 4.5.

Example 4.6. Consider the play

ρ = 012 210 012 32 ·
∏
n≥1

(0n1) = 012 210 012 32 01 001 0001 00001 · · ·

with infinity set {0, 1}. The set {0} reaches a score of n during each infix 0n
′

for n′ > n, but it is also reset after each such infix by the occurrence of 1.
Hence, we have MaxSc{0}(ρ) =∞, but lim infn→∞ Sc{0}(ρ0 · · · ρn) = 0. The
score for the infinity set {0, 1} tends to infinity while being reset only finitely
often. Hence, we have MaxSc{0,1}(ρ) = lim infn→∞ Sc{0,1}(ρ0 · · · ρn) = ∞.
Finally, the score for the set {0, 1, 2} increases to three, is reset by the oc-
currence of the vertex 3 and then increases to one again, after which it is
never increased or reset again. Therefore, we have MaxSc{0,1,2}(ρ) = 3 and
lim infn→∞ Sc{0,1,2}(ρ0 · · · ρn) = 1. 3

As already mentioned in the introductory paragraph, McNaughton orig-
inally defined the scores of w by a maximization over decompositions of w
and presented the inductive definition above as an algorithm to compute the
scores. Furthermore, the accumulators were originally defined by decom-
positions as well [FZ12]. In the following, we show these definitions to be
equivalent, a task that was (for the case of scores) left as an exercise to the
reader in [McN00].

Lemma 4.7. Let F ⊆ V and w ∈ V ∗.

i. ScF (w) is the maximal k ∈ N such that a suffix x1 · · ·xk of w exists,
where every xj is a non-empty word satisfying Occ(xj) = F .
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ii. AccF (w) is the occurrence set Occ(x) of the longest suffix x of w such
that the score for F does not change and is not reset throughout x,
i.e., we have ScF (w) = ScF (wy−1) for every suffix y of x, and we have
Occ(x) ⊆ F .

Proof. The claims are trivially true for w = ε. Thus, let w = w0 · · ·wn.
i.) Let s = ScF (w) and let k be maximal such that a suffix x1 · · ·xk of

w exists where every xj is a non-empty word satisfying Occ(xj) = F . We
show s ≤ k and s ≥ k.

Let n0 be maximal such that wn0 /∈ F (and n0 = −1 if no such letter
exists) and for each j in the range 1 ≤ j ≤ s let nj > n0 be minimal such
that ScF (w0 · · ·wnj ) = j. The position n0 is the last reset of the score for
F (and −1 if there is no reset during w) and nj denotes the position after
n0 where the score for F is increased to j. We have n0 < n1 < · · · < ns.
Now define xj = wnj−1+1 · · ·wnj for every j in the range 1 ≤ j < s and
xs = wns−1+1 · · ·wn. Since each vertex of F has to occur at least once to
increase the score between nj−1 + 1 and nj , we have Occ(xj) = F for every
j. Hence, we have shown s ≤ k.

On the other hand, let x1 · · ·xk be a suffix of w such that every xj is a
non-empty word satisfying Occ(xj) = F and let w(x1 · · ·xk)−1 = y be the
prefix of w obtained by removing the xj . Then, we have ScF (yx1 · · ·xj) ≥ j
for every j and hence s ≥ k.

ii.) Let x be the longest suffix of w satisfying ScF (w) = ScF (wy−1) for
every suffix y of x, and Occ(x) ⊆ F . If x = ε, then the score for F is
increased or reset by visiting wn and we have AccF (w) = ∅ = Occ(ε).

Otherwise, let x = wm · · ·wn for some m ≤ n. Since Occ(x) ⊆ F and
since the score for F is increased or reset for the last time at position m− 1
(or not at all if m = 0), we have AccF (w0 · · ·wm+j) = {wm, . . . , wm+j} for
every j in the range 0 ≤ j ≤ n − m. Thus, AccF (w) = {wm, . . . , wn} =
Occ(x).

A simple consequence of these characterizations is that sets with non-
zero score and the accumulators for all sets are all pairwise comparable in
the subset relation. For the sets with non-zero score, this was already proven
by McNaughton. However, it turns out to be useful to consider also the
accumulators.

Lemma 4.8 (cf. Theorem 4.2 of [McN00]). Let w ∈ V ∗. The sets F ⊆ V
with ScF (w) ≥ 1 together with the sets AccF (w) for some F ⊆ V form a
chain in the subset relation.

Proof. It suffices to show that all such sets are pairwise comparable: let F
and F ′ be two sets such that either ScF (w) ≥ 1 or F = AccH(w) for some
H ⊆ V and either ScF ′(w) ≥ 1 or F ′ = AccH′(w) for some H ′ ⊆ V .

Lemma 4.7 implies the existence of two decompositions w = w0w1 and
w = w′0w

′
1 with Occ(w1) = F and Occ(w′1) = F ′. Now, either w1 is a suffix

88



4.2 Finite-time Muller Games

of w′1 or vice versa. In the first case, we have F ⊆ F ′ and in the second case
F ′ ⊆ F .

Lemma 4.8 implies that there can be at most |V | sets that have a non-zero
score at the same time.

4.2 Finite-time Muller Games

McNaughton used scores to define a finite-duration variant of Muller games.
A play ρ is stopped as soon as the score for some set F reaches a given
threshold score Tr(F ). If F ∈ Fi, then Player i is declared to be the winner
of ρ. To obtain a zero-sum finite-duration game, infinite plays that never
reach a threshold score for some set and also plays in which two sets reach
their threshold score at the same time have to be ruled out. McNaughton
mentions that every infinite play exceeds every threshold eventually and
proves that no two scores can reach their threshold at the same time, provided
the thresholds are non-trivial. Before we introduce finite-time Muller games
we give a tight bound on the length of a play that avoids a certain score,
thereby quantifying McNaughton’s claim, and explain why there is always
a unique winner. Then, we introduce finite-time Muller games and discuss
some basic properties.

Lemma 4.9. Let V be a finite non-empty set of vertices.

i. For every w ∈ V + and k > 0, if |w| ≥ k|V |, then MaxSc2V (w) ≥ k.

ii. For every k > 1, there exists a w ∈ V + with |w| = k|V | − 1 and
MaxSc2V (w) < k.

Proof. i.) We show by induction over the cardinality of the set V that every
word w ∈ V + with |w| ≥ k|V | contains an infix x that can be decomposed
into parts x1, . . . , xk such that x = x1 · · ·xk where every xj is a non-empty
word with Occ(xj) = Occ(x). This implies MaxSc2V (w) ≥ k.

The claim holds trivially for |V | = 1 by choosing x to be the prefix of w
of length k ≤ |w| and xj = v for the single vertex v ∈ V . For the induction
step, consider a set V with n+ 1 vertices and a word w with |w| ≥ kn+1. If
w contains an infix y of length kn which contains at most n distinct vertices,
then we can apply the induction hypothesis to y and obtain a decomposition
of an infix x of y with the desired properties. Since x is also an infix of w, we
are done. Otherwise, every infix of w of length kn contains every vertex of
V at least once. Let x be the prefix of length kn+1 of w and let x = x1 · · ·xk
be the decomposition of x such that each xj is of length kn. Then, we have
Occ(xj) = Occ(x) = V for every j. Therefore, the decomposition has the
desired properties.
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ii.) We fix some threshold k > 1 and assume without loss of general-
ity V = [n] = {0, . . . , n − 1}. We inductively define words wn over the
alphabet [n] satisfying |wn| = kn − 1 and MaxSc2[n](wn) < k.

To this end, let w1 = 0k−1 and for n > 1 let

wn = (wn−1 · (n− 1))k−1 · wn−1 .

Note that an occurrence of the letter (n− 1) in wn resets all non-zero scores
for sets F ⊆ [n− 1] = Occ(wn−1) that were reached during the infixes wn−1.
Furthermore, as (n− 1) appears only k− 1 times, it can also not contribute
to a score of k during wn.

Let us verify our claims formally. We have |w1| = k1 − 1 and for n > 1

|wn| = k · |wn−1|+ (k − 1) = k · (kn−1 − 1) + (k − 1) = kn − 1 .

Finally, we show MaxSc2[n](wn) < k by induction over n. The induction
start is immediate, as we have

MaxSc2[1](0k−1) = Sc{0}(0
k−1) = k − 1 < k .

So, assume n > 1. Since the letter (n − 1) only appears k − 1 times in wn,
every set containing it never reaches a score of k during wn. Finally, consider
the sets F ⊆ [n − 1]. Since their scores are reset by an occurrence of the
letter (n − 1), the score for such a set F can only increase during an infix
wn−1. However, the induction hypothesis bounds the score for F during such
an infix by k − 1. Hence, the scores for all sets are bounded by k − 1.

Lemma 4.9 implies that a finite-time Muller game with maximal thresh-
old score k must end after at most k|V | steps and shows that this bound
is tight for the case of uniform threshold scores. Figure 4.2 depicts a soli-
tary arena An with vertex set [n] in which Player 1 is able to produce the
words wn (for any k) as defined in the proof of Lemma 4.9(ii) and thereby
avoids a score of k as long as possible.

0

1 2 · · · n− 2 n− 1

Figure 4.2: The arena An for the lower bounds on the play length

The arena An is very simple in terms of graph-theoretic complexity
measures such as cycle rank [Egg63], treewidth [RS86], pathwidth [RS83],
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cliquewidth [CO00], DAG-width [BDH+], Kelly-width [HK08], and entan-
glement [BG04]. Hence, the bound k|V | on the maximal play length cannot
be improved by considering arenas of bounded complexity in any of these
measures. However, the in- and outdegree of vertex 0 is n, hence as large as
it can get in a graph with n vertices.

Hence, one might ask whether bounding the degree of the vertices leads to
shorter plays, possibly in combination with bounding one of the complexity
measures mentioned above. The arena A′n depicted in Figure 4.3 shows that
this is not the case. It is obtained by subdividing the self-loop in An of
Figure 4.2 into a cycle of n vertices. Hence, the construction of the play
prefix witnessing the lower bounds has to be adopted: fix some k. For every
j we define a play prefix xj in A′n by x1 = (00′)k−101 · · · (n− 1) and for j in
the range 1 < j ≤ n by

xj = (xj−101 · · · (j − 1)(j − 1)′(j − 1)j · · · (n− 1))k−1xj−1 .

A simple induction shows |xj | ≥ kj and one can prove MaxSc2V (xj) < k,
where V = {0, . . . , n − 1, 0′, . . . , n − 1′}, using the same reasoning as in
the proof of Lemma 4.9(ii). Thus, there is an arena A′n with 2n vertices in
which Player 1 can prevent a score of k for at least kn steps by producing the
play prefix xn. To conclude, we mention that A′n has not only maximal in-
and outdegree two, but is still very simple in terms of the graph complexity
measures listed above.

1 2 · · · n− 2 n− 1

1′ 2′ · · · n− 2′ n− 1′

Figure 4.3: The arena A′n with degree four for lower bounds on the play
length

After we have ruled out draws due to infinite plays, we show that every
play has a unique winner. To this end, we must exclude the case where two
sets reach their threshold score at the same time. McNaughton proved that
this cannot happen, provided the thresholds are non-trivial.

Lemma 4.10 ([McN00]). Let k, l ≥ 2, F, F ′ ⊆ V , w ∈ V ∗ and v ∈ V such
that ScF (w) < k and ScF ′(w) < l. If ScF (wv) = k and ScF ′(wv) = l, then
F = F ′.

For the sake of completeness, we give a proof of this result.

Proof. Towards a contradiction assume F 6= F ′. By Lemma 4.8 we can
assume without loss of generality F ′ ⊂ F , i.e., there exists some q ∈ F \ F ′.
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Then, ScF (wv) = k and ScF ′(wv) = l imply the existence of decompositions
wv = x0x1 · · ·xk and wv = y0y1 · · · yl such that Occ(xj) = F and Occ(yj) =
F ′ for every j > 1. As q /∈ F ′, y1 · · · yl is a proper suffix of xk. The situation
is sketched in Figure 4.4.

wv

xkx1 · · ·

y1 yl· · ·q

Figure 4.4: The decomposition of wv as in the proof of Lemma 4.10

Furthermore, as ScF (w) < k and ScF (wv) = k, we have v /∈ Occ(xkv−1).
If v would appear in xkv−1, then the decomposition x1 · · ·xk−1(xkv−1) would
show ScF (w) ≥ k. However, we have v ∈ F ′ and thus v ∈ Occ(yl−1), which
is an infix of xkv−1. This yields the desired contradiction.

The word 01 shows that the requirement of k and l being greater than
one is necessary: by the occurrence of 1 after 0, the scores for {1} and {0, 1}
are increased to one.

Now, we are able to define a finite-time Muller game to be a Muller
game equipped with a threshold score function. To declare a unique winner
by applying Lemma 4.10, we require the thresholds to be greater than one.
Then, we can again restrict F0 and F1 to contain only loops of the arena,
since only these can have a score greater than one (see Remark 4.2).

Definition 4.11. A finite-time Muller game (A,F0,F1,Tr) consists of an
arena A with vertex set V , a set F0 ⊆ 2V of loops of A, the set F1 of loops of
A which are not in F0, and a threshold score function Tr: F0∪F1 → N\{0, 1}.

If the threshold function is constant, i.e., there exists a k such that
Tr(F ) = k for every F ∈ F0 ∪ F1, then we write (A,F0,F1, k) instead
of (A,F0,F1,Tr) and refer to the game as a finite-time Muller game with
uniform threshold score k. We are mostly interested in these games.

By Lemma 4.9 we have that every infinite path must reach the thresh-
old score for some set F after a bounded number of steps. Therefore, we
define a play in the finite-time Muller game to be a finite path ρ0 · · · ρn with
MaxScF (ρ0 · · · ρn) = Tr(F ) for some loop F , but MaxScF ′(ρ0 · · · ρn−1) <
Tr(F ′) for every loop F ′, i.e., n is the first position where a loop F reaches
its threshold score. Due to Lemma 4.10, there is a unique loop F such that
ScF (ρ0 · · · ρn) = Tr(F ). Player i wins the play ρ0 · · · ρn if F ∈ Fi. The no-
tions of strategies and winning regions can all be redefined for finite games.

Example 4.12. Consider the Muller game G = (A,F0,F1), where A is
depicted in Figure 4.5, F0 = {{0}, {2}, {0, 1, 2}} and F1 = {{0, 1}, {1, 2}}.
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10 2

Figure 4.5: The arena A for Example 4.12

By alternatingly moving from 1 to 0 and to 2, Player 0 wins from every
vertex, i.e., we have W0(G) = {0, 1, 2}.

Now, consider the finite-time Muller game G′ = (A,F0,F1,Tr) where
Tr(F ) = 3 for F ∈ {{0}, {2}} and Tr(F ) = 2 for every other loop. Player 1
has a winning strategy from vertex 1: assume Player 0 moves the token from
1 to 0 (the other case is symmetric). Then Player 1 uses the self-loop once
before returning the token to 1. The resulting play 1001 is stopped at that
point, since the loop {0, 1} has reached its threshold score of two. The same
approach guarantees him a win from one of the outer vertices: assume that
token is at vertex 0. Then, he moves the token to 1. If Player 0 moves the
token back to 0, then Player 1 just moves it back to 1 and wins the resulting
play 0101. On the other hand, if Player 0 moves the token to 2, then, he
wins again by using the self-loop once before moving the token back to 1.
The case for a play starting at vertex 2 is again symmetric. Hence, we have
W1(G′) = {0, 1, 2}. 3

Since there are only finite plays in a finite-time Muller game G due to
Lemma 4.9, Zermelo’s determinacy theorem for finite games [Zer13] yields
the following remark.

Remark 4.13. Finite-time Muller games are determined.

In his work on playing Muller games in finite time, McNaughton consid-
ered the threshold score |F |! + 1 for every loop F and showed that a Muller
game and the finite-time Muller game this threshold function have the same
winning regions.

Theorem 4.14 ([McN00]). Let G = (A,F0,F1) be a Muller game and
let G′ = (A,F0,F1,Tr) be the corresponding finite-time Muller game with
Tr(F ) = |F |! + 1. Then, Wi(G) = Wi(G′).

McNaughton’s proof is based on properties of the LAR memory struc-
ture [GH82], which is sufficient to win Muller games. He showed that such a
winning strategy for Player i bounds the losing player’s scores by |F |!. If the
strategy would allow to traverse a loop F ∈ F1−i at least |F |!+1 times, then
a memory state would be repeated during this infix. Hence, the strategy
also allows to traverse F infinitely often which yields a losing play that is
consistent with the winning strategy, which is a contradiction. This shows
Wi(G) ⊆Wi(G′) for i ∈ {0, 1} and thus Wi(G) = Wi(G′) due to determinacy.
This observation can be generalized to arbitrary finite-state strategies: a
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winning strategy of size n bounds the losing player’s scores by n · |A|. Mc-
Naughton obtained better bounds for sets of smaller size by exploiting the
special structure of the LAR memory.

The upper and lower bounds on the play length in Lemma 4.9 hold for
a uniform threshold score k that is independent of the size of the loop. To
obtain tight bounds on the duration of a play with McNaughton’s threshold
function we adapt the lemma to the threshold score |F |! + 1.

Lemma 4.15. Let V be a finite set of vertices.

i. For every w ∈ V +, if |w| ≥
∏|V |
j=1(j!+1), then MaxSc{F}(w) ≥ |F |!+1

for some F ⊆ V .

ii. There exists a w ∈ V + with |w| = 1
2

∏|V |
j=1(j! + 1) and MaxSc{F}(w) <

|F |! + 1 for every F ⊆ V .

Proof. i.) Analogously to the proof of Lemma 4.9(i) we show by induction
over the cardinality of V that every word w ∈ V + with |w| ≥

∏|V |
j=1(j! + 1)

contains an infix x such that x can be decomposed into parts x1, . . . , x|F |!+1

for some non-empty set F ⊆ V such that x = x1 · · ·x|F |!+1 with Occ(xj) = F
for every j. This implies MaxScF (w) ≥ |F |! + 1.

The claim is true for |V | = 1 by choosing x to be the prefix of w of
length two and F = V . For the induction step, we consider a set V with
n+1 vertices and a word w with |w| ≥

∏n+1
j=1 (j!+1). If w contains an infix y

of length
∏n
j=1(j! + 1) that does not contain some vertex v ∈ V , then the

induction hypothesis yields the desired decomposition of some infix x of y
(which is also an infix of w) for some set F ⊆ V \{v}. Otherwise, every infix
of length

∏n
j=1(j!+1) contains every vertex of V . Hence, we can decompose

the prefix of length

((n+ 1)! + 1) ·
n∏
j=1

(j! + 1) =
n+1∏
j=1

(j! + 1) ≥ |w|

of w into |V |! + 1 parts xj of length
∏n
j=1(j! + 1) all satisfying Occ(xj) = V .

ii.) Analogously to the proof of Lemma 4.9(ii) we assume without loss of
generality V = [n] = {0, . . . , n−1} and inductively define words wn over the
alphabet [n] satisfying |wn| = 1

2

∏n
j=1(j! + 1) and MaxSc{F}(wn) < |F |! + 1

for every F ⊆ [n].
To this end, let w1 = 0 and for n > 1 let

wn = (wn−1 · (n− 1))n! · wn−1 .
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Note that (n− 1) is a letter. We have |w1| = 1 = 1
2(1! + 1) and for n > 1

|wn|
=n! · (|wn−1|+ 1) + |wn−1|
≥(n! + 1) · |wn−1|

= (n! + 1) · 1
2

n−1∏
j=1

(j! + 1)

=
1
2

n∏
j=1

(j! + 1) .

Finally, we show MaxSc{F}(wn) < |F |!+1 for every F ⊆ [n] by induction
over n. The induction start is immediate since we have |w| = 1. So, assume
n > 1. First, consider a set F that does not contain (n−1). Then, the score
for F is reset by each occurrence of (n− 1) and can only increase during an
infix wn−1. Hence, the induction hypothesis is applicable and bounds the
score for F by |F |!. Now consider a set F containing the letter (n − 1). If
F = [n], then the score for F is bounded by |F |! = n!, since wn contains
(n − 1) ∈ F only n! times. Finally, consider a set F which contains n, but
there is some n′ ∈ [n − 1] such that n′ /∈ F . Since n′ occurs in wn−1, the
score for F is reset between any two occurrences of (n−1). Hence, the score
for F is bounded by 1.

Again, Player 1 can produce the words wn in the arena An presented in
Figure 4.2. Hence, the observations about bounding the play length in arenas
with bounded graph complexity measures hold for McNaughton’s finite-time
Muller games as well. The same holds true for the alternative construction
in the arena A′n with small degree presented in Figure 4.3.

The threshold function in McNaughton’s theorem grows factorially in the
size of the loop and the maximal length of a play even grows superfactori-
ally. In the following we investigate finite-time Muller games with a uniform
threshold score k for some fixed k, where k may or may not depend on the
size of A or on the complexity of (F0,F1), but not on the size of a loop F
itself. In such a game, the maximal length of a play is bounded by an expo-
nential function. We investigate how small such a uniform threshold score
can be while still yielding a finite-time Muller game which has the same
winning regions as the original Muller game. The existence of a uniform
threshold score that is smaller than |V |! + 1 would already be a strength-
ening of McNaughton’s theorem and the strongest conceivable result is a
uniform threshold score that is correct for every Muller game, independent
of A and (F0,F1). Our main theorem about finite-time Muller games is that
there exists such a uniform threshold score. As the singleton set {v} has
a score of one as soon as a play starts in v, the threshold one is obviously
too small (and is already ruled out in the definition of a finite-time Muller
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game). Before we state our main theorem we give a Muller game that does
not have the same winning regions as the corresponding finite-time Muller
game with uniform threshold score two.

Theorem 4.16. There is a Muller game G = (A,F0,F1) and corresponding
finite-time Muller game G′ = (A,F0,F1, 2) such that Wi(G) 6= Wi(G′).

Proof. Consider the arena A in Figure 4.6 with F1 = {{0, 1, 2}, {0, 2, 3}}.

0 1 2

3

Figure 4.6: The arena A for Theorem 4.16

The following strategy σ is winning for Player 0 from every vertex in
the Muller game (A,F0,F1): at vertex 2 alternate between moving to 1 and
to 3. Every play ρ consistent with σ either ends up in the loop {0, 1} or
visits every vertex infinitely often. In both cases, ρ is won by Player 0.

On the other hand, Player 1 has a winning strategy from vertex 3 in the
finite-time Muller game (A,F0,F1, 2): starting at 3, Player 1 moves to 0
and then to 2. Now, if Player 0 moves to 3, Player 1 answers by moving
to 0 and then to 2. The resulting play 302302 is won by Player 1, as the
set {0, 2, 3} ∈ F1 is the first to reach a score of two. On the other hand, if
Player 0 moves from 2 to 1, then Player 1 answers by moving to 0, 1, and
then to 2, which yields the play 3021012 that is also won by Player 1.

The remainder of this chapter is devoted to showing our main theorem:
the finite-time Muller game with threshold three has always the same win-
ning regions as the original Muller game. In Theorem 4.16 we have shown
that three is the smallest uniform threshold score which can possibly yield
equivalent games in any case. Hence, our theorem is optimal in this sense.

Theorem 4.17. Let G = (A,F0,F1) be a Muller game and denote the cor-
responding finite-time Muller game with uniform threshold score three by
G′ = (A,F0,F1, 3). Then, Wi(G) = Wi(G′).

We proceed as follows: in Subsection 4.2.1, we introduce Zielonka’s al-
gorithm for solving Muller games. The internal structure of the winning
regions of G computed by this algorithm is then used in Subsection 4.2.2
to construct a strategy that bounds the losing player’s scores by two. By
using this strategy, the winning player wins not only the Muller game, but
also the finite-time Muller game with threshold three. This suffices to prove
Theorem 4.17.
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4.2.1 Digression: Zielonka’s Algorithm

This subsection presents Zielonka’s algorithm for Muller games [Zie98], a
reinterpretation of an earlier algorithm due to McNaughton [McN93]. In the
next subsection, we use the internal structure of the winning regions as com-
puted by this algorithm to give a winning strategy for a Muller game that
bounds the losing player’s scores by two. The existence of such strategies is
the crucial step in the proof of our main theorem about finite-time Muller
games. We begin this subsection by introducing Zielonka trees, a data struc-
ture to encode winning conditions of a Muller game. It is the structure of
these trees that guides Zielonka’s algorithm.

Both the algorithm and the trees were originally defined for Muller games
in colored arenas as discussed in Subsection 2.3.1. Recall that the vertices are
colored by a function Ω: V → [k] for some k and the winning condition is a
partition (F0,F1) of 2[k]. Player i wins a play ρ if and only if Ω(Inf(ρ)) ∈ Fi.
We prefer to use uncolored arenas, since dealing with colors would compli-
cate our theorems and proofs unnecessarily: for example, Theorem 4.17 is
obviously false for colored arenas: suppose the arena consists of a cycle of n
vertices, all but one labeled by 0 and the remaining one by 1. Then, Player i
with {0, 1} ∈ Fi wins every play, but the set {0}, which could be in F1−i,
reaches score n − 1 infinitely often. In Subsection 4.2.3, we briefly discuss
how to adapt our results to colored arenas.

According to our definition, a winning condition (F0,F1) of a Muller
game with vertex set V contains exactly the loops of the arena and therefore
does not necessarily form a partition of 2V . When we consider Muller games
or finite-time Muller games, the sets of vertices that do not form a loop are
irrelevant, since they cannot form an infinity set and do not reach scores
greater than one. However, to be able to define the Zielonka tree of the
winning condition, we require F0 ∪ F1 to contain every subset of vertices of
the arena, and not only the loops of the arena. Furthermore, to formulate
Zielonka’s algorithm as simple as possible we also allow the winning condition
to be a partition of the power set of a superset of the arenas vertices. Hence,
in the following two subsections, a Muller game G = (A,F0,F1) consists of
an arena A with vertex set V , a family of sets F0 ⊆ 2V

′ , and F1 = 2V
′ \ F0,

where V ′ ⊇ V is an arbitrary finite set. In this case we say that (F0,F1)
is an (exhaustive) winning condition over V ′. The semantics of G remains
unchanged: Player i wins a play ρ if and only if Inf(ρ) ∈ Fi. Since we
assume all our winning conditions in this and the next subsection to be
exhaustive ones over some superset V ′ of the arenas vertices, we drop the
qualifier “exhaustive” and refer to them as winning conditions as well.

Consider a winning condition (F0,F1) containing only the loops of an
arena A with vertex set V and an exhaustive winning condition (F ′0,F ′1)
over V ′ ⊇ V such that F0 ⊆ F ′0 and F1 ⊆ F ′1. Since the infinity set of a play
in A is always a loop, a strategy is winning for Player i in G = (A,F0,F1)
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if and only if it is winning for her in G′ = (A,F ′0,F ′1). Hence, we also have
Wi(G) = Wi(G′). Thus, we can turn a Muller game with a winning condition
that only contains the loops of the arena into an exhaustive winning condition
over some superset V ′ of the arenas vertices by adding each missing set to
either one of the families Fi.

We begin by introducing Zielonka trees (originally called split trees by
Zielonka [Zie98]). To do this, we need some notation: given a family of
sets F ⊆ 2V

′ and X ⊆ V ′, we define

F � X = {F ∈ F | F ⊆ X} .

We have F � X ⊆ F by definition. Given a winning condition (F0,F1) over
V ′ and X ⊆ V ′, we define

(F0,F1) � X = (F0 � X,F1 � X) .

Note that (F0 � X) ∪ (F1 � X) = 2X .

Definition 4.18 (Zielonka tree). For a winning condition (F0,F1) defined
over a set V ′, its Zielonka tree ZF0,F1 is defined as follows: suppose that V ′ ∈
Fi and let V ′0 , V ′1 , . . . , V ′k−1 be the ⊆-maximal sets in F1−i. The tree ZF0,F1

consists of a root vertex labeled by (V ′, i) with k children which are defined
by the trees Z(F0,F1)�V ′0

, . . . ,Z(F0,F1)�V ′k−1
.

For every Zielonka tree T with root label (V ′, i), we define RtLbl(T ) = V ′

to be the set that labels the root and RtPlr(T ) = i to be the index with
V ′ ∈ Fi. Furthermore, we define BrnchFctr(T ) to be the number of children
of the root and Chld(T, j) for 0 ≤ j < BrnchFctr(T ) to be the j-th child of
the root. Here, we assume that the children of every vertex are ordered by
some fixed linear order.

Let us remark a simple consequence of the inductive definition and the
fact that we have (F0 � X) ∪ (F1 � X) = 2X .

Remark 4.19. Let ZF0,F1 be a Zielonka tree and T = Chld(ZF0,F1 , j) for
some j < BrnchFctr(ZF0,F1). Then, T is the Zielonka tree of the winning
condition (F0,F1) � RtLbl(T ), which is defined over RtLbl(T ).

Remember that the sets V ′j labeling the roots of the children are strict
subsets of the root label V ′. Hence, the previous remark implies that the
height of ZF0,F1 is at most |V ′|. Furthermore, the branching factor of a node
labeled by some set X is bounded by 2|X|.

Remark 4.20. Every Zielonka tree is finite.

Let us illustrate these definition by an example.
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Example 4.21. Consider the winning condition (F0,F1) over {0, 1, 2, 3}
where

F0 = {∅, {0}, {1}, {2}, {0, 3}, {0, 1, 2}, {1, 2, 3}, {0, 1, 2, 3}}

and

F1 = {{3}, {0, 1}, {0, 2}, {1, 2}, {1, 3}, {2, 3}, {0, 1, 3}, {0, 2, 3}} .

This winning condition is compatible with the Muller game from Exam-
ple 4.12: all loops of the arena belong to the same Fi as in the example.

The resulting Zielonka tree ZF0,F1 is depicted in Figure 4.7. Note that
a label may appear more than once in the tree. We have RtLbl(ZF0,F1) =
{0, 1, 2, 3}, RtPlr(ZF0,F1) = 0, BrnchFctr(ZF0,F1) = 3, and Chld(ZF0,F1 , 2)
is the Zielonka tree of (F0,F1) � {1, 2}. Here, we assume the children of each
vertex to be ordered from left to right. 3

({0, 1, 2, 3}, 0)

({0, 1, 3}, 1) ({0, 2, 3}, 1) ({1, 2}, 1)

({1}, 0) ({0, 3}, 0) ({2}, 0) ({0, 3}, 0) ({1}, 0) ({2}, 0)

({3}, 1) ({3}, 1)

(∅, 0) (∅, 0)

Figure 4.7: A Zielonka tree

By definition, every winning condition induces a Zielonka tree. On the
other hand, every Zielonka tree T allows to reconstruct the winning condi-
tion (F0,F1) from T as follows: a set F ⊆ V ′ is in Fi if and only if there
is a vertex labeled by (X, i) and with children whose roots are labeled by
(Xj , 1− i) such that F ⊆ X and F 6⊆ Xj for every j. In the example above,
we have {2, 3} ∈ F1, since it is a subset of {0, 2, 3}, but not a subset of its
children {2} and {0, 3}.

Using this property, one can illustrate the idea underlying Zielonka’s
algorithm. Consider the root label (V ′, i) of a Zielonka tree ZF0,F1 and
the labels (V ′j , 1 − i) of its children. All sets F whose difference F \ V ′j is
non-empty for every j are in Fi. Thus, Player i either wins by visiting the
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complement of each set V ′j infinitely often or by winning in a game in a
subarena with winning condition (F0,F1) � V ′j over V ′j for some j. Since the
latter winning condition has a Zielonka tree of smaller height than ZF0,F1

(see Remark 4.19) the algorithm can proceed by induction over the height
of the tree. Here it becomes apparent why we allow the winning condition
to be defined over a superset of the arenas vertices. The set V ′j does not
necessarily induce a subarena. Hence, to make a recursive call the algorithm
determines an appropriate subset of V ′j which does induce a subarena. If
this is a proper subset, then the winning condition is defined over a superset
of the subarena’s vertices.

The input for Zielonka’s algorithm (see Algorithm 1) is an arena A with
vertex set V and the Zielonka tree of a winning condition (F0,F1) over V ′

for some finite set V ′ ⊇ V .

Algorithm 1 Zielonka(A,ZF0,F1).
i := RtPlr(ZF0,F1)
k := BrnchFctr(ZF0,F1)
if The root of ZF0,F1 has no children then
Wi := V ; W1−i := ∅
return(W0,W1)

end if
U0 := ∅; j := 0
repeat
j := j + 1
Aj := AttrV1−i(Uj−1)
Xj := V \Aj
Tj := Chld(ZF0,F1 , j mod k)
Yj := Xj \AttrXji (Xj \ RtLbl(Tj))
(W j

0 ,W
j
1 ) := Zielonka(A[Yj ], Tj)

Uj := Aj ∪W j
1−i

until Uj = Uj−1 = · · · = Uj−k
Wi := V \ Uj ; W1−i := Uj
return (W0,W1)

Let us explain the algorithm. For the sake of exposition, we assume
i = RtPlr(ZF0,F1) = 1 in the subsequent paragraphs. If this is not the case
then the roles of the two players have to be be swapped. If the root of ZF0,F1

has no children, then F0 = ∅ and every play is winning for Player 1. Hence,
the algorithm returns W1(G) = V . If the root has children, then Zielonka’s
algorithm computes the winning regions of the players by successively iden-
tifying parts of Player 0’s winning region (the sets U0 ⊆ U1 ⊆ U2 ⊆ · · · )
until they converge to the winning region. Figure 4.8 depicts the situation
in the j-th iteration of the algorithm.
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Uj−1

AttrV0 (Uj−1)

Xj \ RtLbl(Tj)

AttrXj1 (Xj \ RtLbl(Tj))
W j

0 W j
1

Uj

YjAj

Xj

Figure 4.8: The sets computed by Zielonka’s algorithm in its j-th iteration

The vertices in Uj−1 are already determined to belong to W0(G). Thus,
all vertices in the 0-attractor of Uj−1 also belong toW0(G). As a complement
of an attractor, the set Xj = V \ Aj induces a subarena. After removing
the vertices in Aj from the arena, the algorithm also removes the vertices in
the 1-attractor of Xj \ RtLbl(Tj). Thus, we are in a situation as described
above: the remaining vertices induce a subarena whose vertex set is a subset
of RtLbl(Tj). Hence, the algorithm can recursively compute the winning
regions W j

i in this subarena with Zielonka tree Tj . By construction, the
winning region W j

0 is also a subset of the winning region W0(G). Thus, the
algorithm can move into the next iteration with Uj = Aj∪W j

0 . It terminates
only when the size of the set Uj does not increase for k = BrnchFctr(ZF0,F1)
consecutive iterations. Since the sets Uj are increasing, the algorithm ter-
minates after at most k · |A| many iterations. Furthermore, in the last k
iterations, the sets Uj do not increase, hence we have (Aj \ Uj−1) = ∅ and
W j

0 = ∅ in each of these iterations. The following theorem states that the
sets W0 and W1 returned by the algorithm are indeed the winning regions.

Theorem 4.22 ([Zie98]). Let G = (A,F0,F1) be a Muller game. On in-
put (A,ZF0,F1), Algorithm 1 terminates with output (W0(G),W1(G)).

The execution of Zielonka’s algorithm gives us a structure for W0 =
W0(G) and W1 = W1(G) that we use in Subsection 4.2.2 to construct win-
ning strategies that bound the losing player’s scores by two. The set W0

is partitioned into the attractors given by the sets Aj \ Uj−1, and the re-
cursively computed winning regions given by the sets W j

0 . On the other
hand, the structure of W1 is given by the final k iterations of the algo-
rithm. In each of these iterations, the algorithm computes the attractor
AttrXj1 (Xj \ RtLbl(Tj)), where Xj = W1, and it recursively computes the
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winning region W j
1 ⊆W1. The attractor and the winning region are a parti-

tion of the set W1. The final k iterations of the algorithm give k partitions,
one for each child of the root of the Zielonka tree.

This structure of the sets W0 and W1 restricts the possible moves avail-
able to the players. These restrictions are key to proving the algorithm to be
correct. First, let us consider the setW0 and the moves available to Player 1.
All outgoing edges of a vertex v ∈W j

0 ∩V1 either lead to W j
0 or to Aj . They

cannot lead to W j
1 , since the winning region W j

0 of the Muller game with
arena A[Yj ] and winning condition encoded by Tj is a trap in the arena A[Yj ].
Furthermore, such an edge cannot lead to AttrXj1 (Xj \RtLbl(Tj)), since this
would imply v ∈ AttrXj1 (Xj \ RtLbl(Tj)). Hence, when the play in is W j

0 ,
Player 1’s only choices are to stay in the “smaller” Muller game or to move
to Aj , which means Player 0 can force the token into Uj−1.

Now, let us consider W1 and the moves of Player 0. All outgoing edges
of a vertex v ∈ W1 ∩ V0 lead back to W1. If there is an edge (v, v′) with
v′ ∈ W0, then v′ would be added to some set Aj , since Player 0 can force
the token from v into some set Uj . In the last k iterations of the algorithm,
the sets Xj are always equal to W1 and the sets Yj are the winning region of
Player 1 in the Muller game with arena A[Yj ] and winning condition encoded
by Tj . Here, Player 0’s only choices are to stay in in the winning region of
the “smaller” Muller game or to move to AttrXj1 (Xj \ RtLbl(Tj)).

Zielonka used these two properties to prove Theorem 4.22 by inductively
defining winning strategies for the setsW0 andW1 returned by the algorithm,
thereby proving that these sets are indeed the winning regions of the Muller
game. Player 0 plays the attractor strategy to Uj−1 on each set Aj \ Uj−1,
and a recursively defined winning strategy on each set W j

0 . We have argued
above that Player 1 can escape from a set W j

0 , but only to vertices in Aj .
Hence, every play consistent with this strategy must eventually be confined
to one of the sets W j

0 . Thus, the strategy is winning for Player 0 by induc-
tion hypothesis, since the finite play prefix is irrelevant when it comes to
determining the winner by the infinity set.

On the other hand, Player 1 uses a cyclic counter c ranging over 0, . . . , k−
1 to implement his strategy: suppose c = j and let n be the index at which
the algorithm terminated. In Wn−j

1 , the strategy plays according to a re-
cursively defined winning strategy. If Player 0 chooses to leave Wn−j

1 , then
she can only move to a vertex in AttrXn1 (Xn \ RtLbl(Tn−j)) as seen above.
Hence, the strategy for Player 1 starts playing an attractor strategy to reach
Xn \ RtLbl(Tn−j) ⊆ V \ RtLbl(Tn−j). Once this set has been reached, the
counter c is incremented modulo k, and the strategy repeats the behavior
described above with respect the new value of c. There are two possibilities
for a play consistent with this strategy: if it stays from some point onwards
in some Wn−j

1 , then it is winning by the induction hypothesis. Otherwise,
it visits infinitely many vertices in V \RtLbl(Chld(ZF0,F1 , j)) for every j in
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the range 0 ≤ j < BrnchFctr(ZF0,F1), which implies that the infinity set of
the play is not a subset of any RtLbl(Chld(ZF0,F1 , j)). Hence, it is in F1

and the play is indeed winning for Player 1.
We conclude this subsection by showing that these winning strategies do

not bound the score of the losing player by a constant. In the next subsection
we show how to refine them to achieve our goal.

Theorem 4.23. There exists a family of Muller games Gn = (An,Fn0 ,Fn1 )
such that MaxScFn0 (ρ) = n for some ρ ∈ Beh(W1(Gn), τn), where τn is
Zielonka’s strategy for Player 1 in Gn.

Proof. Let An = (V n, V n
0 , V

n
1 , E

n) with V n = [n + 1], V n
0 = ∅, V n

1 = V n,
En = {(m,m − 1) | 1 ≤ m ≤ n} ∪ {(0, n), (1, n)} (see Figure 4.9(a)), and
Fn1 = {Vn}. It is easy to verify that we have W1(Gn) = V n.

0 1 2 3 · · · n

(Vn, 1)

(Vn \ {0}, 0) (Vn \ {1}, 0) · · · (Vn \ {n− 1}, 0) (Vn \ {n}, 0)

a)

b)

Figure 4.9: a) The arena An and b) the Zielonka tree Z(Fn0 ,Fn1 ) for Theo-
rem 4.23

The Zielonka tree for the winning condition (Fn0 ,Fn1 ) is depicted in Fig-
ure 4.9(b). It has a root labeled by Vn and n + 1 children which are leaves
and are labeled by Vn \{i} for every i ∈ Vn. Assume the children are ordered
from left to right: (Vn \ {0}, 0) < · · · < (Vn \ {n}, 0).

Zielonka’s strategy for Player 1 in Gn, which depends on the ordering of
the children, can be described as follows. Initialize a counter c := 0 and
repeat:

i. Use an attractor strategy to move to vertex c.

ii. Increment c modulo n+ 1.

iii. Go to i.

This strategy is winning from every vertex, since it visits every vertex
infinitely often. Now assume a play consistent with this strategy has just
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visited 0. Then, it visits all vertices 1, . . . , n in this order by cycling through
the loop n, . . . , 1 exactly n times. Hence, the score for the set {1, . . . , n} ∈ Fn0
is infinitely often n.

Note that the arena above is solitary for Player 1, i.e., Zielonka’s strategy
fails to bound the scores even without interference of the losing player. By
contrast, Player 1 has a positional winning strategy for Gn that bounds the
opponents scores by one. The reason the strategy described above fails to do
this is that it ignores the fact that all other vertices are visited while moving
to vertex 0. To be able to prove Theorem 4.17, we need to refine Zielonka’s
strategies to recognize such unnecessary iterations, and this turns out to be
sufficient to bound the opponent’s scores by two.

The unnecessary iterations through the loop n, . . . , 1 are caused by the
children labeled by sets V \ {j} with j > 1, which do not form a loop of
the arena. By distributing the non-loops more cleverly, we obtain a Zielonka
tree with one child such that Zielonka’s strategy (induced by the new tree)
bounds Player 0’s scores by one. It is open whether Theorem 4.17 can be
proven using Zielonka’s strategies, if the Zielonka tree has a certain normal
form.

4.2.2 Bounding the Scores of the Opponent

This subsection is dedicated to proving our main theorem about finite-time
Muller games: a Muller game G = (A,F0,F1) and the corresponding finite-
time Muller game G′ = (A,F0,F1, 3) with uniform threshold score three
have the same winning regions. Our proof strategy is as follows: using
the structure of the winning regions of the Muller game G as computed by
Zielonka’s algorithm, we define uniform winning strategies for both players
for G that bound the losing player’s scores by two. These strategies are
also uniform winning strategies for the finite-time Muller game G′: suppose
the strategy σ for Player i bounds Player (1 − i)’s scores by two. Then,
in every play that is consistent with σ some score eventually reaches its
threshold score three. However, this cannot be a set of Player 1− i, since his
scores are bounded by two. Hence, these strategies witness Wi(G) ⊆Wi(G′)
for i ∈ {0, 1}. Due to determinacy, the sets Wi(G) (and the sets Wi(G′))
partition the arena’s set of vertices, hence we conclude Wi(G) = Wi(G′) for
i ∈ {0, 1}. Thus, it remains to prove the existence of such strategies.

Lemma 4.24. Let G = (A,F0,F1) be a Muller game. Player i has a strat-
egy σ such that MaxScF1−i(ρ) ≤ 2 for every play ρ ∈ Beh(Wi(G), σ).

Three comments are due before we begin the proof. First, in Theo-
rem 4.23 we saw that Zielonka’s strategies do not necessarily satisfy the
property required by Lemma 4.24. This is not surprising, since they just
have to be winning in a Muller game, but were never designed to keep the
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scores small. But, by paying close attention to the scores during the induc-
tive composition of strategies, we are able to devise strategies that bound
the losing player’s scores by two.

Second, the bound two on the losing player’s scores is optimal. To see
this, consider the Muller game G in Example 4.12 and assume the token is
placed at vertex 1 ∈ W0(G). No matter to which vertex Player 0 moves the
token, she cannot prevent her opponent from reaching a score of two: if she
moves it to 0, then Player 1 can use the self-loop once and then return the
token to 1. The resulting play 1001 reaches score two for the set {0, 1} ∈ F1.
The case where Player 0 moves the token to 2 is symmetric: Player 1 can
enforce a score of two for the set {1, 2} ∈ F1. However, note that in both
plays, Player 0 is the first to reach a score of two. Hence, we cannot use G to
prove Theorem 4.16. In contrast, the theorem can be used to give another
proof that the losing player’s score cannot be bounded by one. If it could,
then the finite-time Muller game with uniform threshold score two has the
same winning regions as the original Muller game. However, Theorem 4.16
showed that this is not always the case. These two arguments show that
if we are just interested in bounding the scores of the losing player, then
Lemma 4.24 is optimal. We discuss possible strengthenings that go beyond
bounding the scores at the end of this subsection.

Third, by formulating Lemma 4.24, we have transformed a combination of
a reachability condition and a safety condition (“Player i is the first to reach
a score of three”) into a safety condition (“Player i prevents her opponent
from reaching a score of three”). The fact that Player i is the first to reach
a score of three follows then from Lemma 4.9(i). While the first condition
speaks about the scores of both players, the safety condition only refers to
the scores of one player. This simplifies our proof obligation considerably:
we do not try to achieve a high score for the winning player but only bound
the scores of the losing player.

We continue by discussing why Zielonka’s strategies fail to bound the
scores. This will be instructive when we define strategies that do satisfy the
requirements of Lemma 4.24. As already noted before, Zielonka’s strategies
have a recursive structure, which means that a strategy σ for an arena with
vertex set V often proceeds by playing a recursively defined strategy σ′ for
a subarena with vertex set X ⊂ V . For example, the two players could
construct a play prefix v0 · · · vn, where vn ∈ X, and then σ could start
executing σ′ starting from vertex vn. However, the vertex vn may not be
the first position at which the play entered the set X, and there could be a
suffix vmvm+1 · · · vn of the play such that each vertex in the suffix is contained
in X. The strategies produced by Zielonka’s algorithm ignore this suffix,
because it is not relevant when we only want to construct a winning strategy
for a Muller game, since the infinity set – which determines the winner – is
not influenced by a finite prefix.
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Example 4.25. In the Muller game presented in Theorem 4.23, Zielonka’s
strategy for Player 0 is composed of the attractor strategies to the singleton
sets {j} for every j in the range 0 ≤ j ≤ n, each of them being defined
on the set of all vertices. The overlap of the “domain“ of the strategies and
the strict cycling through these attractor strategies – which ignores that fact
that all vertices are visited when attracting from 0 to 1 – is the reason why
these strategies allow high scores for the losing player. 3

By contrast, when we want to construct a winning strategy that satis-
fies the properties given by Lemma 4.24, this suffix turns out to be vitally
important. We now give some definitions that allow us to work with such
suffixes. First, we extend the notion of a play. Previously, we had that a
play begins at a starting vertex and its evolution is induced by the strategies
for the players. Now we allow a play to begin with an initial play prefix
over which the players have no control. Only after this prefix, the players
construct a continuation using their strategies. This new definition is useful,
because it allows strategies to base their decisions on the properties of the
initial play prefix, even if they had no influence on forming it.

Definition 4.26. Let A = (V, V0, V1, E) be an arena. For a non-empty play
prefix w = w0 · · ·wm ∈ V +, and strategies σ ∈ ΠAi , τ ∈ ΠA1−i, we define the
infinite play ρ(w, σ, τ) = ρ0ρ1ρ2 · · · inductively by ρn = wn for 0 ≤ n ≤ m
and for n > m by

ρn =

{
σ(ρ0 · · · ρn−1) if ρn−1 ∈ Vi,
τ(ρ0 · · · ρn−1) if ρn−1 ∈ V1−i.

Note that this definition subsumes our original definition of ρ(v, σ, τ)
where v is a vertex.

In fact, the play prefixes that are passed to our strategies are not to-
tally arbitrary. As described previously, these prefixes arise out of decisions
made before the strategy is recursively applied. Therefore, we have some
control over the form that these prefixes take. We think of such a prefix as
a burden that is handed down to a recursively defined strategy and we have
to construct our strategies such that they can handle burdens and only pass
burdens when calling other strategies. Hence, the following property – which
is an equilibrium between these two requirements – plays a crucial role in
our construction.

Definition 4.27. Let F ⊆ 2V . A play prefix w is an F-burden if we have
MaxScF (w) ≤ 2 and if for every F ∈ F either

� ScF (w) = 0, or

� ScF (w) = 1 and AccF (w) = ∅.
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We do not require the burden to contain only vertices from the set V ,
because it is typically a play prefix in some superset of V only ending in V .
A play prefix w satisfies the criteria of a burden if it has the following two
properties. First, the requirement that MaxScF (w) ≤ 2 means that the
score for every set F ∈ F must be bounded by two at every position during
the play prefix w. Second, the score for each set F ∈ F at the end of the
prefix must either be zero or one. Additionally, if the score is one, then the
accumulator of this set must be empty. In other words, while the scores are
allowed to reach two during the play prefix, we insist that they satisfy a more
restricted condition at the end.

Example 4.28. Consider w = 012212210. It is a {{2}, {0, 1}}-burden, since
the score for both sets is bounded by two throughout w and since we have
Sc{2}(w) = 0, Sc{0,1}(w) = 1 and Acc{0,1}(w) = ∅. On the other hand, it is
not a {{1, 2}}-burden, since the score for {1, 2} reaches value three. 3

Before we finally begin proving Lemma 4.24, we state two useful proper-
ties of burdens that are applied when we pass burdens between strategies.

Lemma 4.29. Let F ⊆ 2V .

i. Every suffix of an F-burden is an F ′-burden for every F ′ ⊆ F .

ii. Let w be a play prefix and let v be a vertex. If MaxScF (w) ≤ 2 and if
Lst(w) /∈ F for every F ∈ F , then wv is an F-burden.

Proof. i.) Let w = w0 · · ·wn be an F-burden and w′ = wm · · ·wn for some
m in the range 0 ≤ m ≤ n. The characterization of the scores by decompo-
sitions of suffixes implies

ScF (wm · · ·wm+j) ≤ ScF (w0 · · ·wm · · ·wm+j) (4.1)

for every j in the range 0 ≤ j ≤ n−m and every F ⊆ V . Thus,

MaxScF ′(w′) ≤ MaxScF (w′) ≤ MaxScF (w) ≤ 2 .

Furthermore, by plugging j = n − m into (4.1), we obtain ScF (w′) ≤
ScF (w) ≤ 1 for every F ∈ F ′ ⊆ F . Now, assume ScF (w′) = 1. Then,
we also have ScF (w) = 1 due to (4.1). If the accumulator AccF (w′) is non-
empty, then the accumulator AccF (w) has to be non-empty as well, which
contradicts the fact that w is an F-burden.

ii.) It suffices to consider the scores of wv, since the scores throughout
w are bounded by two. Let F ∈ F . We have ScF (w) = 0 and AccF (w) = ∅.
Hence, if F = {v}, then ScF (wv) = 1 and AccF (wv) = ∅. Otherwise, we
have ScF (wv) = 0. Thus, wv is indeed an F-burden.

Now, we have introduced all tools necessary to prove Lemma 4.24 by
induction over the height of the Zielonka tree of a Muller game G. The
induction hypothesis is the following property:
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Player i has a strategy for G that bounds the scores for every
set in F1−i � Wi(G) by two and never leaves her winning region,
even if the play starts with an F1−i �Wi(G)-burden through her
winning region.

Note that we only bound the scores for subsets of the winning region. This
suffices when we pass burdens, all other sets – which contain a vertex of the
opponent’s winning region – are taken care of by the fact that the strategy
does not leave the winning region. Hence, these sets do not even reach a
score of one. In the following, to be in line with the explanation of Zielonka’s
algorithm in the previous subsection, we always assume that the root label
of a Zielonka tree is in F1. If this is not the case then the roles of the two
players have to be swapped.

We begin with the base case of the induction, which occurs when G
is a Muller game whose Zielonka tree ZF0,F1 is a leaf. Since we assume
RtLbl(ZF0,F1) ∈ F1, we have F0 = ∅. Thus, the induction base is given by
the following lemma.

Lemma 4.30. Let G = (A,F0,F1) be a Muller game such that F0 = ∅.
Then, every strategy τ∗ ∈ ΠA1 for Player 1 satisfies MaxScF0(ρ(w, σ, τ∗)) = 0
and Occ(ρ(w, σ, τ∗)) ⊆ W1(G) for every strategy σ ∈ ΠA0 and every F0-
burden w ∈ (W1(G))+.

Proof. As F0 is empty, we have W1(G) = V , and every play ρ satisfies
MaxScF1(ρ) = 0 and Occ(ρ) ⊆W1(G).

For the induction step consider a Muller game G = (A,F0,F1) with
arena A = (V, V0, V1, E) and Zielonka tree ZF0,F1 with BrnchFctr(ZF0,F1) =
k > 0. We have to give two proofs: one for the set W0(G), and the other for
the set W1(G). We begin with the former set.

Recall that the algorithm computes W0(G) as increasing chain of sets

∅ = U0 ⊆ U1 ⊆ · · · ⊆ Un = W0(G)

where Uj = W j
0 ∪ Aj for each j in the range 1 ≤ j ≤ n. Here, W j

0 is the
winning region of Player 0 in the Muller game

(A[Yj ],F0 � RtLbl(Tj),F1 � RtLbl(Tj))

defined for the recursive call in the j-th iteration of Zielonka’s algorithm.
The Zielonka tree of this game is Tj = Chld(ZF0,F1 , j mod k), i.e., a child of
ZF0,F1 . Hence, the induction hypothesis is applicable and yields a strategy

σR
j : (Yj)∗(Yj ∩ V0)→ Yj

for Player 0 with MaxScF1�W j
0
(ρ(w, σR

j , τ)) ≤ 2 and Occ(ρ(w, σR
j , τ)) ⊆ W j

0

for every τ ∈ ΠA[Yj ]
1 and every F1 � W

j
0 -burden w ∈ (W j

0 )+. Here, we
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applied the equality (F1 � RtLbl(Tj)) � W
j
0 = F1 � W

j
0 , which holds due

to RtLbl(Tj) ⊇ W j
0 . Furthermore, Aj is the 0-attractor of Uj−1 and we

denote by σA
j a positional attractor strategy for Player 0 which is defined on

Aj \ Uj−1.
We can now construct our proposed winning strategy. It is similar to

Zielonka’s strategy, but is careful to pass the appropriate burden to the
strategies σR

j . For every play prefix w and every vertex v ∈ V0 ∩W0(G), we
define

σ∗(wv) =


σR
j (w′v) if v ∈W j

0 , where w
′ is the longest suffix of w with

Occ(w′) ⊆W j
0 ,

σA
j (v) if v ∈ Aj \ Uj−1.

If v ∈ V0 \ W0(G), then we define σ∗(wv) to be an arbitrary successor of
v. This is just for completeness as our strategy never leaves the winning
region. The strategy σ∗ passes the complete suffix of wv that is contained
in W j

0 to σR
j . This allows us to apply the induction hypothesis for σR

j in
the following proof, which shows that σ∗ has the property required by the
induction hypothesis. Therefore, the next lemma proves the part of the
induction step that deals with W0(G).

Lemma 4.31. Let τ ∈ ΠA1 and let w ∈ (W0(G))+ be an F1 �W0(G)-burden.
Then, MaxScF1�W0(G)(ρ(w, σ∗, τ)) ≤ 2 and Occ(ρ(w, σ∗, τ)) ⊆W0(G).

Proof. Consider such a play ρ = ρ(w, σ∗, τ) and a position n ≥ |w| − 1. If
ρn ∈W j

0 ⊆ Uj for some j, then ρ is from position n onwards consistent with
the strategy σR

j (which means that Player 0 always moves to a successor in
W j

0 ) until Player 1 decides to leave W j
0 , if he does at all. We have seen in

the previous subsection that he can only leave W j
0 by moving to a vertex in

Aj . On the other hand, if ρn ∈ (Aj \ Uj−1) ⊆ Uj for some j, then ρ is from
position n onwards consistent with the attractor strategy σA

j and remains
in Aj \ Uj−1 until a vertex in Uj−1 is reached. At this position, the play is
either in W j−1

0 or in Aj−1. Hence, we have shown Occ(ρ) ⊆ W0(G) and it
remains to bound the scores.

We denote the last vertex of w by v and w without its last vertex by w′.
By assumption, v is in W0(G) and thereby in some W j

0 or Aj \Uj−1. Hence,
there is a k in the range 0 < k ≤ n such that the play can be decomposed as

ρ = w′wnanwn−1an−1 · · · ak+1wk ,

where w′ is the burden without its last vertex (which is in the first non-empty
portion wj or aj), wj is the portion of the play after w′ that is contained
inW j

0 , and aj is the portion of the play after w′ that is contained in Aj\Uj−1.
One or both of these infixes could be empty, but the portion wk contains
an infinite suffix of the play. We prove our claim by induction over this
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decomposition. The base case follows from the fact that w is an F1 �W0(G)-
burden, which means that we have MaxScF1�W0(G)(w′) ≤ 2.

We show the induction step in two parts. First, we have to prove that if
we have

MaxScF1�W0(G)(w
′wnan · · ·wj+1aj+1) ≤ 2 ,

then also

MaxScF1�W0(G)(w
′wnan · · ·wj+1aj+1wj) ≤ 2 .

Here, we assume that wj is non-empty, as the claim trivially holds otherwise.
Hence, let s be the first vertex of wj and let F ∈ F1 � W0(G). Due to the
induction hypothesis, we only have to show that the score for F is bounded
by two during the portion wj .

If F contains at least one vertex in W0(G)\W j
0 , then the score for F can

increase at most once during the portion wj , because the vertices in W0(G)\
W j

0 do not occur in wj . If it does not increase during wj , we are done, since
the score for F is bounded by two before wj and does not increase during
wj , hence it is bounded by two during wj . On the other hand, if the score
for F does increase during wj , then F contains at least one vertex t ∈W j

0 . If
wnan · · ·wj+1aj+1 is empty, then we have s = v, i.e., the first vertex of wj is
the last vertex of the burden w. Hence, the score for F is at most one at the
beginning of wj and can increase at most once during wj , hence it is bounded
by two during wj . Now suppose wnan · · ·wj+1aj+1 is non-empty. Then, the
last vertex of the burden w = w′v, is the first vertex of wnan · · ·wj+1aj+1 and
the vertex t ∈ W j

0 does not occur in this infix. Therefore, the score for F
can increase during v−1wnan · · ·wj+1aj+1 (note that we removed the first
vertex) only once, and this only if t is already in the accumulator AccF (w′v).
Thus, if the score for F increases during v−1wnan · · ·wj+1aj+1, then we
have AccF (w′v) 6= ∅, which implies ScF (w′v) = 0. On the other hand,
if ScF (w′v) = 1, then AccF (w′v) = ∅ and the score for F cannot increase
during v−1wnan · · ·wj+1aj+1. Thus, we have ScF (w′wnan · · ·wj+1aj+1) ≤ 1,
and even if the score for F increases once during wj , it cannot increase to
more than two throughout wj .

To conclude the first part of the induction step, we consider the sets F ∈
F1 � W

j
0 , which are exactly the sets F ∈ F1 � W0(G) that do not contain

a vertex in W0(G) \ W j
0 . In this case the claim follows from the induc-

tion hypothesis for the strategy σR
j : to invoke it, we have to show that

w′wnan · · ·wj+1aj+1s is an F1 �W
j
0 -burden. Then, the strategy bounds the

scores for the sets F ∈ F1 � W
j
0 by assumption on σR

j , as the portion of
the play that is consistent with σR

j starts with a burden, which is passed to
the strategy. If wnan · · ·wj+1aj+1 is non-empty, then its last vertex is not
in W j

0 . Since the scores during w′wnan · · ·wj+1aj+1 are bounded by two,
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Lemma 4.29(ii) is applicable and shows that w′wnan · · ·wj+1aj+1s is indeed
an F1 �W

j
0 -burden. On the other hand, if wnan · · ·wj+1aj+1 is empty, then

s = v, i.e., the first vertex of wj is the last vertex of the burden w = w′v. As
w = w′wnan · · ·wj+1aj+1s is an F1 �W0(G)-burden by assumption, it is also
an F1 �W

j
0 -burden by Lemma 4.29(i), since we have F1 �W

j
0 ⊆ F1 �W0(G)

due to W j
0 ⊆W0(G). This finishes the first part of the induction step.

In the second part of the induction step, we have to prove that if

MaxScF1�W0(G)(wwnan · · · aj+1wj) ≤ 2 ,

then also

MaxScF1�W0(G)(w
′wnan · · · aj+1wjaj) ≤ 2 .

Again, we can assume aj to be non-empty with first vertex s, since the claim
trivially holds if this is not the case. Let F ∈ F1 �W0(G). Again, due to the
induction hypothesis, we only have to show that the score for F is bounded
by two during the portion aj .

If F contains a vertex in W0(G) \ (Aj \Uj−1), then the score for F must
remain below two for exactly the same reasons as in the first part of the
induction step. Otherwise, if F ⊆ Aj \ Uj−1, then we claim that the score
for F can rise to at most two during the portion aj . As above, we have
ScF (w′wnan · · · aj+1wj) = 0, if wnan · · · aj+1wj is non-empty. Since Player 0
plays an attractor strategy during aj , every vertex in Aj \ Uj−1 occurs at
most once during aj . Thus, as F is a subset of Aj\Uj−1, its score increases at
most once during aj and is thereby even bounded by one. If wnan · · · aj+1wj
is empty, then we have s = v, i.e., the first vertex of aj is the last vertex of
the burden w = w′v. Thus, ScF (w′v) ≤ 1. Again, no vertex occurs twice in
v−1aj , hence the score for F is increased at most once during v−1aj . This
bounds the score for F by two during aj , since it is at most one at the
beginning of aj .

We now turn our attention to the set W1(G). Remember that k > 0
denotes the number of children of ZF0,F1 . The structure ofW1(G) is induced
by the last k iterations of Zielonka’s algorithm. For the sake of readability,
we (mis)use the index j, which ranges over 0, . . . , k − 1, to refer to the
sets Uj , Xj , Yj ,W

j
i , and the tree Tj computed in the last k iterations. In

each of these iterations, we have Uj = Uj−1 and therefore Xj = W1(G) and
Yj = W j

1 . Hence, for each child Tj of ZF0,F1 , the winning region W1(G) can
be decomposed as depicted in Figure 4.10: here, W j

1 is the winning region
of Player 1 in the Muller game (A[Yj ],F0 � RtLbl(Tj),F1 � RtLbl(Tj)) with
vertex set Yj = W j

1 defined for the recursive call of Zielonka’s algorithm.
Since the Zielonka tree Tj of this game is a child of ZF0,F1 , the induction
hypothesis is applicable and yields a strategy

τR
j : (W j

1 )∗(W j
1 ∩ V1)→W j

1
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for Player 1 with MaxScF0�W j
1
(ρ(w, σ, τR

j )) ≤ 2 and Occ(ρ(w, σ, τR
j )) ⊆ W j

1

for every σ ∈ ΠA[Yj ]
0 and every F0 � W

j
1 -burden w ∈ (W j

1 )+. Here, we
applied the equality (F1 � RtLbl(Tj)) � W

j
1 = F1 � W

j
1 , which holds due to

RtLbl(Tj) ⊇W j
1 . All other vertices in W1(G) \W j

1 belong to the 1-attractor
of W1(G) \RtLbl(Tj), i.e., Player 1 is able to visit a vertex that is not in the
root label of Tj . We denote a positional attractor strategy for this set by τA

j .

W j
1

AttrW1(G)
1 (W1(G) \ RtLbl(Tj))

W1(G) \ RtLbl(Tj)

Figure 4.10: The structure of W1(G) with respect to Tj . The dashed line
indicates a part of a play according to τ∗ between two change points

Figure 4.10 shows the outcome when Player 1 plays τR
j and τA

j . The play
remains in the set W j

1 until Player 0 chooses to leave W j
1 , if he does at all.

At this position the play is forced to visit some vertex in W1(G) \RtLbl(Tj).
Once the play enters W1(G) \ RtLbl(Tj), a new index j′ has to be selected,
and τR

j′ and τ
A
j′ is played. Zielonka’s strategy chooses j′ to be j + 1 mod k,

and Theorem 4.23 shows that this method does not bound the scores of
the losing Player by two. Our goal is to provide a score-based method for
choosing a new index that does bound the scores of the opponent by two.

Recall that Lemma 4.8 states that the sets with non-zero score and the
accumulators form a chain with respect to the subset relation. Since this
property is universal, it still holds if we restrict ourselves to sets in F0. The
indicator function of a play selects the maximal element of this chain, when
it is restricted to sets in F0. For every play prefix w, we define

Ind(w) =
⋃

F∈F0 :
ScF (w)>0

F ∪
⋃
F∈F0

AccF (w) .

The following lemma gives an important property that is used in our in-
dex selection method: there is always some child whose label contains the
indicator.

Lemma 4.32. For every play prefix w, there is some j in the range 0 ≤ j < k
such that Ind(w) ⊆ RtLbl(Tj).

Proof. Lemma 4.8 implies that there is a⊆-maximal set I such that Ind(w) =
I, with either ScI(w) > 0 and I ∈ F0 or AccF (w) = I for some F ∈ F0,
which implies I ⊆ F . Hence, Ind(w) ⊆ F for some F ∈ F0. Since we
assume RtLbl(ZF0,F1) ∈ F1, by definition of ZF0,F1 , there is some child of
the root labeled by RtLbl(Tj) such that F ⊆ RtLbl(Tj). Hence, we have
Ind(w) = I ⊆ F ⊆ RtLbl(Tj).
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When a new child must be chosen, our strategy picks one whose label
contains the value of the indicator function for the play up to that position.
Lemma 4.32 implies that such a child always exists. Also, this condition has
to be used when picking the child in the first step after the burden w: in
this case the indicator of w is used.

Assume, the j-th child is chosen. We define our strategy so that a play
either stays in the smaller winning region W j

1 ad infinitum (which allows us
to apply the induction hypothesis) or it eventually leaves RtLbl(Tj), which
resets the scores for all sets which contributed to the accumulator at the
position where j is picked. However, by leaving RtLbl(Tj) other scores may
be increased. These scores are taken care of by the fact that an attractor
strategy visits every vertex at most once. Hence, these scores increase at
most once before a new index j′ i selected.

To formalize this, we define an auxiliary function

c : (W1(G))∗ → {0, 1, . . . , k − 1} ∪ {⊥}

that uses the indicator of a play prefix to specify which child the strategy is
currently considering. For each play w, if c(w) = j then the strategy follows
τA
j and τR

j . If c(w) = ⊥ then the strategy moves arbitrarily. This is only
the case when the last vertex of the play prefix is not contained in any of
the labels of the children. This condition is equivalent to the indicator being
empty. We define c(ε) = ⊥, and for every play prefix w and every vertex v

c(wv) =


c(w) if v ∈ RtLbl(Tc(w)),
j if v /∈ RtLbl(Tc(w)), Ind(wv) 6= ∅, and

j is minimal with Ind(wv) ⊆ RtLbl(Tj),
⊥ if v 6∈

⋃
0≤j<k RtLbl(Tj).

The case distinction in the definition of c is exhaustive, since Ind(wv) = ∅
is equivalent to v 6∈

⋃
0≤j<k RtLbl(Tj). Furthermore, the minimality in the

second case is not essential, but makes the definition unambiguous. The
following remark is useful when we prove that our strategy has the desired
properties.

Remark 4.33. If Ind(wv) = j 6= ⊥, then v ∈ RtLbl(Tj).

Finally, we compose the strategies τR
j and τA

j to a strategy τ∗ for Player 1
for A as described above. For every play prefix w and every vertex v ∈
V1 ∩W1(G), define

τ∗(wv) =



τR
j (w′v) if c(wv) = j, v ∈W j

1 , and w
′ is the longest suffix

of w with Occ(w′) ⊆W j
1 ,

τA
j (v) if c(wv) = j, and v ∈ RtLbl(Tj) \W j

1 ,

x if c(wv) = ⊥, where x is some vertex in W1(G)
with (v, x) ∈ E.

113



4 Playing Muller Games in Finite Time

If v ∈ V1 \ W1(G), then we define τ∗(wv) to be an arbitrary successor of
v. This is just for completeness as our strategy never leaves the winning
region. Furthermore, a vertex x as above always exists, as not every successor
of a vertex in V1 ∩ W1(G) can be in W0(G). Finally, Remark 4.33 shows
that the definition of τ∗ is complete. Note that τ∗ passes the complete
suffix of wv that is contained in W j

1 to τR
j . This allows us to apply the

induction hypothesis for τR
j in the part of the induction step that deals with

the setW1(G). We now prove that τ∗ has the required properties. Our proof
uses change points16, which are positions in a play where the function c
changes its value.

Definition 4.34. Let ρ be a play. A position n > 0 of ρ is a change point
in ρ if c(ρ0ρ1 · · · ρn−1) 6= c(ρ0ρ1 · · · ρn−1ρn).

In the next Lemma, we prove that if Player 1 plays according to τ∗

starting from a burden, then the play up to the next change point n is also a
burden. Our intention is to use this as part of an inductive proof that every
play bounds the scores for the opponent’s sets by two.

Lemma 4.35. Let ρ be a play such that ρ0 · · · ρm is an F0 � W1(G)-burden
and ρ is consistent with τ∗ from (at least) m onwards. If n is the smallest
change point in ρ satisfying m < n, then ρ0 · · · ρn is an F0 �W1(G)-burden.

Proof. We first provide a proof for the case c(ρ0 · · · ρm) = ⊥. By definition
this implies ρn′ /∈ RtLbl(Tj) for every n′ in the range m ≤ n′ < n and
every j in the range 0 ≤ j < k. Therefore, we have ScF (ρ0 · · · ρn′) = 0 and
AccF (ρ0 · · · ρn′) = ∅ for every F ∈ F0 and for every n′ in the range m ≤
n′ < n, i.e., the scores are zero from position m up to, but not including,
position n. Applying Lemma 4.29(ii) shows that ρ0 · · · ρn is an F0 �W1(G)-
burden, since we have ρn−1 /∈ F for every F ∈ F0 � W1(G) and since the
scores are bounded by two during ρ0 · · · ρn−1.

Now, consider the case c(ρ0 · · · ρm) = j 6= ⊥. We split the play ρ into
four pieces, as depicted in Figure 4.11. The piece p1 contains the portion of ρ
up to and including the position ρm and the piece p4 contains the portion
of ρ after and including the change point ρn. The piece p2 contains the
portion of ρ between the positions ρm and ρn that is contained in the set
W j

1 , and the piece p3 contains the portion of ρ between the positions ρm
and ρn that is contained in the set AttrW1(G)

1 (W1(G) \ RtLbl(Tj)). Clearly,
we have ρ = p1p2p3p4 and the first vertex of p4 is not in RtLbl(Tj).

We now prove that MaxScF0�W1(G)(p1p2p3) ≤ 2. The scores at position ρn
are considered later. For the portion p1 the scores are bounded by two by
assumption. Now, consider a set F ∈ F0 �W1(G). During the portion p2, τR

j

is being played. Since p1 is an F0 �W1(G)-burden, the induction hypothesis
16The definition of a change point here is not related to the one in the alternating color

technique presented in Subsection 3.2.1.
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ρ
p1 p2 p3 p4

W j
1 AttrW1(G)

1 (W1(G) \ RtLbl(Tj))

/∈ RtLbl(Tj)

Figure 4.11: The decomposition of a play for Lemma 4.35

for τR
j is applicable, since τ∗ passes the complete suffix of p1 that is contained

in W j
1 to τR

j . This proves the claim if we have F ⊆ W j
1 . On the other

hand, if there is a vertex s ∈ F \ W j
1 , then s cannot be visited during

the portion p2. This implies that the score for F can increase at most
once during p2. Since p1 is a burden, we have ScF (p1) ≤ 1, which implies
MaxSc{F}(p1p2) ≤ 2.

During the portion p3 we know that the attractor strategy τA
j is being

played. Since ρn is the smallest change point after m, the portion p3 is in
AttrW1(G)

1 (W1(G) \ RtLbl(Tj)), but not in W1(G) \ RtLbl(Tj). Hence, each
vertex can occur at most once during this portion. Consider a set F ∈ F0 �
W1(G). If F contains no vertex from AttrW1(G)

1 (W1(G)\RtLbl(Tj)), then the
score for F is 0 during the portion p3. Therefore, we only need to consider the
case where F contains at least one vertex in AttrW1(G)

1 (W1(G) \ RtLbl(Tj)),
which implies that the score for F can increase at most once during p3, since
this vertex occurs at most once in p3. So, we only need to show that the
score for F is at most one at the end of p1p2. The assumption that p1 is
a burden implies that ScF (p1) ≤ 1. If p2 is empty, then we are done, since
the score for F is at most one before p3 and increases at most once during
p3. If p2 is non-empty, then we distinguish two cases: if the score for F is
increased during p2, then the vertex in F ∩AttrW1(G)

1 (W1(G) \RtLbl(Tj)) is
in the accumulator of p1, which implies ScF (p1) = 0. Furthermore, this is
the only increase, since the vertex in the intersection does not occur again.
Hence, the score for F can increase at most to two during p2p3. On the other
hand, if the score for F is not increased during p2, it can reach at most two
during p2p3, since it is at most one at the end of p1. Therefore, we have
shown MaxScF0�W1(G)(p1p2p3) ≤ 2.

Thus, we have bounded the scores during p1p2p3. To complete the
proof, we have to show that p1p2p3ρn = ρ0 · · · ρn is an F0 � W1(G)-burden,
i.e., we have for every F ∈ F0 � W1(G) either ScF (p1p2p3ρn) = 0, or
ScF (p1p2p3ρn) = 1 and AccF (p1p2p3ρn) = ∅. We split this proof into
two cases. Recall that p1 is a burden. First, we consider sets F ∈ F0 �
W1(G) such that ScF (p1) = 1 and AccF (p1) = ∅. By definition of c we
have F ⊆ Ind(p1), and therefore by definition of our strategy, we have
F ⊆ RtLbl(Tj). Since ρn ∈ W1(G) \ RtLbl(Tj), we have ρn /∈ F . This
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implies ScF (p1p2p3ρn) = 0.
Now, we consider the case ScF (p1) = 0. If ρn ∈ F , then ρn /∈ AccF (p1),

as we have AccF (p1) ⊆ RtLbl(Tj) and ρn /∈ RtLbl(Tj). The score for F
cannot increase during p2p3, since the vertex ρn /∈ RtLbl(Tj) is not visited
during p2p3 which is confined to RtLbl(Tj). Hence, ScF (p1p2p3ρn) is at most
one. If it is zero, we are done. So, assume the score for F is one. Then, it is
increased by visiting ρn. Hence, the accumulator AccF (p1p2p3ρn) is empty
as required. On the other hand, if ρn /∈ F then ScF (p1p2p3ρn) = 0.

We use Lemma 4.35 inductively to show that the strategy τ∗ bounds the
scores of Player 0 by two. For the base case of this inductive proof, we have
to require the play prefix that is passed to the strategy to satisfy the burden
property. The next lemma proves the part of the induction step that deals
with W1(G).

Lemma 4.36. Let σ ∈ ΠA0 and let w ∈ (W1(G))+ be an F0 �W1(G)-burden.
Then, MaxScF0�W1(G)(ρ(w, σ, τ∗)) ≤ 2 and Occ(ρ(w, σ, τ∗)) ⊆W1(G).

Proof. Consider such a play ρ = ρ(w, σ, τ∗). We begin by showing that ρ
does not leaveW1(G). We have seen in the previous subsection that Player 0
cannot leave W1(G) from one of his vertices. Furthermore, all moves of
Player 1 which are consistent with τ∗ lead back to W1(G): if τ∗ uses a
strategy τR

j , then it keeps the token in W j
1 ⊆ W1(G) until Player 0 moves

it to the attractor AttrW1(G)
1 (W1(G) \ RtLbl(Tj)), which is also a subset of

W1(G). From there, Player 1 forces the token to W1(G) \RtLbl(Tj). At this
point, a new strategy τR

j′ is picked and the same argument applies, unless
the function c returns ⊥. But also in this situation, the token is moved to a
successor in W1(G). Hence, we have shown Occ(ρ) ⊆ W1(G) and it remains
to bound the scores.

Since w is an F0 � W1(G)-burden, we can use Lemma 4.35 inductively
to show that, if n ≥ |w| is a change point in ρ, then ρ0ρ1 · · · ρn is a burden.
If ρ contains infinitely many change points, then the proof is complete. This
is because if the play up to every change point is a burden and there is an
infinite number of change points, then MaxScF0�W1(G)(ρ) ≤ 2.

On the other hand, if there is only a finite number of change points after
position |w|−1, then let n be the final change point after |w|−1 in ρ (if there
is no such change point at all, then let n = |w| − 1). Since ρ0 · · · ρn is an
F0 � W1(G)-burden, we have MaxScF0�W1(G)(ρ0 · · · ρn) ≤ 2 in both cases. If
c(ρ0 · · · ρn) = j for some j in the range 0 ≤ j < k, then we have ρm ∈W j

1 for
every m ≥ n. Assume this is not the case: we have ρm ∈ RtLbl(Tj) due to
Remark 4.33 and if there is somem ≥ n such that ρm ∈ RtLbl(Tj)\W j

1 , then
it is in the attractor of W1(G) \ RtLbl(Tj). Hence, there would be another
change point after position n.

Thus, τ∗ follows σR
j and is confined to W j

1 from the position n onwards.
Due to Lemma 4.29(i), ρ0 · · · ρn is also an F0 �W

j
1 -burden and we can apply
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the induction hypothesis to bound the scores for the sets F0 � W
j
1 after

position n. Furthermore, the scores for the sets F ∈ (F0 �W1(G))\(F0 �W
j
1 )

are bounded by one at position n. Since each such set F contains a vertex in
W1(G)\W j

1 (which is not visited after position n), the score can only increase
once after n, and this only if this vertex is in the accumulator, which implies
that the score for the set is zero at position n. Hence, the scores for these sets
are bounded by one after position n. Finally, the scores up to position n are
bounded by the burden property. Therefore, we have MaxScF0�W1(G)(ρ) ≤ 2.

On the other hand, if c(ρ0 · · · ρn) = ⊥, then also c(ρ0 · · · ρm) = ⊥ for
everym > n. This implies ρm 6∈ RtLbl(Tj) for every j in the range 0 ≤ j < k.
Since every F ∈ F0 is a subset of some RtLbl(Tj), we have ScF (ρ0 · · · ρm) = 0
for every m > n and every F ∈ F0. Therefore, MaxScF0�W1(G)(ρ) ≤ 2.

Finally, we can prove Lemma 4.24, which also completes the proof of
Theorem 4.17.

Proof. We prove the following by induction over the height of ZF0,F1 :

Player i has a strategy σ with MaxScF1−i�Wi(G)(ρ(w, σ, τ)) ≤ 2
and Occ(ρ(w, σ, τ)) ⊆ Wi(G) for every strategy τ ∈ ΠA1−i and
every F1−i �Wi(G)-burden w ∈ (Wi(G))+.

This suffices to prove our claim: let ρ ∈ Beh(Wi(G), σ). Then, there is a
strategy τ for Player 1 − i such that ρ = ρ(ρ0, σ, τ). Furthermore, the play
prefix ρ0 is an F1−i �Wi(G)-burden. Thus, we have MaxScF1−i�Wi(G)(ρ) ≤ 2.
It remains to consider the scores for the sets in F1−i \ (F1−i �Wi(G)): each
such set contains a vertex v ∈W1−i(G) which cannot occur in a play that is
consistent with σ since it does not visit v. Therefore the scores for the sets
in F1−i \ (F1−i � Wi(G)) never reach a score of one. Altogether, we have
MaxScF1−i(ρ) ≤ 2.

The actual inductive proof is now very simple: for the induction start,
apply Lemma 4.30 and in the induction step, use the strategies obtained from
the induction hypothesis to define σ∗ and τ∗ as above. For σ∗, Lemma 4.31
guarantees MaxScF1�W0(G)(ρ(w, σ∗, τ)) ≤ 2 for every strategy τ ∈ ΠA1 and
every F1 � W0(G)-burden w with v ∈ W0(G). The reasoning for W1(G) is
analogous and applies Lemma 4.36.

We have just shown that the winning player (from a given vertex) in
a Muller game can always bound the losing player’s scores by two. Exam-
ple 4.12 shows that this bound is optimal in the sense that there are Muller
games in which the losing player can enforce a score of two. let us conclude
by mentioning two possibilities to strengthen Lemma 4.24: in Example 4.12,
just after increasing his score for the set {0, 1} to two by moving the token
from vertex 0 to vertex 1, Player 0 can move the token to 2 and thereby
reset the score for {0, 1}. It is open, whether this is always possible:
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does the winning player have a winning strategy that bounds the
losing player’s scores by two and additionally resets every score
after it has reached two?

The second strengthening is related to the first one: in the example,
Player 1 is able to reach a score of two, but only with empty accumulator.
It is open, whether this is the best he can achieve:

does the winning player have a winning strategy that bounds the
losing player’s scores by two and keeps the accumulator empty
while the score is two?

Note that the second strengthening implies the first one: if the losing
player reaches a score of two for some set F , then the next vertex of the
play has to be in V \ F and thereby a reset. If it were in F , then it would
yield a non-empty accumulator while the score is two. However, the other
implication does not hold: it might take the winning player some moves
through the set F that has reached score two before she is able to reset the
score. However, this means she has visited some vertex of F two times after
the score for F is increased to one and could (and should) have reset the
score after the first visit.

Let us explain why the proof presented above does not yield a strategy
that has one or both of the properties described above. Consider the con-
struction of σ∗: starting after the burden w, the play proceeds through the
hierarchical traps Un ⊇ Un−1 ⊇ · · · ⊇ U1 in this order and eventually stays
in some Uk ad infinitum. Say the burden has the form u1u2 where u1 is a
finite path through U1 and u2 is a finite path through U2 (note the reversal
of the order). A play starting with burden u1u2 that is consistent with σ∗

might proceed from U2 to U1 which is never left, i.e., the complete play has
the form u1u2u

′
2u
′
1 where u′2 is a finite path through U2 and u′1 is an infinite

path through U1. Let F ⊆ U1 ∪ U2 be a set such that F ∩ U1 6= ∅ and
F ∩ U2 6= ∅. Then, the score for F might be one after the burden u1u2 and
might be increased to two during u′2. Since U2 is never left, the score for F
is not necessarily reset and the accumulator could be non-empty as well.

4.2.3 Playing Muller Games in Colored or Infinite Arenas in
Finite Time

In this section we discuss two possible extensions of Theorem 4.17, which
is formulated for Muller games in uncolored, finite arenas. We begin by
dropping the first restriction and consider an arena whose vertices are labeled
by Ω: V → [k] for some k. In this case, the winning condition (F0,F1) is a
partition of 2[k]. Then, we can define scoring functions ScF for every F ⊆ [k],
which are defined on the sequence of colors visited by a play. However, for
trivial reasons, the losing player’s scores can no longer be bounded by any
constant.
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4.2 Finite-time Muller Games

Example 4.37. Consider the Muller game (An,F0,F1) in the colored arena
An depicted in Figure 4.12, where the number below a vertex denotes its
color, and where F0 = {{1}} and F1 = 2{0,1} \F0. In this Muller game with
n vertices, the losing player reaches a score of n − 1 for his set {0} when
starting at vertex v0. 3

v0

0

v1

0

· · · vn−2

0

vn−1

1

Figure 4.12: The arena An for Example 4.37

The existence of strategies that bound the losing player’s score in an
uncolored arena very much relied on the fact that an attractor strategy
visits a vertex v at most once. Hence, the score for any set F containing v
can increase at most once while an attractor strategy is played. This fails
for colored arenas: here, on an attractor of size n, the score for a set F of
colors can increase up to bn/|F |c times. The proof of Lemma 4.24 could be
adapted, but this requires to keep track of the size of the arenas along the
induction. For this reason, we prefer uncolored arenas, which simplifies the
proof and also yields nicer results in the form of the constant bound two
instead of a bound that depends on the size of the arena and the size of the
set F . Since visiting a set C ⊆ [k] repeatedly requires visits to sets Fj ⊆ V
such that Ω(Fj) = C, our results on uncolored arenas imply a bound on the
scores the losing player can achieve. However, these bounds are nowhere near
the linear lower bounds of Example 4.37, which we conjecture to be tight.

Now we drop the restriction to finite arenas and consider infinite ones.
There are several ways to define Muller games in such arenas. Note that
there could be plays whose infinity set is empty. Furthermore, if we define
F0 and F1 to be a partition of the set of vertices, then the scores of every
infinite simple path17 are bounded by one and reset immediately after they
are increased to one. However, as there also could be arbitrarily long paths
which end in a self-loop (which means that such a play could be winning for
either player), there is no way to stop a play after a finite number of steps
that is only based on the scores of the prefix produced so far.

To guarantee the existence of a non-empty infinity set for each play, it
is standard to consider (finitely) colored infinite arenas, which also guaran-
tees high scores after an exponential number of steps. In the following, we
give three examples of Muller games in infinite arenas and highlight some
properties of scores in such arenas. All arenas are simple in the sense that
they are isomorphic to configuration graphs of one-counter automata, i.e.,

17A path is simple, if it visits each vertex at most once.
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4 Playing Muller Games in Finite Time

pushdown automata with a single stack symbol (besides the stack bottom
symbol, which may neither be deleted nor pushed onto the stack). Hence, ev-
ery vertex represents a configuration (q, γ) consisting of a state q and a stack
content γ. Since the automaton has only a single stack symbol, we identify
stack contents by natural numbers in our examples. In this setting, the color
of a vertex is usually its state q. Thus, the winning condition (F0,F1) is a
partition of 2Q. We refrain from giving formal definitions (see, e.g., [Wal01]
for the definition of a pushdown arena) and thus also from proving these
arenas to be indeed configuration graphs of one-counter machines.

Firstly, we show that there are Muller games in which the winning player
has to allow arbitrary high scores for the losing player. Note that we cannot
use the game of Example 4.37 to show this, if we require the color of a
configuration to be equal to its state.

Example 4.38. Consider the arena A4 depicted in Figure 4.13 and assume
Player 0 wins a play if and only if the state q4 is visited infinitely often. Thus,
she has to reach the vertex (q4, 0) to win. But by doing this when starting at
vertex (q0, 0), she has to visit five vertices in the first row, thereby allowing
Player 1 a score of five. This example can obviously be generalized to show
that for every n, there is a Muller game, whose arena An is isomorphic to the
configuration graph of a one-counter machine, in which the winning player
has to allow the losing player a score of n+ 1. 3

q0

q1

q2

q3

q4

0 1 2 3 4 5 6

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4.13: The arena A4 for Example 4.38 (the labels on the left denote
the state of a configuration, the labels on top its stack height)

Our second example shows that there is an arena in which a player can
make sure to be the first player to reach a certain threshold score, but loses
eventually. Hence, the winner of the infinite Muller game cannot be deter-
mined by any fixed threshold score.
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4.2 Finite-time Muller Games

Example 4.39. Consider the arena A depicted in Figure 4.14 and assume
Player 0 wins a play if and only if either the state q0 or the state q2 is visited
infinitely often. Thus, every play is winning for her. Now, consider a thresh-
old score k ≥ 3. By moving from the starting vertex (q0, 0) to the right k−2
times and then down, Player 1 enforces the state sequence (q0)k−1(q1)k(q2)ω,
since Player 0 only has non-trivial choices at her vertices. Hence, Player 1
can ensure to be the first player to reach a score of k, although he loses every
play. 3

q0

q1

q2

0 1 2 3 4 5 6

· · ·

· · ·

· · ·

Figure 4.14: The arena A for Example 4.39 (the labels on the left denote
the state of a configuration, the labels on top its stack height)

In the previous example, Player 1 is the first to achieve a score of k,
but only after Player 0 has reached a score of k − 1. The lower bounds on
play prefixes that avoid a score of k presented in Lemma 4.9 are used in
our last example to widen this gap: in this game, the gap between the losing
player’s scores reached so far and the winning player’s scores reached so far is
exponential (in the number of states of the underlying one-counter machine)
for some prefix. Hence, the winner of the infinite Muller game cannot be
determined by any fixed gap between the scores reached so far.

Example 4.40. Consider the arena A3 depicted in Figure 4.15 and assume
we have F1 = {{q4}}. Thus, every play is winning for Player 0, since it
either ends up in the self-loop at vertex (q5, 0) or has an infinity set which is
a subset of {q0, q1, q2, q3}. Now, consider a threshold score k ≥ 1. By using
the lower bound w4 (for this k) from Lemma 4.9 as guideline, Player 1 is able
to move the token from the starting vertex (q0, 0) to the vertex (q0, k4 − 1)
without allowing Player 0 to reach a score of k. Then, he reaches a score of
k4 by moving the token to (q4, k4) and then all the way to (q4, 0). Hence,
Player 1 can ensure to reach a score of k4 while Player 0 has not yet reached
a score of k, although he loses every play. This construction can be easily
generalized to an arena An in which Player 1 can enforce a score of kn while
Player 0 has not yet reached a score of k. 3

In the latter two examples, Player 1 reaches a high score for a set which
cannot be the infinity set of a play. This defect can be rectified by adding
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q0

q1

q2

q3

q4

q5

0 1 2 3 4 5 6

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4.15: The arena A3 for Example 4.40 (the labels on the left denote
the state of a configuration, the labels on top its stack height)

inverse edges in this row (and letting Player 0 move at these vertices). How-
ever, Player 0 has no reason to use these additional edges, which makes them
superfluous. One way to find an analogue of Theorem 4.17 might be to find
a formal definition of “superfluous edges“, remove them, and then consider
only the scores for sets F ∈ 2

Q that can be the infinity set of a play. Note
that this policy disregards the set {q1} in Example 4.39 and the set {q4} in
Example 4.40.

Finally, let us mention that another possibility to devise a score-based
finite-duration variant of an infinite game played in an infinite arena whose
investigation seems promising: Walukiewicz [Wal01] shows that the winner
of a parity game G in a pushdown arena can be determined by solving a parity
game G′ in a finite arena. In Section 5.2, we present a score-based finite-
time duration variant of a parity game. In ongoing research we investigate
whether this can be transfered to a finite-duration variant of a parity game
in a pushdown arena by reverse-engineering Walukiewicz’s transformation.

4.3 Summary of Results

We improved McNaughton’s results on finite-time Muller games by showing
that his threshold score |F |! + 1 can be reduced to three. We have comple-
mented this with tight upper and lower bounds on the maximal play length
in such a finite-duration game. Table 4.1 compares the threshold score (if
applicable) and the maximal play length of three finite-duration variants of
Muller games: the second row represents the reduction to a parity game
via latest appearance records. A play in the Muller game can be stopped
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4.3 Summary of Results

if the induced play in the parity game visits a memory state for the second
time. If the maximal priority occurring in the cycle of this play prefix is
even, then Player 0 is declared to win the finite play of the Muller game,
otherwise Player 1 wins. Due to positional determinacy of parity games,
this finite-duration version also has the same winning regions as the origi-
nal Muller game. The construction and a proof of the lower bound due to
Chaturvedi [Cha11] can be found in the appendix.

Variant Threshold score Maximal play length
upper bound lower bound

McNaughton |F|!+1
∏n
j=1(j! + 1) 1

2

∏n
j=1(j! + 1)

LAR-Reduction n/a n · n! + 1 n · n!
here 3 3n 3n − 1

Table 4.1: Comparison of finite-duration variants of a Muller game with n
vertices

Our results imply that the winning regions of a Muller game can be
determined by solving a finite game in a tree of height 3n. The main technical
contribution of this section consists of uniform winning strategies for Muller
games that bound the opponent’s scores by two. In the next chapter, we
investigate further applications of the existence of such “strong” winning
strategies for Muller games.

Finally, we have illustrated that a score-based finite-duration variant of
a Muller game in an infinite arena (even in very simple ones induced by
pushdown automata) has to be more complex than just relying on a certain
threshold score that has to be reached.
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Chapter 5

Reductions Down
the Borel Hierarchy

Game reductions as introduced in Subsection 2.3.3 are subject to limita-
tions arising from the topological complexity of the sets of winning plays as
evidenced by their classification in the Borel hierarchy. For example, reach-
ability and safety conditions are in the first level of the hierarchy, Büchi and
co-Büchi conditions in the second one, and parity and Muller conditions in
the third level. A game reduction G ≤M G′ between two games G and G′
can only exist if the set of winning plays in G′ is on the same or a higher
level of the hierarchy than the set of winning plays in G. Therefore, parity
and Muller games cannot be reduced to safety games.

Nevertheless, there are several reductions down the Borel hierarchy in
the literature that allow to determine the winning regions (and in some
cases also a winning strategy for one player). For example, Bernet et al.
show how to determine a permissive strategy, a non-deterministic winning
strategy that subsumes the behavior of every positional winning strategy, for
a parity game by solving a safety game [BJW02]. Similarly, reductions from
co-Büchi games to safety games are used in so-called Safraless algorithms for
LTL games [KV05, KPV06, FJR11] and in bounded synthesis [SF07].

In this chapter, we show that similar results also hold for Muller games,
i.e., both player’s winning regions in a Muller game and a winning strategy
for one player can be computed by solving a safety game. The correctness of
this construction follows from the existence of winning strategies that bound
the losing player’s scores. This also yields a new memory structure as well as
a notion of permissive strategies for Muller games. As a brief introduction, we
rephrase the construction of Bernet et al. for parity games in terms of scoring
functions for parity games, to which our construction for Muller games is
compared to. After the main contribution of this chapter, the reduction
from Muller games to safety games, we present a general framework that
allows to determine winning regions and one winning strategy for a game by
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5 Reductions Down the Borel Hierarchy

solving a safety game. This framework encompasses all results mentioned
above.

5.1 Digression: The Borel Hierarchy

We begin this chapter by giving a brief introduction to the Borel hierarchy of
ω-languages and classify the games we consider in this work in the hierarchy.
For a detailed exposition, we refer to [Kec95]. As a consequence of the results
presented here, we obtain limitations on reductions between different types
of games. These serve as background to the constructions presented in the
remainder of this chapter.

Let V be a finite set. A set L ⊆ V ω is open, if it is of the form K · V ω

for some K ⊆ V ∗. The Borel hierarchy on V ω consists of levels Σn and Πn

for every positive integer18 n, defined inductively as follows:

� Σ1 = {L ⊆ V ω | L open },

� Πn = {L ⊆ V ω | V ω \ L ∈ Σn}, and

� Σn+1 = {L ⊆ V ω | L =
⋃
i∈N Li with Li ∈ Πn}.

For every n ≥ 1, we have Σn ∪Πn ⊆ Σn+1 ∩Πn+1. We say that a set L
is on a smaller level than a set L′, if we have L ∈ Σn ∪ Πn and L′ ∈
(Σn′ ∪Πn′) \ (Σn′−1 ∪Πn′−1) for some n′ > n.

Remark 5.1. Let G = (A,Win) be a game.

i. If G is a reachability game, then Win ∈ Σ1.

ii. If G is a safety game, then Win ∈ Π1.

iii. If G is a Büchi game, then Win ∈ Π2.

iv. If G is a co-Büchi game, then Win ∈ Σ2.

v. If G is a parity game, then Win ∈ Σ3 ∩Π3.

vi. If G is a Muller game, then Win ∈ Σ3 ∩Π3.

Furthermore, for each type of game appearing in the list above, there is a
game which is in this class, but not in a smaller class or in the co-class (this
only applies to the first four types), e.g., there is a parity game (A,Win)
(which is also a Muller game) such that Win /∈ Σ2 ∪Π2.

A function f : Uω → V ω is continuous, if f−1(L) is open for every open
set L ⊆ V ω. A set L ⊆ Uω is Wadge-reducible to a set L′ ⊆ V ω, written L ≤
L′, if there exists a continuous function f : Uω → V ω such that f−1(L′) = L.

18The hierarchy also has levels Σα and Πα for countably infinite ordinals α. Since we
are only interested in the first three levels, we omit these from the definition.
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5.2 Reducing Parity Games to Safety Games

Lemma 5.2 ([Wad72, Wad83]). Let L ⊆ Uω and let L′ ⊆ V ω such that
L ≤ L′.

i. If L′ ∈ Σn, then L ∈ Σn.

ii. If L′ ∈ Πn, then L ∈ Πn.

Since the mapping from a play to its extended play used in game reduc-
tions is continuous, Lemma 5.2 shows that games cannot be reduced “down
the Borel hierarchy”. Using the framework presented in Section 5.4 allows
to overcome this obstacle.

Lemma 5.3. Let G = (A,Win) and G′ = (A′,Win′) be games with G ≤M G′
for some memory structureM. Then, we have Win ≤Win′.

Proof. LetM = (M, init,upd) and consider the function f : V ω → (V ×M)ω

defined by f(ρ) = (ρ0,m0)(ρ1,m1)(ρ2,m2) · · · , where m0 = init(ρ0) and
mn+1 = upd(mn, ρn+1). Hence, we have ρ ∈Win if and only if f(ρ) ∈Win′

by definition of a game reduction. Thus, f−1(Win′) = Win. So, to prove
Win ≤ Win′, it remains to show that f is continuous, i.e., f−1(L′) is open
for every open L′.

Let L′ = K ′ · (V ×M)ω be open. We define

K = {v0 · · · vn | (v0,m0) · · · (vn,mn) ∈ K ′ for some m0, . . . ,mn ∈M}

to be the projection of the words in K ′ to their first components. Now, let
w ∈ f−1(L′), i.e., f(w) ∈ K ′ · (V ×M)ω. Since the j-th letter of f(w) only
depends on the first j letters of w, this is equivalent to w ∈ K · V ω. Thus,
f−1(L′) = K · V ω is indeed open.

Lemma 5.2 shows that a game (A,Win) cannot be reduced to another
game (A′,Win′), if Win′ is on a strictly smaller level of the Borel hierarchy
than Win. The same holds true, if we have Win ∈ Σn \Πn and Win′ ∈ Πn

or vice versa. Especially, reachability, Büchi, co-Büchi, parity, and Muller
games are in general not reducible to safety games.

5.2 Reducing Parity Games to Safety Games

Bernet et al. showed how to reduce a parity game to a safety game. Since
we have seen in the previous section, that parity games can in general not be
reduced to safety games using the reductions presented in Subsection 2.3.3,
their reduction cannot be complete in the sense that it yields winning strate-
gies for both players. Indeed, they obtain both winning regions, but only
a winning strategy for one player. However, this is a special kind of strat-
egy: their main motivation for the construction is to compute a permissive
strategy, which is a non-deterministic winning strategy that subsumes the
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behaviors of every positional winning strategy. We introduce such strategies
in the following subsection. In the current section, we present a reformu-
lation of the proof of Bernet et al. that is based on scoring functions for
parity games. Then, in Section 5.3 we show how to lift our construction for
parity games to Muller games. This allows us to reduce a Muller game to
a safety game and to transfer the notion of permissive strategies from po-
sitionally determined games to games which are not necessarily positionally
determined. For Muller games, we also obtain both winning regions and a
winning strategy for one player.

The main idea underlying the construction for parity games is the follow-
ing observation: for a priority c, let nc denote the number of vertices labeled
by c. A play that is consistent with a positional winning strategy for Player 0
does not visit nc + 1 vertices of an odd priority c without visiting a larger
priority in between. Hence, a vertex is in the winning region of Player 0, if
she can, starting at this vertex, prevent her opponent from seeing some odd
priority c exactly nc + 1 times without seeing a larger priority in between.
On the other hand, if Player 1 is able to enforce nc + 1 visits without larger
priority in between from a vertex, then this vertex is in his winning region.
This is a safety condition that can be expressed by scoring functions: the
function Scc measures how often the priority c has occurred since a larger
priority has occurred. We construct an arena which keeps track of Player 1’s
scores up to nc and declares him the winner if he is able to exceed this
threshold. Thus, a winning strategy for Player 0 for the safety game can be
turned into a strategy for her for the parity game that prevents Player 1 from
reaching a score of nc+1 for every odd priority c. Such a strategy is winning
for Player 0. On the other hand, if Player 1 is able to reach a score of nc + 1
in the safety game, then the play ends. Thus, we are not able to derive a
winning strategy for Player 1. To obtain a winning strategy for him, we have
to construct the safety game which keeps track of Player 0’s scores. In this
game, it is Player 1’s objective to prevent his opponent from reaching a score
of nc + 1 for some even priority. Alternatively, we could track the scores of
both players at the same time, but would need two safety conditions in this
arena to obtain winning strategies for both players: one in which Player 0
avoids high scores for Player 1 and vice versa. In the previous section, we
have seen that it is impossible to reduce a parity game to a safety game in
order to obtain winning strategies for both players. The construction just
explained forms an alternative proof of the following theorem of Bernet et
al. We discuss the differences to the original proof at the end of this section.

Theorem 5.4 ([BJW02]). Let G be a parity game with vertex set V and
priority function Ω: V → [k]. One can effectively construct a safety game GS
with vertex set V S and a mapping f : V → V S with the following properties:

i. For every v ∈ V : v ∈Wi(G) if and only if f(v) ∈Wi(GS).
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5.2 Reducing Parity Games to Safety Games

ii. Player 0 has a finite-state winning strategy from W0(G) with mem-
ory M ⊆W0(GS).

iii. |V S | ≤ |V |dk/2e+1.

We proceed as follows: we introduce scoring functions for parity games
and construct a safety game as required by Theorem 5.4. Then, in the
next subsection we show how to compute permissive strategies using this
game. These constructions are then lifted to Muller games in Section 5.3
and Subsection 5.3.1.

Fix a parity game G = (A,Ω) with A = (V, V0, V1, E) and Ω: V → [k]
for some k ∈ N. For each c ∈ [k], we define

nc = |{v ∈ V | Ω(v) = c}|

to be the number of vertices with priority c. Next, we define scoring functions
for parity games.

Definition 5.5. Let c ∈ [k]. We define the scoring function Scc : V ∗ → N
inductively as follows: Scc(ε) = 0 and for w ∈ V ∗ and v ∈ V , we define

Scc(wv) =


Scc(w) + 1 if Ω(v) = c,

Scc(w) if Ω(v) < c,

0 if Ω(v) > c.

Furthermore, for c ∈ [k], we define MaxScc : V ∗ ∪ V ω → N ∪ {∞} by

MaxScc(w) = sup
w′vw

Scc(w′) .

This function returns the maximal score that is reached for c during w, and
∞, if arbitrarily large scores are reached. We illustrate these definitions in
the following example.

Example 5.6. Consider the play prefix w = 12210211 with Ω(j) = j. We
have Sc0(w) = 0, Sc1(w) = 2, and Sc2(w) = 3. The score for 0 is one after
the prefix 012210, but is reset to zero with the occurrence of 2. 3

Consider a play ρ and its sequence of priorities. From some point onwards
the score for the maximal priority that occurs infinitely often is no longer
reset, but increased infinitely often. The score for every smaller priority is
reset to zero infinitely often, while the score for every larger priority is in-
creased only finitely often. Hence, the maximal priority that occurs infinitely
often can be characterized by the limit inferior of the scoring functions.

Remark 5.7. In every play ρ, there is a unique priority c such that

lim inf
n→∞

Scc(ρ0 · · · ρn) =∞ .

Furthermore, this priority is equal to max(Ω(Inf(ρ))).
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A simple consequence of this remark is that a play ρ is winning for
Player i, if MaxScc(ρ) < ∞ for every priority c ∈ [k] with Par(c) = 1 − i,
since the limit inferior for a score is always smaller than the maximal score.

Lemma 5.8. Let σ be a positional strategy σ for Player i. Then, σ is
winning from a set W of vertices if and only if MaxScc(ρ) ≤ nc for every
ρ ∈ Beh(W,σ) and for every priority c ∈ [k] with Par(c) = 1− i.

Proof. Let σ be winning for Player i from W and assume Scc(ρ0 · · · ρn) =
nc + 1 for some ρ ∈ Beh(W,σ) and some c ∈ [k] such that Par(c) = 1 − i.
For every j in the range 1 ≤ j ≤ nc+ 1 let nj denote the position of ρ0 · · · ρn
where the score for c is increased to j for the last time. Since the score for c
is never reset between the positions n1 and nnc+1, every other priority that
occurs between these positions are strictly smaller than c. Furthermore, the
pigeon-hole principle guarantees indices j, j′ such that ρnj = ρnj′ , since there
are only nc vertices with priority c. The play

ρ∗ = ρ0 · · · ρnj−1

(
ρnj · · · ρnj′−1

)ω
starts in W and is consistent with σ, since the strategy is positional. How-
ever, this play is winning for Player 1 − i, since the largest priority that is
seen infinitely often is c, which has parity 1 − i. This is a contradiction to
the fact that σ is a winning strategy for Player i from W .

The other direction of the statement follows directly from Remark 5.7,
since the limit inferior of the scores for a priority c is always smaller than
the maximal score for a priority.

Hence, positional determinacy of parity games implies the existence of
strategies that bound the losing players scores by nc.

Corollary 5.9. Player i has a uniform positional winning strategy σ such
that MaxScc(ρ) ≤ nc for every ρ ∈ Beh(Wi(G), σ) and for every priority c ∈
[k] with Par(c) = 1− i

This corollary is the basis of the reduction from a parity game to a safety
game: due to determinacy, a vertex v is in the winning region of Player 0 if
and only if she is able, starting in v, to prevent her opponent from reaching
a score of nc + 1.

As already mentioned, the safety game’s arena keeps track of Player 1’s
scores. Hence, we can ignore the scores of Player 0 and identify play prefixes
having the same scores for Player 1 by an equivalence relation. For the
construction of the finite-state winning strategy it is also useful to consider
a preoder on play prefixes: a play prefix w is better for Player 0 than a play
prefix w′, if for all all odd priorities the scores of w are smaller than the
scores of w′. For technical reasons, we also require the last vertices to be
equal in both relations.
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Definition 5.10. Let w,w′ ∈ V +.

i. w ≤1 w
′, if Lst(w) = Lst(w′) and if Scc(w) ≤ Scc(w′) for every odd

c ∈ [k].

ii. w =1 w′, if Lst(w) = Lst(w′) and if for all odd c ∈ [k] the equali-
ties Scc(w) = Scc(w′) hold.

It is easy to verify that ≤1 and =1 are reflexive and transitive and that
=1 is even symmetric. Hence, ≤1 is a preorder and =1 is an equivalence
relation. However, ≤1 is not a partial order since it fails to be antisymmetric:
let v and v′ be two distinct vertices of priority one. Then, we have v ≤1 v

′

and v′ ≤1 v, but v 6= v′. Next, we show that ≤1 and =i are preserved
under concatenation, i.e., =1 is a right-congruence. To simplify the proof,
we observe that w =1 w

′ is equivalent to w ≤1 w
′ and w′ ≤1 w.

Lemma 5.11. Let w,w′ ∈ V +.

i. If w ≤1 w
′, then wu ≤1 w

′u for every u ∈ V ∗.

ii. If w =1 w
′, then wu =1 w

′u for every u ∈ V ∗.

Proof. i.) It suffices to show wv ≤1 w
′v for a vertex v ∈ V . The last vertices

of wv and w′v are obviously equal, so consider an odd priority c ∈ [k]. We
have Scc(w) ≤ Scc(w′) and proceed by case distinction over the definition of
Scc. If Ω(v) = c, then

Scc(wv) = Scc(w) + 1 ≤ Scc(w′) + 1 = Scc(w′v) .

If Ω(v) < c, then

Scc(wv) = Scc(w) ≤ Scc(w′) = Scc(w′v) .

Finally, if Ω(v) > c, then Scc(wv) = 0 = Scc(w′v).
ii.) Since =1 can be expressed by ≤1, the claim follows.

Now, we can define the arena of the safety game to be the =1-quotient
of the unraveling of A up to the positions where Player 1 reaches a score of
nc + 1 for some odd priority. First, let

Plays<nc+1 = {w |w play prefix in G with
MaxScc(w) < nc + 1 for every odd c ∈ [k]}

be the set of play prefixes during which Player 1 has not reached a score of
nc + 1 for some odd priority c, and let

Plays=nc+1 = {wv |wv play prefix in G with
MaxScc(w) ≤ nc for every odd c ∈ [k] and
Scc(wv) = nc + 1 for some odd c ∈ [k]}
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5 Reductions Down the Borel Hierarchy

be the set of play prefixes in which Player 1 has just reached a score of nc+1
for some odd priority c. Finally, let

Plays≤nc+1 = Plays<nc+1 ∪ Plays=nc+1 .

We define GS = ((V S , V S
0 , V

S
1 , E

S), F ) where

� V S = {[w]=1 | w ∈ Plays≤nc+1},

� V S
0 = {[w]=1 | [w]=1 ∈ V S and Lst(w) ∈ V0},

� V S
1 = {[w]=1 | [w]=1 ∈ V S and Lst(w) ∈ V1},

� ([w]=1 , [wv]=1) ∈ ES for all w ∈ Plays<nc+1 and all v such that
(Lst(w), v) ∈ E 19, and

� F = {[w]=1 | w ∈ Plays<nc+1}.

The sets V S
0 and V S

1 are well-defined, since w =1 w
′ implies Lst(w) = Lst(w′)

and we have V S = V S
0 ∪ V S

1 due to V = V0 ∪ V1. Also, the edge relation is
well-defined, since =1 is a right-congruence. Finally, every equivalence class
in F is also an equivalence class in V S , since Plays<nc+1 ⊆ Plays≤nc+1 and
since w ∈ Plays<nc+1 and w′ ∈ Plays=nc+1 cannot be =1-equivalent. Thus,
we have F ⊆ V S . For the sake of readability, we drop the subscripts from
now on and denote the =1-equivalence class of w by [w]. Furthermore, all
our arguments below are independent of representatives, hence we refrain
from mentioning this again.

We split the proof of Theorem 5.4 into several lemmata. We begin with
the first statement: Lemma 5.12 shows the implication from left to right and
Lemma 5.13 the implication from right to left. Due to determinacy of both
games, if suffices to consider i = 0.

To show that v ∈W0(G) implies [v] ∈W0(GS) we translate a strategy for
G that is winning from v into a strategy for GS that is winning from [v]. There
is a straightforward translation of a strategy for an arena to a strategy for
its unraveling. However, in our case, the construction is complicated by two
factors: GS is not played in the complete unraveling, but a play is stopped as
soon as a score of nc+1 is reached for Player 1, and this incomplete unraveling
is quotiented with respect to =1. Hence, a play prefix in the (quotiented)
unraveling does not determine a unique play prefix in the original arena. In
the following, we show how to overcome these two obstacles.

Lemma 5.12. Let v ∈ V . If v ∈W0(G), then [v] ∈W0(GS).
19Hence, every vertex in Plays=nc+1 is terminal, contrary to our requirements on an

arena. However, every play visiting these vertices is losing for Player 0 no matter how it
is continued. To simplify the following proofs, we refrain from defining outgoing edges for
these vertices.
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5.2 Reducing Parity Games to Safety Games

Proof. Player 0 has a strategy σ for G such that MaxScc(ρ) ≤ nc for every
play ρ ∈ Beh(W0(G) and for every odd priority c ∈ [k]. Since ([w], [w′]) ∈ ES
implies (Lst(w),Lst(w′)) ∈ E, every play prefix [w0] · · · [wn] in GS can be
mapped to a play p([w0] · · · [wn]) = Lst(w0) · · ·Lst(wn) in G. Furthermore,
if w0 =1 v for some v ∈ V , then Lst(w0) = v, i.e., if [w0] · · · [wn] starts in [v],
then p([w0] · · · [wn]) starts in v.

We use this to define a strategy σ′ for GS by

σ′([w0] · · · [wn]) = [wn · σ(p([w0] · · · [wn]))]

for every play prefix [w0] · · · [wn] of GS with [wn] ∈ V S
0 ∩ F . This is a legal

move as σ(p([w0] · · · [wn])) is a successor of the last vertex of p([w0] · · · [wn])
which is equal to the last vertex of wn. Combining this with the assump-
tion [wn] ∈ F yields the necessary edge between [wn] and the vertex [wn ·
σ(p([w0] · · · [wn]))]. Finally, the restriction to play prefixes ending in F is
sufficient, since all other play prefixes are already losing for Player 0 and
have no outgoing edges.

It remains to show that σ′ is winning from W ′ = {[v] | v ∈ W0(G)}.
We begin by showing inductively that if [w0] · · · [wn] starts in W ′ and is
consistent with σ′, then p([w0] · · · [wn]) starts in W0(G) and is consistent
with σ and that we have p([w0] · · · [wn]) ∈ [wn]. This suffices to prove that
σ′ is indeed a winning strategy fromW ′, since the scores encoded by vertices
reachable via σ′ are equal to the scores of play prefixes that are consistent
with σ and therefore at most nc. Hence, a play that is consistent with σ′

never leaves F .
Consider a play prefix [w0] of length one. Since we assume [w0] ∈W ′, we

have w0 =1 v for some v ∈ W0(G). By definition of =1, we have Lst(w0) =
Lst(v) = v and therefore p([w0]) = Lst(w0) = v ∈ [v] = [w0]. Furthermore,
the play prefix p(w0) = Lst(w0) is consistent with every strategy.

Now, consider a play prefix [w0] · · · [wn][wn+1] that is consistent with σ′

and remember that we have

p([w0] · · · [wn][wn+1]) = Lst(w0) · · ·Lst(wn)Lst(wn+1)

by definition. We begin by showing Lst(w0) · · ·Lst(wn)Lst(wn+1) ∈ [wn+1].
Applying Lemma 5.11 to the induction hypothesis

p([w0] · · · [wn]) = Lst(w0) · · ·Lst(wn) =1 wn

yields

Lst(w0) · · ·Lst(wn)Lst(wn+1) =1 wn · Lst(wn+1) .

Since there is an edge from [wn] to [wn+1], we have wn · Lst(wn+1) =1 wn+1

by definition of ES . Hence, we have shown p([w0] · · · [wn][wn+1]) ∈ [wn+1].
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5 Reductions Down the Borel Hierarchy

It remains to show that Lst(w0) · · ·Lst(wn)Lst(wn+1) is consistent with
σ. The induction hypothesis yields that Lst(w0) · · ·Lst(wn) is consistent
with σ, i.e., we only have to consider the last move, provided it is Player 0’s
turn at Lst(wn). So, suppose we have Lst(wn) ∈ V0, which implies [wn] ∈ V S

0

and thus

[wn+1] = [wn · σ(p([w0] · · · [wn]))] (5.1)

by definition of σ′. Hence, we have to show σ(p([w0] · · · [wn]) = Lst(wn+1):
this follows directly from (5.1), since the =1-equivalent play prefixes wn+1

and wn · σ(p([w0] · · · [wn])) share their last vertex.

Now, consider the implication from right to left of Theorem 5.4(i).

Lemma 5.13. Let v ∈ V . If [v] ∈W0(GS), then v ∈W0(G).

For the proof, we refer to Lemma 5.18, which states a more general
result than we need it here. However, let us mention an alternative proof.
We can use W0(GS) as memory structure for G as follows: imagine the token
is placed at a vertex v such that [v] ∈W0(GS). Then, there is a ≤1-maximal
play prefix w such that [w] ∈W0(GS) and v ≤1 w.

Now, suppose it is Player 0’s turn at v, which implies that it is also
her turn at [w]. Since [w] is in the winning region of Player 0, it has some
successor [wv′] ∈ W0(G) for some vertex v′. By construction, this vertex is
a successor of v in the parity game G. In this situation, Player 0 moves to v′

and updates her memory to some [w′] ∈W0(GS) with wv ≤1 w
′ such that w′

is ≤1-maximal with this property. Such a vertex exists, since [wv′] ∈W0(G).
On the other hand, if it is Player 1’s turn at v, then also at [w] as specified

above. Since [w] is in the winning region of Player 0 in a safety game, which
is a trap for Player 1, each successor of [w] is also in her winning region. The
successors of [w] have the form [wv′] for every successor v′ of v. Hence, no
matter to which vertex Player 1 moves in G, the memory can be updated to
some [w′] such that w′ is ≤1-maximal with [w′] ∈W0(GS) and wv′ ≤1 w

′.
This procedure can be iterated ad infinitum. Since the scores of a play

prefix are always bounded by its memory state – which is an element of
Player 0’s winning region – we have implemented a finite state winning strat-
egy from every vertex v such that [v] ∈ W0(GS). The memory states used
by the strategy are ≤1-maximal elements, hence they form a ≤1-antichain
in W0(GS).

This construction is explained in full detail – for the case of Muller
games – in the proof of Lemma 5.24. By replacing the order relations ≤F1

and =F1 for Muller games by their counterparts ≤1 and =1 for parity games,
the proof applies to parity games as well. For this reason, we do not give it
here. But this construction proves the second statement of Theorem 5.4.

Corollary 5.14. Player 0 has a finite-state winning strategy from W0(G)
whose memory states form a ≤1-antichain in W0(GS).
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5.2 Reducing Parity Games to Safety Games

Proof. We have {[v] | v ∈ W0(G)} ⊆ W0(GS) due to Lemma 5.12. Hence,
the construction described above yields a finite-state winning strategy for
Player 0 from W0(G) whose memory states form a ≤1-antichain in W0(GS)
as required.

It remains to bound the size of the safety game.

Lemma 5.15. We have

|V S | ≤ |V | ·
∏
c∈[k]

Par(c)=1

(nc + 1) ≤ |V |dk/2e+1 .

Proof. In every safety game, we can merge the vertices in V \ F to a single
vertex without changing W0(G). Since [v] ∈ F for every vertex v of G, we
also retain the equivalence v ∈Wi(G)⇔ [v] ∈Wi(GS).

Hence, it remains to bound the index of =i on Plays<nc+1. Two play
prefixes in Plays<nc+1 are equivalent, if they have the same last vertex and
the same score for every odd priority c, of which there are at most dk/2e.
Furthermore, since we have 0 ≤ Scc(w) ≤ nc < |V | for every play prefix w ∈
Plays<nc+1, we obtain our result. In the last inequality, we assume nc < |V |,
since the parity game is trivial, if we have nc = |V | for some c.

5.2.1 Permissive Strategies for Parity Games

Bernet et. al. used the reduction from parity to safety games to compute per-
missive strategies for parity games: in this framework, a strategy is allowed
to be non-deterministic in the sense that it does not prescribe one successor,
but a non-empty set of successors. A strategy is permissive, if it subsumes
the behavior of every positional (non-deterministic) winning strategy. Let
us formalize these notions following [BJW02]. Then, we show how to derive
a permissive strategy from the safety game constructed above.

Fix an arena A = (V, V0, V1, E). A multi-strategy for Player i is a map-
ping σ : V ∗Vi → 2V \ {∅} such that v′ ∈ σ(wv) implies (v, v′) ∈ E. A play ρ
is consistent with σ if ρn+1 ∈ σ(ρ0 · · · ρn) for every n such that ρn ∈ Vi.
Again, a play prefix ρ0 · · · ρm is consistent with σ, if ρn+1 ∈ σ(ρ0 · · · ρn) for
every n < m such that ρn ∈ Vi. We still denote the plays starting in a
vertex v that are consistent with a multi-strategy σ by BehA(v, σ) and we
define BehA(W,σ) =

⋃
v∈W Beh(v, σ) for every subset W ⊆ V . Again, we

drop the subscript whenever this is possible without introducing ambiguity.
A multi-strategy σ is winning for Player 0 from a set of vertices W in a
game (A,Win) if BehA(W,σ) ⊆Win, and a multi-strategy τ is winning for
Player 1 from W , if BehA(W,σ) ⊆ V ω \Win. It is clear that the winning
regions of a game do not change when we allow multi-strategies instead of
standard strategies, since every strategy can be seen as a multi-strategy.

135
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To define finite-state multi-strategies we have to adapt the notion of a
next-move function. Consider a memory structure M = (M, init, upd) a
(non-deterministic) next-move function nxt: Vi ×M → 2V \ {∅} such that
v′ ∈ nxt(v,m) ∈ E implies (v, v′). It implements a multi-strategy σ via
σ(wv) = nxt(v,upd∗(wv)). A multi-strategy σ is called positional, if it can
be implemented with a single memory state. Again, this is equivalent to
σ(wv) = σ(v) for every play prefix wv.

Multi-strategies are compared by the amount of non-determinism they
allow: let σ and σ′ be multi-strategies for Player i in (A,Win) that are
winning from exactly the vertices in W and W ′, respectively. We have
σ vp σ′, if W ⊆W ′ and Beh(W,σ) ⊆ Beh(W,σ′), i.e., σ′ is at least winning
from all vertices from which σ is winning and from those vertices, σ′ allows
all plays that σ allows. Note that the definition only refers to plays starting
in vertices from which σ is winning. The behavior of both strategies from
the other vertices is irrelevant.

Definition 5.16. Let G be a game. A multi-strategy σ for Player i is
permissive, if we have σ′ vp σ for every positional multi-strategy σ′.

A permissive strategy for Player i for a parity game is winning from every
vertex in Wi(G) since it is vp-greater than a uniform positional winning
strategy, which means that it is at least winning from every vertex in the
winning region of Player i. On the other hand, it cannot be winning from any
vertex in W1−i(G). Furthermore, it is essential to require to only subsume
positional strategies in a parity game: the following example shows that there
is not necessarily a winning multi-strategy that subsumes the behaviors of
all strategies.

Example 5.17. Consider the parity game (A,Ω) where the arena A with
vertex set {0, 1} is depicted in Figure 5.1 and the priority of a vertex is given
by its name. Player 0 has a winning strategy by moving the token to 0 (if it
is not already there) and then staying in this vertex ad infinitum.

1 0

Figure 5.1: The arena A for Example 5.17

On the other hand, consider the strategy σn (for every n ∈ N) which
uses the self-loop at vertex 1 n times before it moves the token to vertex 0.
A multi-strategy σ with Beh(1, σn) ⊆ Beh(1, σ) for every n satisfies 1ω ∈
Beh(1, σ). However, this play is not winning for Player 0, which means that
σ is not winning from 1. Thus, σn 6vp σ, since the strategies σn are winning
from both vertices. 3
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5.2 Reducing Parity Games to Safety Games

There is a tight connection between safety games and permissive strate-
gies. On the one hand, Bernet et al. showed that every safety game has a
positional vp-maximal winning strategy. On the other hand, they showed
that if a parity game G has a vp-maximal winning strategy, then G is a safety
game, i.e., there is a subset F of the vertices such that a play satisfies the
parity condition if and only if the play only visits vertices in F . Note that in
the game G in Example 5.17 – which has no vp-maximal winning strategy –
there is indeed no such set F .

We conclude this section by showing how to construct a finite-state per-
missive strategy for a parity game G from the safety game GS defined in
the previous section. This construction again relies on the fact that a posi-
tional winning strategy only allows plays that visit odd priorities c at most
nc times without visiting a larger priority in between. Hence, the prefix of
each play that is consistent with such a strategy is contained in the winning
region of Player 0 in the safety game. A strategy that allows exactly the
plays whose prefixes lie in W0(GS) is permissive. This theorem also implies
Lemma 5.13, since every winning multi-strategy can be restricted to be a
winning (standard) strategy.

Theorem 5.18. Let G be a parity game and let GS be the safety game as
above. Then, Player 0 has a finite-state permissive strategy for G with mem-
ory states W0(GS).

Proof. We defineM = (M, init,upd) where M = W0(GS) ∪ {⊥} 20, where

init(v) =

{
[v] if [v] ∈W0(GS),
⊥ otherwise,

and

upd([w], v) =

{
[wv] if [wv] ∈W0(GS),
⊥ otherwise.

Hence, we have upd∗(w) = [w] ∈ W0(GS) as long as every prefix x of w
satisfies [x] ∈ W0(GS), and upd∗(w) = ⊥ otherwise. We define a next-move
function by nxt(v,⊥) = {v′} for some successor v′ of v and

nxt(v, [w]) =


{v′ | [wv′] ∈W0(GS)} if Lst(w) = v,
{v′′} otherwise, where v′′ is some

successor of v.

20We use the memory state ⊥ to simplify our proof. It is not reachable via plays that
are consistent with the strategy implemented by M and can therefore eliminated and its
incoming transitions can be redefined arbitrarily.
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We need to show that the function always returns a non-empty set of suc-
cessors of v. The first and third case are clear by definition, so consider the
second one: let [w] ∈ W0(GS) and v = Lst(w). Then, there is at least one
successor of [w] in W0(GS) and all of these successors are of the form [wv′]
for some successor v′ of v.

We continue by showing that the strategy σ implemented byM and nxt
is winning from every vertex in the winning region of Player 0 in the parity
game. So, let ρ ∈ Beh(W0(G), σ). We claim that we have upd∗(ρ0 · · · ρn) =
[ρ0 · · · ρn] ∈W0(GS) for every n. This implies that the scores of Player 1 are
bounded by nc. Thus, ρ is winning for Player 0.

For n = 0, we have ρn ∈ W0(G) which implies [v] ∈ W0(GS) due to
Lemma 5.12. Hence, M initializes the memory to init(ρ0) = [ρ0], which
yields the induction start.

For n > 0, we distinguish two cases. If ρn−1 ∈ V0, then we have

ρn ∈ σ(ρ0 · · · ρn−1)
=nxt(ρn−1, upd∗(ρ0 · · · ρn−1))
=nxt(ρn−1, [ρ0 · · · ρn−1])

where the last equality is the application of the induction hypothesis. The
hypothesis also yields ρ0 · · · ρn−1 ∈W0(G) and therefore

ρn ∈ {v′ | [ρ0 · · · ρn−1v
′] ∈W0(GS)}

by definition of the next-move function. Hence, we have [ρ0 · · · ρn−1ρn] ∈
W0(GS), which implies upd∗(ρ0 · · · ρn) = [ρ0 · · · ρn−1ρn].

On the other hand, if ρn−1 ∈ V1, then [ρ0 · · · ρn−1] ∈ V S
1 by definition of

GS . Furthermore, since we have (ρn−1, ρn) ∈ E, [ρ0 · · · ρn−1ρn] is a successor
of [ρ0 · · · ρn−1] in GS . Finally, since W0(GS) as winning region of Player 0 in
a safety game is a trap for Player 1, we conclude [ρ0 · · · ρn−1ρn] ∈ W0(G),
which implies upd∗(ρ0 · · · ρn) = [ρ0 · · · ρn−1ρn].

It remains to show that we have Beh(v, σ′) ⊆ Beh(v, σ), where σ′ is a
positional strategy that is winning from v. Towards a contradiction, as-
sume there is a play ρ ∈ Beh(v, σ) \ Beh(v, σ′). Then, there is a smallest
position ρn ∈ V0 such that

ρn+1 /∈ σ(ρ0 · · · ρn) = nxt(ρn,upd∗(ρ0 · · · ρn)) .

We have shown above that we have upd∗(ρ0 · · · ρn) = [ρ0 · · · ρn], as ρ0 · · · ρn
is consistent with σ, i.e., the definition of nxt yields [ρ0 · · · ρn+1] ∈ W1(GS).
Hence, Player 1 is able to enforce a visit to V S\F in the safety games GS using
an attractor strategy τ . This strategy can translated into a strategy τ ′ for
him for G that enforces a score of nc+1 for some odd priority c starting from
the play prefix ρ0 · · · ρn+1. Consider the continuation ρ′ of ρ0 · · · ρn+1 that is
consistent with σ′ and τ ′. In this play, Player 1 reaches a score of nc + 1 for
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some odd priority. Thus, Lemma 5.8 yields the desired contradiction, since
ρ′ is consistent with the positional strategy σ′ that is winning from ρ and
therefore bounds Player 1’s scores by nc.

Note that we did not only show that the plays of every positional strategy
are subsumed, but actually that the strategy allows every play in which
Player 1, starting from any prefix, cannot enforce a score of nc + 1 for some
odd c. It is just the case that a positional winning strategy bounds the
scores of the losing player by these values. We come back to this when we
generalize the notion of permissiveness to Muller games.

Let us briefly discuss the original proof of Theorem 5.4. The equivalence
classes used as memory states in the construction of the safety game above
can be seen as elements in

V × [n1 + 1]× [n3 + 1]× · · · × [nk′ + 1] ,

where k′ is the largest odd integer such that k′ < k. Such a vector encodes
the last vertex of the play prefix and the score for every odd priority. It is
the same memory structure that Bernet et al. use in their proof of Theo-
rem 5.4 and to construct permissive strategies for parity games. However,
they use a different update function: just as in our definition, the occurrence
of priority c resets the scores for all smaller priorities and increases the score
for c. If the score for an odd priority c has already value nc and is increased
again, then the score for the smallest odd c′ > c whose score has not yet
reached value nc′ is increased. If no such c′ exists, then the play is stopped.
In contrast, according to our definition, a play is stopped if the score of nc
is reached. Hence, the plays according to our definition are stopped earlier.

However, the update function of Bernet et al. has a great advantage: it
is monotonic with respect to the (inverse) lexicographic order on

[n1 + 1]× [n3 + 1]× · · · × [nk′ + 1] ,

i.e., vectors are compared from right to left. This reflects the fact that
larger priorities are more important, since the maximal priority that is seen
infinitely often determines the winner of a play. The totality of the lexi-
cographic order allows to find small representations of permissive strategies
and is also the basis of Jurdziński’s small progress measure algorithm for
parity games [Jur00], which is closely related to this memory structure. We,
on the other hand, compare vectors componentwise, an order which lacks
totality. In the next section, we lift the construction presented above from
parity games to Muller games. The order we use for Muller games is also
not a total one, since it is unclear how to linearly order the sets in F1 ac-
cording to their importance (especially those of equal cardinality). Hence,
the situation there is much closer to the one presented in this section than
to the one of Bernet et al. This is the reason we presented the alternative
construction.
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5.3 Reducing Muller Games to Safety Games

In this section, we show how to determine the winning regions of a Muller
game and a winning strategy for one player by solving a safety game. Ob-
viously, this can be done by reducing a Muller game to a parity game and
then applying the reduction of Bernet et al. presented in the previous sec-
tion. A priori, each reduction involves an exponential blowup, although it
might be the case that the games obtained by composing these reductions
are simple on some sense, which could prevent a doubly-exponential blowup.
But instead of taking the detour via parity games, we give a direct reduction
from Muller games to safety games. Again, note that this is not a classical
reduction, since this is ruled by the fact that Muller conditions are on a
higher level of the Borel hierarchy than safety conditions. This is witnessed
by the fact that we only obtain a winning strategy for one player.

The proof idea is completely similar to the score-based reduction from
parity games to safety games: from her winning region, Player i can prevent
her opponent from ever reaching a score of three. Hence, if Player 1 is able,
starting at a vertex v, to enforce a score of three, then v is not in the winning
region of Player 0, and therefore in the winning region of Player 1. Hence,
we again construct an arena which tracks the scores of Player 1 and define a
safety condition which declares Player 0 to win a play if and only if Player 1
never reaches a score of three during the play. By analyzing the intrinsic
structure of the vertices of the safety game, we are able to construct a new,
antichain-based memory structure for Muller games. Furthermore, in the
next subsection, we prove that this construction also allows to transfer the
notion of permissiveness to Muller games.

The reduction presented in the following is implemented in the tool
GAVS+21 [CKLB11].

Theorem 5.19. Let G be a Muller game with vertex set V . One can effec-
tively construct a safety game GS with vertex set V S and a mapping f : V →
V S with the following properties:

i. For every v ∈ V : v ∈Wi(G) if and only if f(v) ∈Wi(GS).

ii. Player 0 has a uniform finite-state winning strategy from W0(G) with
memory M ⊆W0(GS).

iii. |V S | ≤ (n!)3 where n = |V |.

Compare this theorem to its analogue for parity games, Theorem 5.4.
The first two statements are similar: the reduction yields the winning regions
for both players and a finite-state winning strategy for Player 0. The third
statement shows that our construction yields a safety game that is smaller

21See http://www6.in.tum.de/~chengch/gavs/ for details and to download the tool.
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than the one obtained by reducing a Muller game first to a parity game and
then apply Theorem 5.4: we have

(n!)3 =
(

2log2(n!)
)3

=
(

2
∑n
j=1 log2(j)

)3
≤
(

2n log2(n)
)3

= 23n log2(n)

while the two-step reduction via parity games yields a safety game of doubly-
exponential size. However, it might be possible that this can be improved by
exploiting the intrinsic structure of the memory used to reduce the Muller
game to a parity game in the first step.

Also, just as in the analogue for parity games, we can obtain a winning
strategy for Player 1 by swapping the roles of the players and construct a
safety game which keeps track of the scores of Player 0 or by constructing
the arena which keeps track of both player’s scores. However, that would
require to define two safety games in this arena: one in which Player 0 has to
avoid a score of three for Player 1 and vice versa. Also, this arena is larger
than the ones which only track the scores of one player (but still smaller
than (|V |!)3). We have seen in Section 5.1, that it is impossible to reduce a
Muller game to a safety game to obtain winning strategies for both players.

The proof of Theorem 5.19 proceeds as the one for parity games: we
define an equal-score relation ≤F1 for play prefixes in Muller games and
define the safety game’s arena as the =F1-quotient of the unraveling of A
restricted to those plays in which Player 1’s scores are bounded by two.
Then, we show how to translate winning strategies between these two games
to prove the first two statements of the theorem. We finish by bounding the
index of =F1 to prove our claim about the size of the safety game.

We begin by defining the safety game GS . Let G = (A,F0,F1) with
A = (V, V0, V1, E). Since we are only interested in the scores of Player 1, we
can identify play prefixes having the same score and accumulator for every
set in F1. We need to keep track of the accumulators as well, since they are
used to compute the scores. For technical reason we also require the last
vertices to be equal. We complement this equivalence relation by a score-
based preorder on play prefixes. Intuitively, a play prefix w′ is better for
Player 0 than another play prefix w if for each F ∈ F1 the score for F of w is
smaller than the score for F of w′. If the score is equal for some set F ∈ F1,
then we require the accumulator of w′ to be a superset of the accumulator of
w. Again, we also require the last vertices of the play prefixes to be equal.

Definition 5.20. Let w,w′ ∈ V +.

i. w is F1-smaller than w′, denoted by w ≤F1 w
′, if Lst(w) = Lst(w′)

and for all F ∈ F1:

� ScF (w) < ScF (w′), or
� ScF (w) = ScF (w′) and AccF (w) ⊆ AccF (w′).
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ii. w and w′ are F1-equivalent, denoted by w =F1 w
′, if Lst(w) = Lst(w′)

and for all F ∈ F1 the equalities ScF (w) = ScF (w′) and AccF (w) =
AccF (w′) are satisfied.

Note that =F1 can be expressed by ≤F1 : we have w =F1 w
′ if and only

if w ≤F1 w′ and w′ ≤F1 w. It is easy to verify that ≤F1 and =F1 are
reflexive and transitive and that =F1 is even symmetric. Hence, ≤F1 is a
preorder and =F1 is an equivalence relation. We denote the F1 equivalence
class of w by [w]=F1

. Note that ≤F1 is not a partial order since it fails to
be antisymmetric for any F1: we have abab ≤F1 baab and baab ≤F1 abab for
every F1 ⊆ 2{a,b}, but obviously not abab = baab. Both ≤F1 and =F1 are
preserved under concatenation, i.e., =F1 is a right-congruence.

Lemma 5.21. Let w,w′ ∈ V +.

i. If w ≤F1 w
′, then wu ≤F1 w

′u for all u ∈ V ∗.

ii. If w =F1 w
′, then wu =F1 w

′u for all u ∈ V ∗.

Proof. i.) It suffices to show w ≤F1 w
′ implies wv ≤F1 w

′v for every v ∈ V .
The last vertices of wv and wv′ are obviously equal. So, let F ∈ F1. We have
ScF (w) ≤ ScF (w′) and AccF (w) ⊆ AccF (w′) in case ScF (w) = ScF (w′); and
we need to show ScF (wv) ≤ ScF (w′v) and AccF (wv) ⊆ AccF (w′v) in case
that ScF (wv) = ScF (w′v).

If v /∈ F , then the score for F is reset by the occurrence of v and we have
ScF (wv) = ScF (w′v) = 0 and AccF (wv) = AccF (w′v) = ∅.

Now, suppose we have v ∈ F . First, consider the case ScF (w) < ScF (w′):
either the score for F does not increase by visiting v after w and we have

ScF (wv) = ScF (w) < ScF (w′) ≤ ScF (w′v)

or the score increases in wv and we have

ScF (wv) = ScF (w) + 1 ≤ ScF (w′) ≤ ScF (w′v)

and AccF (wv) = ∅, due to the score increase. Hence, AccF (wv) ⊆ AccF (w′v)
holds in case ScF (wv) = ScF (w′v).

Now, consider the case ScF (w) = ScF (w′), which implies AccF (w) ⊆
AccF (w′). If AccF (w) = F \ {v}, then also AccF (w′) = F \ {v}, as the
accumulator for F can never be F . In this situation, we have

ScF (wv) = ScF (w) + 1 = ScF (w′) + 1 = ScF (w′v)

and AccF (wv) = AccF (w′v) = ∅. Otherwise, if AccF (w) 6= F \ {v}, then

ScF (wv) = ScF (w) = ScF (w′) ≤ ScF (w′v) .
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If ScF (w′) < ScF (w′v), then we are done. So, consider the case ScF (w′) =
ScF (w′v): we have

AccF (wv) = AccF (w) ∪ {v} ⊆ AccF (w′) ∪ {v} = AccF (w′v) ,

due to AccF (w) ⊆ AccF (w′) and the fact that the score at w′v does not
increase, which implies that the accumulator for wv′ is obtained by adding
v′ to the accumulator of w′.

ii.) The play prefixes w and w′ are F1-equivalent if and only if both
w ≤F1 w

′ and w′ ≤F1 w hold. Hence, applying i.) yields wu ≤F1 w
′u and

w′u ≤F1 wu and hence wu =F1 w
′u.

The arena of the safety game we are about to define is the =F1-quotient
of the unraveling of A up to the positions where Player 1 reaches a score of
three for the first time (if he does at all). Thus, we define

Plays<3 = {w | w play prefix in G and MaxScF1(w) < 3}

to be the set of play prefixes in G in which the scores of Player 1 are at most
2 and we define

Plays=3 = {wv | wv play prefix in G, MaxScF1(w) ≤ 2, and
MaxScF1(wv) = 3}

to be the set of play prefixes in which Player 1 just reached a score of three.
Furthermore, let

Plays≤3 = Plays<3 ∪ Plays=3 .

We define GS = ((V S , V S
0 , V

S
1 , E

S), F ) where

� V S = {[w]=F1
| w ∈ Plays≤3},

� V S
0 = {[w]=F1

| [w]=F1
∈ V S and Lst(w) ∈ V0},

� V S
1 = {[w]=F1

| [w]=F1
∈ V S and Lst(w) ∈ V1},

� ([w]=F1
, [wv]=F1

) ∈ ES for every w ∈ Plays<3 and every v such that
(Lst(w), v) ∈ E 22, and

� F = {[w]=F1
| w ∈ Plays<3}.

22Hence, every vertex in Plays=3 is terminal, contrary to our requirements on an arena.
However, every play visiting these vertices is losing for Player 0 no matter how it is
continued. To simplify the following proofs, we refrain from defining outgoing edges for
these vertices.
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The definitions of V S
0 and V S

1 are independent of representatives, as
w =F1 w

′ implies Lst(w) = Lst(w′), and we have V S = V S
0 ∪ V S

1 due to
V = V0 ∪ V1. The edge relation ES is well-defined, since =F1 is a right-
congruence. Finally, we have F ⊆ V , since we have Plays<3 ⊆ Plays≤3

and since w ∈ Plays<3 and w′ ∈ Plays=3 cannot be F1-equivalent. For the
sake of readability, we drop the subscripts from now on and denote the =F1-
equivalence class of w by [w]. Furthermore, all definitions and statements
below are independent of representatives; hence, we refrain from mentioning
independence of representatives from now on.

Remark 5.22. If ([w]=F1
, [w′]=F1

) ∈ ES , then (Lst(w),Lst(w′)) ∈ E.

We illustrate the definition of GS in the following example, which runs
through the whole section.

Example 5.23. The safety game GS for the Muller game G from Exam-
ple 4.12 is depicted in Figure 5.2. Its vertices are the =F1 equivalence classes
of the play prefixes of G in which Player 1 never reached a score of three (in
the first five columns) or in which he just reached a score of three (in the last
column). The latter equivalence classes are the only vertices which are not
in F . Let us illustrate the definition of the edge relation: there is an edge
from [1001] to [12] since there is an edge from 1 to 2 in the original game G,
and since 10012 =F1 12. Furthermore, there is a self-loop at vertex [2], since
there is one at vertex 2 in G and since we have 2 =F1 22.

One can verify easily that the vertices [v] for v ∈ V are in the winning
region of Player 0. This corresponds to the fact that Player 0’s winning
region in the Muller game contains every vertex of the arena. 3

The proof of Theorem 5.19 is split into several lemmata. Due to determi-
nacy of both Muller and safety games, it suffices to consider i = 0 to prove
Theorem 5.19(i). The direction from left to right is shown in Lemma 5.24,
the direction from right to left in Lemma 5.28.

To show that v ∈W0(G) implies [v] ∈W0(GS) we translate a strategy for
G that is winning from v into a strategy for GS that is winning from [v]. The
construction is the same as the one in the proof of izs analogue, Lemma 5.12,
we just have to replace =1 by =F1 . For this reason, we skip the proof.

Lemma 5.24. For every v ∈ V : if v ∈W0(G) then [v] ∈W0(GS).

For the other direction of Theorem 5.19(i), we show that a subset of
W0(GS) can be turned into a memory structure for Player 0 in the Muller
game that implements a winning strategy. We intend to use the =F1-
equivalence class [w] of w as memory state to keep track of Player 1’s scores
in G. Suppose we have [w] ∈W0(GS): if it is Player 0’s turn at the last vertex
of w in the Muller game, then she has to determine a successor to move the
token to. By construction of GS , it is also Player 0’s turn at [w]. Since we
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[1]

[0]

[2]

[01]

[10]

[12]

[21]

[101]

[100]

[122]

[121]

[1010]

[1001]

[1221]

[1212]

[10101]

[10010]

[12212]

[12121]

[101010]

[100101]

[122121]

[121212]

Figure 5.2: The safety game GS for G from Example 4.12 (vertices drawn
with double lines are in F )

have [w] ∈ W0(GS), there is a successor [wv] ∈ W0(GS) of [w], where v is a
vertex in V such that (Lst(w), v) ∈ E due to Remark 5.22. Our proposed
strategy for the Muller game prescribes to move to v and updates the mem-
ory to [wv] ∈W0(G). On the other hand, assume it is Player 1’s turn at the
last vertex of w and he moves the token to a successor v. Then, it is also his
turn at [w] in GS and the successor [wv] of [w] is in W0(GS) as well, since
W0(GS) is a trap for him. Hence, we can update the memory to [wv] while
maintaining the invariant that the memory state – which is the equivalence
class of the current play prefix – is always an element of W0(GS). This strat-
egy is winning for Player 0 for the Muller game G from every vertex v such
that [v] ∈ W0(GS), since it bounds the scores by the scores encoded by the
equivalence classes in W0(G), which are in turn bounded by two.

Example 5.25. Consider the winning region W0(GS) in the safety game GS
of Example 5.23 as depicted in Figure 5.3 and recall that this is the safety
game that corresponds to the Muller game G from Example 4.12.

We show how to use this winning region to implement a winning strategy
for G: assume the token is placed at vertex 0 in G. Then, we initialize the
memory to [0]. If Player 1 uses the self-loop and moves the token to 0,
the memory state is left unchanged. This reflects the fact that he does
not change any of his scores or accumulators by using the self-loop in this
situation. On the other hand, if he moves the token to vertex 1, then the
memory is updated to [01] and its Player 0’s turn. Now, she has two choices,
which correspond to the successors [100] (move to 0 in G) and [12] (move to 2
in G). Assume she moves to 0. Then, the memory is updated to [010] = [100]

145



5 Reductions Down the Borel Hierarchy

[1]

[0]

[2]

[01]

[10]

[12]

[21]

[101]

[100]

[122]

[121]

[1001]

[1221]

[10101]

[12121]

Figure 5.3: The winning region W0(GS) of the safety game GS from Exam-
ple 5.23

accordingly, and left unchanged as long as Player 1 uses the self-loop. If he
moves back to 1, the memory is updated to [1001]. Now, Player 0 has only
one choice: move to 2, induced by the fact that the only successor of [1001] in
W0(GS) is [12]. The successor [10010], which corresponds to moving another
time back to 0, is in the winning region of Player 1, since he can enforce
to leave F from there. Hence, Player 0 moves to 2 in the Muller game and
updates her memory to [10012] = [12]. By iterating this, she is able to
prevent her opponent from ever reaching a score of three. Hence, this is a
winning strategy from 0. In the same way, she can win from any vertex of
G, since [1] and [2] are in W0(GS) as well. 3

But we can do better than using all equivalence classes in the winning
region of Player 0 to keep track of the scores. In the previous example,
in memory state [01], Player 0 has two choices, which both prevent her
opponent from reaching a score of three. This freedom is the subject of
the next section, but here we are interested in obtaining a small finite-state
strategy. Hence, we eliminate such choices by restricting the winning region
of Player 0 to the set of vertices that are reachable by some uniform winning
strategy for GS .

Example 5.26. Once more, consider the safety game GS from Example 5.23
as depicted in Figure 5.2 that corresponds to the Muller game G from Exam-
ple 4.12. Figure 5.4 depicts the winning region of Player 0 restricted to the
vertices reachable from {[0], [1], [2]} via a uniform winning strategy. Using
the construction presented in Example 5.25, Player 0 can use this restriction
as memory structure to implement a winning strategy for the Muller game.
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This saves two memory states. 3

[1]

[0]

[2]

[01]

[10]

[12]

[21]

[101]

[100]

[122]

[121]

[1001]

[1221]

Figure 5.4: The winning region W0(GS) of the safety game GS from Exam-
ple 5.23 restricted to a winning strategy

But we can do even better than that: instead of keeping track of the
exact scores, we over-approximate the scores, i.e., instead of considering all
vertices in the restricted winning region, we only consider the maximal ones
with respect to ≤F1 . Here, we compare equivalence classes by comparing
their representatives, which is well-defined, since they are all F1-equivalent.

Example 5.27. Once more, consider the vertices in Figure 5.4. The F1-
maximal ones are [100], [122], [1001], and [1221]. We show how to use these
memory states to implement a winning strategy for Player 0 for the Muller
game G from Example 4.12. Assume the token is placed at vertex 0. Then,
the memory is initialized to [100], since we have 0 ≤F1 100. If Player 1
uses the self-loop twice, then the memory is left unchanged, since we have
00 ≤F1 100 and 000 ≤F1 100. If he then moves the token to vertex 1,
the memory is updated to [1001], since we have 0001 ≤F1 1001 and it is
Player 0’s turn. Now, there is only one successor v available such that 0001v
can be covered by some maximal element, namely v = 2. Hence, she moves
the token to 2 and the memory is updated to [122] due to 00012 ≤F1 122.
By iterating this, she is able to prevent Player 1 from ever reaching a score
of three. Furthermore, by initializing the memory to 1001 (or 1221) and 122,
she is able to win G from the vertices 1 and 2, respectively.

Hence, we have constructed a winning strategy of size four. However, it
is easy to see that two states suffice to win this game. 3

We prove the direction from right to left of Theorem 5.19(i) by showing
that the idea explained in the previous example can be implemented in every
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game: the maximal elements reachable by some winning strategy for Player 0
for the safety game can be turned into a memory structure that implements
a uniform winning strategy for the Muller game.

Lemma 5.28. For every v ∈ V : if [v] ∈W0(GS), then v ∈W0(G).

Proof. Let σ′ be a uniform positional winning strategy for Player 0 for GS and
let R ⊆ V S be the set of vertices that are reachable from W0(GS)∩{[v] | v ∈
V } by plays consistent with σ′. Every [w] ∈ R∩V S

0 has exactly one successor
in R (which is of the form [wv] for some v ∈ V with (Lst(w), v) ∈ E) and
dually, every successor of [w] ∈ R ∩ V S

1 (which are exactly the equivalence
classes [wv] with (Lst(w), v) ∈ E) is in R.

Now, we lift ≤F1 to equivalence classes by defining [w] ≤F1 [w′] if and
only if w ≤F1 w

′. Let Rmax be the ≤F1-maximal elements of R. Applying
the facts about successors of vertices in R, we obtain the following remark.

Remark 5.29. Let Rmax be defined as above.

i. For every [w] ∈ Rmax ∩ V S
0 , there is a v ∈ V with (Lst(w), v) ∈ E and

there is a [w′] ∈ Rmax such that [wv] ≤F1 [w′].

ii. For every [w] ∈ Rmax ∩ V S
1 and each of its successors [wv], there is a

[w′] ∈ Rmax such that [wv] ≤F1 [w′].

Thus, instead of updating the memory from [w] to [wv] (and thereby
keeping track of the exact scores) when processing a vertex v, we can directly
update it to a maximal element that is F1-larger than [wv] (and thereby
over-approximate the exact scores).

Formally, we defineM = (M, init, upd) by M = Rmax ∪ {⊥} 23, where

init(v) =


[w] if [v] ∈W0(GS) and there exists some [w] ∈ Rmax

such that [v] ≤F1 [w],
⊥ otherwise,

and

upd([w], v) =

{
[w′] if there is some [w′] ∈ Rmax such that [wv] ≤F1 [w′],
⊥ otherwise.

We claim that we have [w] ≤F1 upd∗(w) for every w ∈ V + with upd∗(w) 6=
⊥. It is true for a play prefix of length one, since we have [v] ≤F1 init(v) =
upd∗(v) for every v such that init(v) 6= ⊥. For the induction step, we have

23We use the memory state ⊥ to simplify our proof. It is not reachable via plays that
are consistent with the strategy implemented by M and can therefore eliminated and its
incoming transitions can be redefined arbitrarily.
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[w] ≤ upd∗(w) by induction hypothesis and have to show [wv] ≤ upd∗(wv)
for every v such that upd∗(wv) 6= ⊥. Let upd∗(w) = [x]. Then, we have

upd∗(wv) = upd(upd∗(w), v) = [w′]

for some w′ such that [xv] ≤F1 [w′]. Thus,

[wv] ≤F1 [xv] ≤F1 [w′] = upd∗(wv) ,

where the first inequality is due to Lemma 5.21, which is easily lifted to F1

equivalence classes.
Thus, if upd∗(w) = [x], then Lst(w) = Lst(x). Using Remark 5.29, we

define a next-move function by

nxt(v, [w]) =


v′ if Lst(w) = v, (v, v′) ∈ E, and

there exists [w′] ∈ Rmax such that [wv′] ≤F1 [w′],
v′′ otherwise, where v′′ is some vertex with (v, v′′) ∈ E,

and nxt(v,⊥) = v′′ for some v′′ with (v, v′′) ∈ E. The second case in the
case distinction above is just to match the formal definition of a next-move
function; it is never be invoked since upd∗(w) is either equal to ⊥ or we have
Lst(w) = Lst(x), where upd∗(w) = [x] .

It remains to show that the strategy σ implemented by M and nxt is
a winning strategy for Player 0 from W = {v ∈ V | [v] ∈ W0(GS)}. An
inductive application of Remark 5.29 shows that every play w that starts in
W and is consistent with σ satisfies upd∗(w) 6= ⊥: for the induction start,
let v ∈ W , i.e., [v] ∈ W0(GS). Hence, there exists an [w] ∈ Rmax such that
[v] ≤F1 [w] which shows that we have upd∗(v) = init(v) 6= ⊥.

For the induction step, let wv be consistent with σ. By induction hypoth-
esis, we can assume upd∗(w) 6= ⊥. Hence, let upd∗(w) = [x]. We consider
two cases: if Lst(w) ∈ V0, then we have v = σ(w) = nxt(Lst(w),upd∗(w)).
By definition of nxt, there exists some [w′] ∈ Rmax such that [xv] ≤F1 [w′].
This equivalence class witnesses upd([x], v) 6= ⊥. This finishes the first case,
since we have upd∗(wv) = upd([x], v). Now, we consider the case Lst(w) ∈
V1. Then, there is an edge between [x] and [xv] and we have [xv] ∈ R. Hence,
there is also some equivalence class [w′] ∈ Rmax such that [xv] ≤F1 [w′]. The
class [w′] witnesses that we have upd∗(wv) = upd([x], v) 6= ⊥.

Let us conclude the proof: since the memory state ⊥ is never reached by
a play that starts in W and is consistent with σ, the scores of Player 1 are
bounded by two, as we have shown above [w] ≤F1 upd∗(w) ∈ Rmax ⊆ F for
every play prefix w of such a play, which implies w ∈ Plays<3. Hence, σ is
indeed a winning strategy for Player 0 from W .

Using Lemma 5.24 and the construction in the proof of Lemma 5.28
proves Theorem 5.19(ii).
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Corollary 5.30. Player 0 has a finite-state winning strategy from W0(G)
whose memory states form an ≤F1-antichain in W0(GS).

Proof. We have {[v] | v ∈W0(G)} ⊆W0(GS) due to Lemma 5.24. Hence, the
construction in the proof of Lemma 5.28 yields a finite-state winning strategy
for Player 0 from W0(G) whose memory states form an ≤F1-antichain in
W0(GS).

To finish the proof of Theorem 5.19, we determine the size of GS to prove
the third statement. To this end, we use a variation of latest appearance
records (LAR) [GH82, McN93]. Note that we do not need a hit position for
our purposes. A word ` ∈ V + is an LAR if every vertex v ∈ V appears at
most once in `. Next, we map each w ∈ V + to a unique LAR, denoted by
LAR(w), as follows: LAR(v) = v for every v ∈ V and for w ∈ V + and v ∈ V
we define

LAR(wv) =

{
LAR(w)v if v /∈ Occ(w),
p1p2v LAR(w) = p1vp2.

A simple induction shows that LAR(w) is indeed an LAR, which also ensures
that the decomposition of w in the second case of the inductive definition is
unique. We continue by showing that LAR(w) determines all but |LAR(w)|
many of w’s scores and accumulators.

Lemma 5.31. Let w ∈ V + and LAR(w) = vkvk−1 · · · v1.

i. w = xkvkxk−1vk−1 · · ·x2v2x1v1 for some xj ∈ V ∗ with Occ(xj) ⊆
{v1, . . . , vj} for every j.

ii. ScF (w) > 0 if and only if F = {v1, . . . , vj} for some j.

iii. If ScF (w) = 0, then AccF (w) = {v1, . . . , vj} for the maximal j such
that {v1, . . . , vj} ⊆ F and AccF (w) = ∅ if no such j exists.

iv. Let ScF (w) > 0 and F = {v1, . . . , vj}. Then, AccF (w) ∈ {∅} ∪
{{v1, . . . , vj′} | j′ < j}.

Proof. i.) By induction over |w|. If |w| = 1, then the claim follows im-
mediately from w = LAR(w). Now, let |wv| > 1. If v /∈ Occ(w), then
LAR(wv) = LAR(w)v and the claim follows by induction hypothesis.

Now, consider the case v ∈ Occ(w). So, there is an index h such that
LAR(w) = p1vp2 with p1 = vk · · · vh+1, p2 = vh−1 · · · v1, and hence vh = v.
By induction hypothesis, there exists a decomposition

w = xkvkxk−1vk−1 · · · v2x1v1

for some xj ∈ V ∗ such that Occ(xj) ⊆ {v1, . . . , vj} for every j. Furthermore,
we have LAR(wv) = p1p2v = v′k · · · v′1 where v′1 = vh, v′j = vj−1 for every j
in the range 1 < j ≤ h, and v′j = vj for every j in the range h < j ≤ k.
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Now, define x′1 = ε, x′j = xj−1 for every j in the range 1 < j < h,
x′h = xhvhxh−1, and x′j = xj for every j in the range h < j ≤ k. It is easy
to verify, that the decomposition

wv = x′kv
′
kx
′
k−1v

′
k−1 · · · v′2x′1v′1

has the desired properties.
ii.) We have ScF (w) > 0 if and only if there exists a suffix x of w with

Occ(x) = F . Due to the decomposition characterization, having a suffix x
with Occ(x) = F is equivalent to F = {v1, . . . , vj} for some i.

iii.) By Lemma 4.7 we have AccF (w) = Occ(x) where x is the longest
suffix of w such that the score for F does not change throughout x and
Occ(x) ⊆ F . Consider the decomposition characterization of w as above.
We have {v1, . . . , vi} ⊆ AccF (w), since xivi · · · v1v1 is a suffix of w satisfying
Occ(x) ⊆ F . Furthermore, since vi+1 /∈ F by the maximality of i, this is the
longest such suffix and we have indeed AccF (w) = {v1, . . . , vi}.

iv.) The latest increase of ScF (w) occurs after (or at) the last visit of vi,
since we have Occ(vixi−1 · · ·x1v1) = F . Hence, AccF (w) is the occurrence
set of a suffix of xi−1 · · ·x1v1 and the decomposition characterization yields
the result.

This characterization allows us to bound the size of GS and to prove
Theorem 5.19(iii).

Lemma 5.32. We have |V S | ≤
(∑n

k=1

(
n
k

)
· k! · 2k · k!

)
+ 1 ≤ (n!)3, where

n = |V |.

Proof. In every safety game, we can merge the vertices in V \ F to a single
vertex without changing W0(G). Since [v] ∈ F for every vertex v of G, we
also retain the equivalence v ∈Wi(G)⇔ [v] ∈Wi(GS).

Hence, it remains to bound the index of Plays<3/=F1
. Lemma 5.31 shows

that a play prefix w ∈ V + has |LAR(w)| many sets with non-zero score.
Furthermore, the accumulator of the sets with score 0 is determined by
LAR(w). Now, consider a play w ∈ Plays<3 and a set F ∈ F1 with non-
zero score. We have ScF (w) ∈ {1, 2} and there are exactly |F | possible
values for AccF (w) due to Lemma 5.31(iv). Finally, LAR(w) = LAR(w′)
implies Lst(w) = Lst(w′). Hence, the index of Plays<3/=F1

is bounded by
the number of LARs, which is

∑n
k=1

(
n
k

)
· k!, times the number of possible

score and accumulator combinations for each LAR ` of length k, which is
bounded by 2k · k!.

If we only want to determine which player has a winning strategy from
a given vertex v (and such a strategy in case it is Player 0), it suffices
to construct the part of GS that is reachable from [v]. This can even be
improved by starting with an F1-burden wv ending in v: we have shown in
Subsection 4.2.2 that Player 0 can prevent Player 1 from reaching a score of
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5 Reductions Down the Borel Hierarchy

three starting in v if and only if she can prevent him from reaching a score
of three when starting the play with the burden wv.

Also, while a player in general cannot prevent her opponent from reaching
a score of two, there are arenas in which she can do so. By first constructing
the subgame G′S up to threshold 2, which is smaller than the one for threshold
three, we can possibly determine a subset of Player 0’s winning region faster
and obtain a (potentially) smaller finite-state winning strategy for this sub-
set: we have W0(G′S) ⊆ W0(GS). However, the converse W1(G′S) ⊆ W1(GS)
is in general false as we have seen in Theorem 4.16.

5.3.1 Permissive Strategies for Muller Games

In the previous section, we have introduced permissive strategies for parity
games: according to this definition, a multi-strategy σ is permissive, if it
subsumes the behavior of every positional multi-strategy σ′ (restricted to
those plays that start in a vertex from which σ′ is winning). So, what is the
right notion of permissiveness for Muller games, which are not positionally
determined, i.e., which behaviors should a permissive strategy for a Muller
game subsume? One possibility is to rely on finite-state determinacy: Muller
games are determined with strategies of size n!, where n is the size of the
game’s arena. Already Bernet et al. mentioned that their results could be
lifted toM -permissive strategies, i.e., strategies which subsume the behavior
of every finite-state strategy of size at most M . One could define the same
notion for Muller games and rely on the fact that a finite-state winning
strategy of size M bounds the scores of the losing player by some bound
which depends only on M and the size of the arena.

However, we prefer to pursue an alternative direct approach: our score-
based construction (and also the original construction of Bernet et al.) for
parity games yields permissive strategies that do not only subsume the be-
haviors of all positional strategies, but allow every play in which Player 0
can prevent Player 1 from reaching a score of nc + 1 for some odd priority c.
We think that this is the right way to generalize permissiveness to Muller
games: a multi-strategy for a Muller game is permissive, if it is winning an
if it allows every play ρ such that from every prefix of ρ, Player 0 is able
to prevent her opponent from reaching a score of three. Such a strategy
is winning from every vertex of her winning region. In the following, we
construct such a strategy by turning the winning region of Player 0 in the
safety game GS into a memory structure. By construction, the winning re-
gion contains exactly the play prefixes from which Player 0 can prevent her
opponent from reaching a score of three.

Obviously, we can replace the threshold three by any other value k and
obtain a multi-strategy that keeps the scores below k. To this end, we just
have to construct the safety game that keeps track of Player 1’s scores up to
k. However, when using a score that is strictly smaller than three, then such
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5.3 Reducing Muller Games to Safety Games

a strategy cannot be winning from every vertex in the winning region, e.g.,
in an arena in which Player 0 cannot prevent her opponent from reaching a
score of two (cf. Theorem 4.16).

We begin by giving a formal definition of permissiveness in Muller games.
Recall that ρ(w, σ, τ) is the play obtained if the players use their strate-
gies σ and τ to prolong the play prefix w on whose formation the players
had no influence (see Definition 4.26). We say that Player 0 can prevent a
score of three for Player 1 starting at w, if she has a strategy σ such that
MaxScF1(ρ(w, σ, τ)) ≤ 2 for every strategy τ of Player 1. Note that Player 0
cannot prevent a score of three for Player 1 starting from a play prefix w
with MaxScF1(w) ≥ 3. Hence, if she is able to prevent him from reaching a
score of three from every prefix of a play ρ, then we have MaxScF1(ρ) ≤ 2.

Remark 5.33. The permissive strategies constructed by Bernet et al. and
us allow every play ρ such that Player 0 can prevent a score of nc + 1 for
every odd priority c starting at every prefix of ρ.

As we have explained in the introductory remarks, this is the generaliza-
tion we pursue for Muller games.

Definition 5.34. A multi-strategy σ for Player 0 for a Muller game G is
permissive, if it is winning from every vertex in W0(G) and if Beh(W0(G), σ)
contains every play ρ that satisfies the following condition: starting at every
prefix of ρ, Player 0 is able to prevent a score of three for Player 1.

Using the safety game GS defined in the previous section, we are able to
show that Player 0 always has a finite-state permissive strategy and how to
compute one. The construction is analogous to the one of Theorem 5.18, but
the correctness proof differs slightly due to our new definition of permissive-
ness.

Theorem 5.35. Let G be a Muller game and GS the corresponding safety
game as above. Then, Player 0 has a finite-state permissive strategy for G
with memory states W0(GS).

The proof is very similar to the one for Theorem 5.18, hence, we only
discuss the differences in greater detail.

Proof. The definition of the memory structure and the next-move func-
tion is exactly the same as in the proof of Theorem 5.18: we define M =
(M, init,upd) where M = W0(GS) ∪ {⊥} 24,

init(v) =

{
[v] if [v] ∈W0(GS),
⊥ otherwise,

24Again, we use the memory state ⊥ to simplify our proof. It is not reachable via plays
that are consistent with the strategy implemented byM and can therefore eliminated and
its incoming transitions can be redefined arbitrarily.
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5 Reductions Down the Borel Hierarchy

and

upd([w], v) =

{
[wv] if [wv] ∈W0(GS),
⊥ otherwise.

As we have done in the proof of Theorem 5.18 one can show that nxt
always returns a non-empty set of successors. Similarly, one can show that
the strategy σ implemented byM and nxt is winning from every vertex in
the winning region of Player 0 in the Muller game.

It remains to show that σ is permissive. Let ρ be a play such that starting
at every prefix of ρ, Player 0 is able to prevent a score of three for Player 1.
It suffices to show that we have [ρ0 · · · ρn] ∈W0(GS) for every prefix ρ0 · · · ρn,
since every such play is consistent with σ by construction.

Towards a contradiction, assume that we have [ρ0 · · · ρn] /∈ W0(GS), i.e.,
Player 1 has a strategy to move the token from [ρ0 · · · ρn] into V \ F . This
strategy can be translated into a strategy for him that enforces a score of
three starting at ρ0 · · · ρn, which contradicts our assumption on ρ. Hence,
the strategy σ is indeed permissive.

5.4 Safety Reductions

The reductions presented in the previous two sections are very similar: a
closed25, ω-regular subset L ⊆ Win of the winning plays for Player 0 in
a game G is identified such that Player 0 has a strategy that only allows
plays which are in L when starting in her winning region. Such a strategy is
necessarily winning. In the reductions above, the sets L are the plays with
bounded scores for Player 1.

A closed, ω-regular language is the set of winning plays for Player 0 in
a suitable safety game GS . In this situation, Player 0 can prove a vertex to
be in her winning region by showing that a suitable vertex is in her winning
region of GS . Furthermore, a uniform winning strategy for Player 0 for G
can be constructed by turning W0(G) into a memory structure. Dually, if G
is determined, then Player 1 can prove a vertex to be in his winning region
by showing that a suitable vertex is in his winning region of the safety game.
However, we do not obtain a winning strategy for Player 1.

In the following, we present a general notion of such a safety reduction
which not only compasses the constructions for parity and Muller games
presented above, but is also implicitly used in so-called Safraless synthesis
algorithms. We show that this new reduction is also applicable to almost all
types of winning conditions found in the literature. While this does not yield
optimal strategies in terms of memory size (indeed, the safety reductions only

25A language is closed, if its complement is open (cf. Subsection 5.1).
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5.4 Safety Reductions

yield finite-state strategies, even for positionally determined games), these
reductions show that the winning regions and one winning strategy in all
these types of games can be obtained by just solving safety games.

We begin by formalizing the new notion of reduction.

Definition 5.36. A game G = (A,Win) with vertex set V is safety reducible,
if there is a regular language L ⊆ V ∗ of finite words such that:

� For every ρ ∈ V ω: if Pref(ρ) ⊆ L, then ρ ∈Win.

� If v ∈W0(G), then Player 0 has a strategy σ with Pref(Beh(v, σ)) ⊆ L.

A strategy σ satisfying Pref(Beh(v, σ)) ⊆ L is winning for Player 0
from v. We continue by showing that many games appearing in the lit-
erature on infinite games are safety reducible.

Example 5.37. For a finite set X, let X≤k = {w ∈ X∗ | |w| ≤ k}.

� In a reachability game G, Player 0 has an attractor winning strategy
such that every consistent play visits F after at most k = |V \F | steps.
Hence, G is safety reducible with L = Pref((V \ F )≤k · F · V ω).

� In a Büchi game G, Player 0 has a positional winning strategy such that
every consistent play visits a vertex in F at least every k = |V \ F |
steps. Hence, G is safety reducible with L = Pref(((V \ F )≤k · F )ω).

� In a co-Büchi game G, Player 0 has a positional winning strategy such
that every consistent play stays in F after visiting each vertex in V \F
at most once. Hence, G is safety reducible with

L = Pref({w ·Fω | each v ∈ V \ F appears at most once in w}) .

� In a request-response game G [WHT03], Player 0 has a finite-state
winning strategy such that in every consistent play every request is
answered within k = |V |·r ·2r+1 steps [HTW08], where r is the number
of request-response pairs. Thus, G is safety reducible to the language
of play prefixes in which every request is answered within k steps. The
same approach is applicable to Poset games [Zim09], an extension of
request-response games with partially ordered responses.

� Corollary 5.9 shows that a parity game is safety reducible to the lan-
guage of play prefixes that never allow a score of nc + 1 for some odd
priority c.

� The results of Piterman and Pnueli on small progress-measures for
Rabin and Streett games [PP06] can also be rephrased in terms of
safety reductions.
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5 Reductions Down the Borel Hierarchy

� Lemma 4.24 shows that a Muller game is safety reducible to the lan-
guage of play prefixes in which the scores of Player 1 are bounded by
two. 3

Next, we define the cartesian product of an arena and an automaton
reading play prefixes. This is essentially the same as the product of an arena
and a memory structure. However, since we need to identify runs of the
automaton in the product, we prefer to keep the automaton explicit. Let
A = (V, V0, V1, E) be an arena and let A = (Q,V, q0, δ, F ) be a deterministic
finite automaton recognizing a language over V . We define the arena

A× A = (V ×Q,V0 ×Q,V1 ×Q,E ◦ δ)

where ((v, q), (v′, q′)) ∈ E◦δ if and only if (v, v′) ∈ E and δ(q, v′) = q′. Every
play prefix v1 · · · vn in A is be mapped to an extended play e(v1 · · · vn) =
(v1, q1) · · · (vn, qn) with q1 = δ(q0, v1) and qj+1 = δ(qj , vj+1), i.e., in its
second component, the extended play in A × A simulates the run of A on
the original play in A. Dually, a play prefix (v1, q1) · · · (vn, qn) in A×M is
mapped to its projected play by p((v1, q1) · · · (vn, qn)) = v1 · · · vn.

Theorem 5.38. Let G be a game with vertex set V that is safety reducible
with language L(A) for some DFA A = (Q,V, q0, δ, F ). Define the safety
game GS = (A× A, V × F ). Then:

i. v ∈W0(G) if and only if (v, δ(q0, v)) ∈W0(GS).

ii. Player 0 has a finite-state winning strategy from W0(G) with memory
states Q.

The proof is very similar to the proofs for the reductions from parity and
Muller games to safety games presented above.

Proof. i.) Let v ∈ W0(G) and let σ be a winning strategy for Player 0
from v that satisfies Pref(Beh(v, σ)) ⊆ L(A). We define a strategy for
GS by σ′((v1, q1) · · · (vn, qn)) = (v′, δ(qn, v′)) where v′ = σ(v1 · · · vn). We
show that this strategy is winning for Player 0 from (v, δ(q0, v)). A sim-
ple induction shows that (v1, q1) · · · (vn, qn) being consistent with σ′ implies
p((v1, q1) · · · (vn, qn)) being consistent with σ. So, suppose σ′ is not win-
ning in the safety game, i.e., there exists a play prefix w′ in GS starting in
(v, δ(q0, v)) that is consistent with σ such that its last vertex (vn, qn) is in
V × (Q \ F ). Since the second component simulates the run of A on p(w′),
the projected play p(w′), which is consistent with σ, is not accepted by A.
This yields the desired contradiction to our assumption that σ allows only
play prefixes that are in L(A).

For the other direction, we construct a finite-state winning strategy with
memory states Q that is winning for Player 0 fromW0(G). Fix a uniform po-
sitional winning strategy σ′ for Player 0 for GS that is winning fromW0(GS).
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5.4 Safety Reductions

We defineM = (Q, init, δ) with init(v) = δ(q0, v) and a next-move function
by nxt(v, q) = v′, if σ′(v, q) = (v′, q′) for some q′.

Let (v, δ(q0, v)) ∈W0(GS). We show that the strategy σ implemented by
M and nxt is winning for Player 0 from v. A simple induction shows that
w starting in v and being consistent with σ implies e(w) being consistent
with σ′. Hence, we have Pref(Beh(v, σ)) ⊆ L(A), since the memory simulates
the run of A on w and does not leave F . Thus, σ is winning, as every play
whose prefixes are all in L(A) is winning for Player 0.

ii.) We have {(v, δ(q0, v)) | v ∈ W0(G)} ⊆ W0(GS) due to the first part
of the proof for i.). Hence, the construction in the second part of the proof
for i.) yields a finite-state winning strategy for Player 0 from W0(G) with
memory states Q.

Let us mention that a converse of Theorem 5.38 holds as well: if Player 0
has a uniform finite-state strategy σ implemented by a memory structureM
for a game G = (A,Win), then A×M can be turned into a finite automa-
ton A with

L(A) = Pref(Beh(W0(G), σ)) .

Then, G is trivially safety reducible to L(A). Hence, every game in which
Player 0 has a finite-state winning strategy (which can always be assumed to
be uniform) can be reduced to a safety game. However, for the construction
of the safety game as just described, we need a finite-state winning strategy
and there is no need to determine another one by a safety reduction. The
interesting case is when we have a generic construction of a language L that
allows a safety reduction without having to solve the game first, as we have
it in all examples mentioned above.

If G is determined, then Theorem 5.38(i) is equivalent to v ∈Wi(G) if and
only if (v, δ(q0, v)) ∈ Wi(GS). Hence, the winning regions (and a winning
strategy for Player 0) for the games discussed in Example 5.37 can be deter-
mined by solving safety games. Let us conclude by mentioning that the safety
reducibility of parity games was used implicitly to construct an algorithm
for parity games [Jur00] and to compute permissive strategies for parity
games [BJW02] as discussed in Section 5.2. Similarly, the safety reducibility
of co-Büchi games is used implicitly in work on bounded synthesis [SF07]
and LTL realizability [KV05, KPV06, FJR11].

Furthermore, there is a tight connection between permissive strategies,
progress measure algorithms, and safety reductions for parity games: the
progress measure algorithm due to Jurdziński [Jur00] and the reduction from
parity games to safety game due to Bernet et al. [BJW02] to compute per-
missive strategies are essentially the same. Whether the safety reducibility
of Muller games can be turned into a progress measure algorithm is subject
to ongoing research.

157



5 Reductions Down the Borel Hierarchy

What we can do is to generalize the notion of permissiveness to the games
discussed in Example 5.23: if a game is safety reducible to L, then we can
construct a multi-strategy that allows every play ρ in which Player 1 cannot
leave L starting from any prefix of ρ. Thereby, we obtain what one could
call L-permissive strategies.

5.5 Summary of Results

We presented a score-based variant of Bernet et al.’s reduction from parity
to safety games to compute permissive strategies. While it is conceptually
very close to the original proof, it has the advantage to be generalizable
to Muller games as well: using the existence of strategies that bound the
losing player’s scores by two in a Muller game, we presented a reduction
from Muller to safety games that yields both winning regions and a winning
strategy for one player. The safety game here is only cubically larger than
the parity game obtained by an LAR-reduction. This blowup is made up for
by the fact that safety games can be solved in linear time while the question
whether parity games can be solved in polynomial time is open at the time
of writing. Also, our construction yields a novel type of antichain-based
memory structure for Muller games and the first definition of permissive
strategies for Muller games.

Furthermore, we have introduced a new type of reduction from arbitrary
games to safety games which generalizes both reductions mentioned above,
but can be (and has already been) applied to many other winning conditions
appearing in the literature. As above, solving the safety game yields both
winning regions (if the original game is determined, otherwise only one) and
a winning strategy for one player.
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Chapter 6

Conclusion

In this thesis, we have investigated the existence and the complexity of com-
puting optimal strategies for infinite games.

We have shown that the complexity of solving games with winning con-
ditions in linear temporal logics does not increase when adding operators
parameterized by variable bounds, i.e., determining whether a player wins a
PLTL game with respect to some, infinitely many, or all variable valuations
is 2Exptime-complete, as is solving LTL games. When we consider opti-
mization problems for unipolar PLTL games, there is an exponential gap:
we have presented an algorithm to compute optimal variable valuations in
triply-exponential time, but the best lower bound is the doubly-exponential
one of solving LTL games. Furthermore, we have complemented these results
with doubly-exponential upper and lower bounds on the values of optimal
variable valuations in PLTL games. Finally, we have shown that the set
of variable valuations or Player i in a unipolar game is semilinear. The
same holds true for the projection of this set in an arbitrary PLTL game to
variables of one polarity.

The exact complexity of the optimization problems remains open and is
subject of ongoing research. The lower bounds on values of optimal variable
valuations show that our algorithms with triply-exponential running time
cannot be improved to run in doubly-exponential time.

For Muller games, we have proved the existence of winning strategies
which are optimal with respect to McNaughton’s scoring functions: our
strategies bound the losing player’s scores by two (which is the best she
can achieve), an improvement over the previous bound |F |! for the score
for a set F . We have used these strategies to show how to determine the
winning regions of a Muller game and a winning strategy for one player by
solving a safety game. This reduction also yields a score-based notion of
permissive strategies and a new memory structure for Muller games. While
the original definition of permissive strategies for parity games is not based
on scores, we have shown that it can (and probably should) be formulated
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6 Conclusion

using scoring functions for parity games. Finally, we have presented a gen-
eral framework of so-called safety reductions, which allow to determine the
winning regions and one winning strategy for an infinite game by solving a
safety game. We have listed several implicit applications of these reductions
in many earlier works found in the literature and have shown applications of
safety reductions to other common winning conditions.

6.1 Further Research and Open Questions

The most interesting open problem about PLTL games is to settle the ex-
act complexity of the unipolar optimization problems. Another challenging
problem concerns the memory requirements of winning strategies realizing
optimal variable valuations: these strategies are finite-state, but it is open
whether being optimal requires more memory than just being winning: is
there a tradeoff between the size and the quality of a winning strategy? Note
that this question is very general and can be posed for many other winning
conditions with an induced quality measure as well. We come back to this
question below. Other questions worthwhile pursuing include the addition
of (parameterized) past modalities and extensions to infinite arenas.

Finally, we propose to investigate the following variant of PLTL games:
according to our definition, the emptiness problem for PLTL games asks
whether there exists a strategy σ and a variable valuation α such that every
play that is consistent with σ is a model of the winning condition with respect
to α, i.e., the order of quantifiers is ∃σ∃α∀ρ. If we change the order to
∃σ∀ρ∃α, we ask whether there is a strategy such that the winning condition
is satisfied on every consistent play, but with a variable valuation that may
depend on the play. Thus, instead of guaranteeing uniform bounds for all
plays consistent with a strategy, Player 0 only has to guarantee some bound
on each play. This non-uniform variant of PLTL games is reminiscent of
finitary objectives [CHH09].

For Muller games let us recall the two strengthenings of Lemma 4.24
discussed at the end of Subsection 4.2.2. Recall that the Lemma stated the
existence of strategies that bound the losing player’s scores by two, but does
not yield results about the accumulator in situations where the score is two.
Proving these strengthenings would show that the upper and lower bound
of two a player can achieve against an optimal strategy is not only tight
when we consider scores, but also when we consider scores and accumulators.
Furthermore, this would also reduce the size of the safety game constructed
in Section 5.3.

Another question regards the implementability of our strategies: we have
shown them to be implemented by a memory structure whose states are
LARs decorated by a small number of scores and accumulators. The size of
this memory structure is bounded by (n!)3, where n is the number of vertices
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of the Muller game. Hence, this memory is only polynomially larger than the
LAR-memory or the one induced by Zielonka trees. It would be interesting
to investigate whether our strategies can be implemented with LARs or the
memory induced by the Zielonka tree only. These questions can even be
sharpened to the following conjecture:

Conjecture 6.1. In every Muller game, Player i has a finite-state strategy
of minimal size that bounds the losing player’s scores by two (and by one, if
this is possible at all).

There is one strong argument for this conjecture to be true: allowing
the losing player to reach a high score requires memory to keep track of
the scores. If the memory is not updated while the score for some set F
increases, then the strategy also allows an infinite play with infinity set F .
Proving the conjecture would show that there is no tradeoff between the size
and the quality of a strategy for a Muller game and could be a first step to
proving similar results for PLTL games and others.

There are two examples of Muller games in this thesis (in Example 4.12
and in the proof of Theorem 4.16) in which the losing player is able to enforce
a score of two against any strategy of the winning player. Intuition tells us
that this happens when the winning player has to visit a sequence of vertices
(1 and 0 in Example 4.12) to reach a certain vertex (vertex 0), and then has
to visit each of these vertices again (as in the example: Player 1 can force
her to visit 1 and 0 on the way out of the set {0, 1}). This leads to a score of
two for the losing player. However, such a situation requires the arena (and
the winning condition) to have a certain structure. It would be interesting
to find a non-trivial characterization of this structure.

Also mentioned in Section 4.2.3 is the problem of extending our results on
strategies that bound scores to infinite arenas, thereby showing that infinite
games in infinite arenas can be played in finite time. We have highlighted
some problems with the definition of scoring functions in infinite arenas.
They show the need for domain-specific approaches that rely on intrinsic
properties of arenas obtained by finite representations such as pushdown
arenas. This is also subject to ongoing research.

Recall that we constructed a memory structure for Muller games using
the maximal elements in the winning region in the associated safety game
that are reachable via a winning strategy. Hence, the memory size is influ-
enced by the choice of the strategy for the safety game, but the exact relation
between these remains open: it is not even obvious that trying to minimize
the number of reachable states yields the smallest number of maximal el-
ements, since the have to be maximal with respect to the set of reachable
states in the winning region, not with respect to all states of the winning
region.

Finally, for parity games, there is a tight connection between permissive
strategies and progress measure algorithms for solving them. In ongoing
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research we investigate whether our notion of permissiveness yields a progress
measure algorithm for Muller games. Here, the main obstacle to such an
algorithm is the lack of a total ordering for equivalence classes of the equal-
score relation =F1 that is compatible with a suitable lifting operator.
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Appendix A

Playing Muller Games in
Finite Time via Parity Games

In Section 4.3, we claimed an n · n! lower bound on the length of a play in
the finite-duration Muller game induced by the reduction to parity games.
Here, we consider the reduction via latest appearance records (LAR). The
number of LARs yields a trivial upper bound of n ·n! + 1 on the play length.
In the following, we present a construction due to Chaturvedi [Cha11] which
shows this bound to be tight.

We begin by fixing some necessary notation. An LAR over a finite set V
is a word ` ∈ V + in which every v ∈ V appears exactly once. Thus, we have
|`| = |V |. Furthermore, an extended LAR (`, h) over V consists of an LAR `
over V and a hit-position h in the range 0 ≤ h ≤ |`| − 1. There are exactly
|V | · |V |! many extended LARs.

Given a vertex v ∈ V and an extended LAR (`, h) over V with ` = p2vp1,
we define upd((`, h), v) = (p2p1v, |p1|). A Muller game with vertex set V can
be reduced to a parity game via the memory structureM = (M, init, upd),
where M is the set of extended LARs over V , init is any function mapping
a vertex v to an extended LAR ending in v, and upd is defined as above.

Consider a Muller game G = (A,F0,F1) with vertex set V and the parity
game G′ = (A×M,Ω) obtained in the reduction described above (the exact
definition of Ω is irrelevant for our purposes, hence we do not specify it).
We define a finite-duration game in A with the following rules: starting
at a vertex v of A, the players move the token through A building a play
prefix ρ0ρ1 · · · ρn until the extended play

(ρ0,upd∗(ρ0))(ρ1,upd∗(ρ0ρ1)) · · · (ρn, upd∗(ρ0ρ1 · · · ρn))

in A ×M visits a vertex in V ×M for the second time. If the maximal
priority occurring in the cycle constructed in this way is even, then Player 0
wins the (finite) play ρ0ρ1 · · · ρn of the Muller game; if it is odd, then Player 1
wins. Since G is determined with finite-state strategies implemented byM,
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Player i has a winning strategy for the Muller game from v if and only if she
has a winning strategy for the finite-duration game from v.

Let |V | = n. We have v = Lst(`) for every vertex (v, (`, h)) in the
parity game reachable by an extended play of G. Thus, G′ has at most n · n!
reachable vertices and a play in the finite-duration game ends after at most
n ·n!+1 steps. In the following, we present a construction due to Chaturvedi
that proves this bound to be tight.

To this end, we show that the set of extended LARs over a finite set V
with |V | = n can be enumerated as e0, e1, . . . , en·n!−1 such that we have
init(v0) = e0 and ej+1 = upd(ej , vj+1) for vertices vj with 0 ≤ j ≤ n ·n!− 1.
Then, the sequence v0, v1, . . . , vn·n!−1 induces an extended play of length n·n!
in A×M that visits each vertex exactly once. This shows that a play in the
finite-duration game in a complete arena with n vertices can last n ·n! steps.
In the following, we construct a directed graph G and a bijective labeling of
its edges by extended LARs satisfying the following property: if an incoming
edge at a vertex is labeled by e and an outgoing edge at the same vertex by
e′, then we have upd(e, v) = e′ for some v ∈ V . Thus, proving that G has a
directed eulerian cycle yields the desired enumeration, since we can assume
without loss of generality that the cycle starts in an extended LAR e such
that init(v) = e for some vertex v.

The vertices of the graphG are the LARs over V and we add an edge from
` to `′, if we have upd((`, 0), v) = (`′, h) for some v (note that the update-
function is independent of the hit position, i.e., we have upd((`, 0), v) =
upd((`, j), v) for every j). If we label this edge by (`′, h), then the require-
ment on the edge labelings formulated above is satisfied. Furthermore, every
vertex in G has in- and outdegree |V | and the graph is connected, hence
it contains a directed eulerian cycle. Finally, each extended LAR appears
exactly once as edge label in G, which proves our claim.
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A[X] subarena induced by X, 13

A× A cartesian product of A and A, 156

A×M product arena, 19

Aj set computed by Zielonka’s algorithm, 100

AccF accumulator function, 86

Acpt set of accepting runs, 11

altp the formula GFp ∧GF¬p, 46

AttrXi (F ) attractor, 21

β variable valuation, 29

Beh(v, σ) set of plays starting in v consistent with σ, 17

Beh(W,σ) set of plays starting in W consistent with σ, 17

BrnchFctr(T ) number of children of T ’s root, 98

Chld(T, j) j-th child of T , 98

cl(ϕ) set of subformulae of ϕ, 28

clp(ϕ) set of parameterized subformulae of ϕ, 66

Co-NP complement class of NP, 10

Co-UP complement class of UP, 10

ε the empty word, 9

F eventually operator, 27

F≤x parameterized eventually operator, 27

F � X restriction of F to subsets of X, 98

(F0,F1) winning condition in a Muller game, 15

(F0,F1) � X restriction of (F0,F1) to subsets of X, 98

G infinite game, 13

G dual game for G, 40
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G ≤M G′ game reduction, 19

G always operator, 27

G≤y parameterized always operator, 27

Inf(w) infinity set of w, 10

init initialization function, 18

` labeling function, 37

L(A) language recognized by A, 11

L ≤ L′ Wadge reduction, 126

L · L′ concatenation of L and L′, 9

Lst(w) last letter of w, 9

M memory structure, 18

M set of memory states, 18

MaxScc maximum score function, 129

MaxScF maximum score function, 86

N the set of non-negative integers, 9

nc number of vertices labeled by c, 128

NP non-deterministic polynomial time, 10

nxt next-move function, 18

Ω priority function in a parity automaton, 12

Ω priority function in a parity game, 14

Occ(w) occurrence set of w, 9

P set of atomic propositions, 27

ΠAi set of strategies for Player i in A, 16

Πn class of the Borel hierarchy, 126

ϕα LTL formula equivalent to ϕ w.r.t. α, 35

ϕX relativization of ϕ, 46

Pϕ,α det. parity automaton recognizing models of ϕ w.r.t. α, 62
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Plays<nc+1 plays in which Player 1’s scores are bounded by nc, 131

Plays=nc+1 plays in which Player 1’s scores just reached value nc+1, 131

Plays≤nc+1 plays in which Player 1’s scores are bounded by nc or just
reached value nc + 1, 132

Plays<3 plays in which Player 1’s scores are bounded by two, 143

Plays=3 plays in which Player 1’s scores just reached value three, 143

Plays≤3 plays in which Player 1’s scores are bounded by two or just
reached value three, 143

Pref(w) the set of prefixes of w, 9

Par(n) parity of n, 9

Pspace polynomial space, 10

ρ play, 13

ρ(v, σ, τ) play starting in vertex v consistent with σ and τ , 16

ρ(w, σ, τ) play starting with prefix w consistent with σ and τ , 106

R release operator, 27

RtLbl(T ) root label of T , 98

RtPlr(T ) root player of T , 98

σ strategy (typically for Player 0 or Player i), 16

Σ alphabet, 9

Σ∗ the set of finite words over Σ, 9

Σ+ the set of non-empty finite words over Σ, 9

Σω the set of ω-words over Σ, 9

Σn class of the Borel hierarchy, 126

Scc scoring function, 129

ScF scoring function, 86

τ strategy (typically for Player 1 or Player 1− i), 16

Tj tree computed by Zielonka’s algorithm, 100

Tr threshold score function, 92
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tr(ρ) trace, 37

U until operator, 27

Uj set computed by Zielonka’s algorithm, 100

UP unambiguous non-deterministic polynomial time, 10

upd update function, 18

upd∗ iterated update function, 18

V set of variables, 27

V0 positions of Player 0, 13

V1 positions of Player 1, 13

var(ϕ) variables occurring in ϕ, 28

varF(ϕ) variables parameterizing eventuallies in ϕ, 28

varG(ϕ) variables parameterizing always’ in ϕ, 28

Wi output of Zielonka’s algorithm, 100

Wi(G) set of winning variable valuations for Player i in G, 38

Wi(G) winning region of Player i in G, 17

Win set of winning plays for Player 0, 13

ww′ concatenation of w and w′, 9

wy−1 right residual of w, 9

X next operator, 27

x−1w left residual of w, 9

Xj set computed by Zielonka’s algorithm, 100

Yj set computed by Zielonka’s algorithm, 100

ζ run of an automaton, 11

ZF0,F1 Zielonka tree, 98
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