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Abstract We continue the investigation of parameterized extensions of Linear
Temporal Logic (LTL) that retain the attractive algorithmic properties of LTL:
a polynomial space model checking algorithm and a doubly-exponential time al-
gorithm for solving games. Alur et al. and Kupferman et al. showed that this is
the case for Parametric LTL (PLTL) and PROMPT-LTL respectively, which have
temporal operators equipped with variables that bound their scope in time. Later,
this was also shown to be true for Parametric LDL (PLDL), which extends PLTL
to be able to express all ω-regular properties.

Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope
of operators in time, but bound the scope in terms of the cost accumulated during
time. Again, we show that model checking and solving games for specifications in
PLTL with costs is not harder than the corresponding problems for LTL. Finally,
we discuss PLDL with costs and extensions to multiple cost functions.

Keywords Parametric LTL · Costs · Model Checking · Infinite Games

1 Introduction

Parameterized linear temporal logics address a serious shortcoming of Linear-
temporal Logic (LTL) [26]: LTL is not able to express timing constraints, e.g.,
while G(q → Fp) expresses that every request q is eventually answered by a re-
sponse p, the waiting time between requests and responses might diverge. This is
typically not the desired behavior, but cannot be ruled out by LTL.

To overcome this shortcoming, parameterized LTL (PLTL) [1] was introduced
by Alur et al., which extends LTL with parameterized operators of the form F≤x
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and G≤y, where x and y are variables. The formula G(q → F≤xp) expresses that
every request q is answered by p within an arbitrary, but fixed number of steps α(x).
Here, α is a variable valuation, a mapping of variables to natural numbers. Typ-
ically, one is interested in whether a PLTL formula is satisfied with respect to
some variable valuation. For example, the model checking problem asks whether
a given transition system satisfies a given PLTL specification ϕ with respect to
some α, i.e., whether every path satisfies ϕ with respect to α. Similarly, solving
infinite games amounts to determining whether there is an α such that Player 0
has a strategy such that every play that is consistent with the strategy satis-
fies the winning condition with respect to α. Alur et al. showed that the PLTL
model checking problem is PSpace-complete. Kupferman et al. later considered
PROMPT–LTL [23], which can be seen as the fragment of PLTL without the
parameterized always operator, and showed that PROMPT–LTL model check-
ing is still PSpace-complete and that PROMPT–LTL realizability, an abstract
notion of infinite game, is 2ExpTime-complete. While the results of Alur et al.
relied on involved pumping arguments, the results of Kupferman et al. where all
based on the so-called alternating-color technique, which basically allows to reduce
PROMPT–LTL to LTL. Furthermore, the result on realizability was extended to
infinite games on graphs [38], again using the alternating-color technique.

Another serious shortcoming of LTL (and its parameterized variants) is their
expressiveness: LTL is equi-expressive to first-order logic with order [22] and thus
not as expressive as ω-regular expressions. This shortcoming was addressed by a
long line of temporal logics [18,24,34,35,37] with regular expressions, finite au-
tomata, or grammar operators to obtain the full expressivity of the ω-regular
languages. One of these logics is Linear Dynamic Logic (LDL), which has tem-
poral operators 〈r〉 and [r ] , where r is a regular expression. For example, the
formula [r0 ] (q → 〈r1〉 p) holds in a word w, if for every request q at a position n

such that w0 · · ·wn−1 matches r0, there is a position n′ ≥ n such that p holds at n′

and wn · · ·wn′−1 matches r1. Intuitively, the diamond operator corresponds to the
eventually operator of LTL, but is guarded by a regular expression. Dually, the
box operator is a guarded always. Although LDL is more expressive than LTL, its
algorithmic properties are similar: model checking is PSpace-complete and solving
games is 2ExpTime-complete [34].

There are temporal logics whose expressiveness goes even beyond the ω-regular
languages to capture properties of recursive programs, which are typically ω-
contextfree. The visibly ω-contextfree languages [2] are an important class of lan-
guages located between the ω-regular ones and the ω-contextfree ones that enjoy
desirable closure properties, which make it suitable to be employed in verifica-
tion. Temporal logics that capture this class are visibly LTL [10], the fixed-point
logic V P -µTL [9], and visibly LDL (VLDL) [36]. The logic visibly LTL enhances
LTL with visibly rational expressions [11], and V P -µTL extends the linear-time
µ-calculus [33] with non-local modalities. Finally, VLDL has the same temporal
operators as LDL, but allows to use visibly pushdown automata instead of regular
expressions as guards. For all these logics, model checking is ExpTime-complete,
i.e., (under standard complexity theoretic assumptions) harder than the model
checking problem for LTL. Furthermore, solving games with VLDL winning con-
ditions is 3ExpTime-complete, again harder than solving LTL games. Thus, going
beyond the ω-regular languages does increase the complexity of these problems at
last.
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All these logics tackle one shortcoming of LTL, but not both simultaneously.
This was achieved for the first time by adding parameterized operators to LDL.
The logic, called parameterized LDL (PLDL), has additional operators 〈r〉≤x

and [r ]≤y with the expected semantics: the variables bound the scope of the
operator. And even for this logic, which has parameters and is more expres-
sive than LTL, model checking is still PSpace-complete and solving games is
2ExpTime-complete [19]. Again, these problems were solved by an application
of the alternating-color technique. One has to overcome some technicalities, but
the general proof technique is the same as for PROMPT–LTL.

The decision problems for the parameterized logics mentioned above are bound-
edness problems, e.g., one asks for an upper bound on the waiting times between
requests and responses in case of the formula G(q → F≤xp). Recently, more gen-
eral boundedness problems in logics and automata received a lot of attention to
obtain decidable quantitative extensions of monadic second-order logic and better
synthesis algorithms. In general, boundedness problems are undecidable for au-
tomata with counters, but become decidable if the acceptance conditions can refer
to boundedness properties of the counters, but the transition relation has no access
to counter values. Recent advances include logics and automata with bounds [4,7],
satisfiability algorithms for these logics [5,6,8,32], and regular cost-functions [17].
However, these formalisms, while very expressive, are intractable and thus not
suitable for verification and synthesis. Thus, less expressive formalisms were stud-
ied that appear more suitable for practical applications, e.g., finitary parity [15],
parity with costs [21], energy-parity [14], mean-payoff-parity [16], consumption
games [12], and the use of weighted automata for specifying quantitative proper-
ties [3,13]. In particular, the parity condition with cost is defined in graphs whose
edges are weighted by natural numbers (interpreted as costs) and requires the ex-
istence of a bound b such that almost every occurrence of an odd color is followed
by an occurrence of a larger even color such that the cost between these positions
is at most b. Although strictly stronger than the classical parity condition, solving
parity games with costs is as hard as solving parity games [21,25].

We investigate parameterized temporal logics in a weighted setting similar to
the one of parity conditions with costs: our graphs are equipped with cost functions
that label the edges with natural numbers and parameterized operators are now
evaluated with respect to cost instead of time, i.e., the parameters bound the
accumulated cost instead of the elapsed time. Thus, the formula G(q → F≤xp)
requires that every request q is answered with cost at most α(x). We show the
following results about PLTL with costs (cPLTL):

First, we refine the alternating-color technique to the cost-setting, which re-
quires to tackle some technical problems induced by the fact that accumulated
cost, unlike time, does not increase in every step, e.g., if an edge with cost zero
is traversed. In particular, infinite paths with finite cost have to be taken care of
appropriately.

Second, we show that Kupferman et al.’s proofs based on the alternating-color
technique can be adapted to the cost-setting as well. For model checking, we again
obtain PSpace-completeness while solving games is still 2ExpTime-complete.

Third, we consider PLDL with costs (cPLDL), which is defined as expected:
the diamond and the box operator may be equipped with parameters bounding
their scope. Again, the complexity does not increase: model checking is PSpace-
complete while solving games is 2ExpTime-complete.
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Fourth, we generalize both logics to a setting with multiple cost functions. Now,
the parameterized temporal operators have another parameter that determines the
cost function under which they are evaluated. Even these extensions do not increase
complexity: model checking is again PSpace-complete while solving games is still
2ExpTime-complete.

Fifth, we also study the optimization variant of the model checking and the
game problem for these logics: here, one is interested in finding the optimal variable
valuation for which a given transition system satisfies the specification. For exam-
ple, for the request-response condition one is interested in minimizing the waiting
times between requests and responses. For cPLTL and cPLDL, we show that the
model checking optimization problem can be solved in polynomial space while the
optimization problem for infinite games can be solved in triply-exponential time.
These results are similar to the ones obtained for PLTL [1,38]. In particular, the
exponential gap between the decision and the optimization variant of solving in-
finite games exists already for PLTL. Whether this gap can be closed is an open
problem. A first step towards this direction was made by giving an approximation
algorithm for this problem with doubly-exponential running time [31].

The paper is structured as follows: in Section 2, we introduce cPLTL and dis-
cuss basic properties. Then, in Section 3, we extend the alternating-color technique
to the setting with costs, which we apply in Section 4 to the model checking prob-
lem and in Section 5 to solve infinite games. In Section 6, we extend these results
to cPLDL and, in Section 7, to multiple cost functions. Finally, in Section 8, we
investigate model checking and game-solving as optimization problems.

2 Parametric LTL with Costs

Let V be an infinite set of variables and let P be a set of atomic propositions. The
formulas of cPLTL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | F≤zϕ | G≤zϕ,

where p ∈ P and z ∈ V. We use the derived operators tt := p∨¬p and ff := p∧¬p
for some fixed p ∈ P , Fϕ := ttUϕ, and Gϕ := ffRϕ. Furthermore, we use p → ϕ

and ¬p → ϕ as shorthand for ¬p ∨ ϕ and p ∨ ϕ, respectively. Additional derived
operators are introduced on page 6.

The set of subformulas of a cPLTL formula ϕ is denoted by cl(ϕ) and we define
the size of ϕ to be the cardinality of cl(ϕ). Furthermore, we define

varF(ϕ) = {z ∈ V | F≤zψ ∈ cl(ϕ)}

to be the set of variables parameterizing eventually operators in ϕ, and

varG(ϕ) = {z ∈ V | G≤zψ ∈ cl(ϕ)}

to be the set of variables parameterizing always operators in ϕ. Finally, var(ϕ) =
varF(ϕ) ∪ varG(ϕ) denotes the set of all variables appearing in ϕ.

cPLTL is evaluated on so-called cost-traces (traces for short) of the form

w = w0 c0 w1 c1 w2 c2 · · · ∈

2P · N

ω
,
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which encode the evolution of the system in terms of the atomic propositions
that hold true in each time instance, and in terms of the cost of changing the
system state. The cost of the trace w is defined as cst(w) =


j≥0 cj , which might

be infinite. A finite cost-trace is required to begin and end with an element of
2P . The cost cst(w) of a finite cost-trace w = w0c0w1c1 · · · cn−1wn is defined as
cst(w) =

n−1
j=0 cj .

Furthermore, we require the existence of a distinguished atomic proposition κ

such that all cost-traces satisfy cj > 0 if, and only if,κ ∈ wj+1, i.e., κ indicates that
the last step had non-zero cost. We use the proposition κ to reason about costs:
for example, we are able to express whether a trace has cost zero and whether a
trace has cost ∞. In the following, we will ensure that all our systems only allow
traces that satisfy this assumption.

Also, to evaluate formulas we need to instantiate the variables parameteriz-
ing the temporal operators. To this end, we define a variable valuation to be
a mapping α : V → N. Now, we can define the model relation between a cost-
trace w = w0 c0 w1 c1 w2 c2 · · · , a position n of w, a variable valuation α, and
a cPLTL formula as follows:

– (w, n,α) |= p if, and only if, p ∈ wn,
– (w, n,α) |= ¬p if, and only if, p /∈ wn,
– (w, n,α) |= ϕ ∧ ψ if and only if (w, n,α) |= ϕ and (w, n,α) |= ψ,
– (w, n,α) |= ϕ ∨ ψ if and only if (w, n,α) |= ϕ or (w, n,α) |= ψ,
– (w, n,α) |= Xϕ if, and only if, (w, n+ 1,α) |= ϕ,
– (w, n,α) |= ϕUψ if, and only if,there exists a j ≥ 0 such that (w, n+ j,α) |= ψ

and (w, n+ k,α) |= ϕ for every k in the range 0 ≤ k < j,
– (w, n,α) |= ϕRψ if, and only if, for every j ≥ 0: either (w, n+ j,α) |= ψ or there

exists a k in the range 0 ≤ k < j such that (w, n+ k,α) |= ϕ,
– (w, n,α) |= F≤zϕ if, and only if,there exists a j ≥ 0 with

cst(wncn · · · cn+j−1wn+j) ≤ α(z) such that (w, n+ j,α) |= ϕ, and
– (w, n,α) |= G≤zϕ if, and only if,for every j ≥ 0 with

cst(wncn · · · cn+j−1wn+j) ≤ α(z): (w, n+ j,α) |= ϕ.

Note that we recover the semantics of PLTL as the special case where every cn is
equal to one.

For the sake of brevity, we write (w,α) |= ϕ instead of (w, 0,α) |= ϕ and say
that w is a model of ϕ with respect to α. For variable-free formulas, we even drop
the α and write w |= ϕ.

As usual for parameterized temporal logics, the use of variables has to be
restricted: bounding eventually and always operators by the same variable leads
to an undecidable satisfiability problem [1].

Definition 1 A cPLTL formula ϕ is well-formed, if varF(ϕ) ∩ varG(ϕ) = ∅.

In the following, we only consider well-formed formulas and omit the quali-
fier “well-formed”. Also, we will denote variables in varF(ϕ) by x and variables in
varG(ϕ) by y, if the formula ϕ is clear from context.

We consider the following fragments of cPLTL. Let ϕ be a cPLTL formula:

– ϕ is an LTL formula, if var(ϕ) = ∅.
– ϕ is a cPLTLF formula, if varG(ϕ) = ∅.
– ϕ is a cPLTLG formula, if varF(ϕ) = ∅.
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Every LTL, cPLTLF, and every cPLTLG formula is well-formed by definition.

Example 1

1. The formula G(q → F≤xp) is satisfied with respect to α, if every request (a
position where q holds) is followed by a response (a position where p holds)
such that the cost of the infix between the request and the response is at most
α(x).

2. The (max-) parity condition with costs [21] can be expressed1 in cPLTL via

FG


c∈{1,3,...,d−1}


c → F≤x


c′∈{c+1,c+3,...,d}

c′


,

where d is the maximal color, which we assume w.l.o.g. to be even.
However, the Streett condition with costs [21] cannot be expressed in cPLTL,
as it is defined with respect to multiple cost functions, one for each Streett
pair. We extend cPLTL to multiple cost functions in Section 7.

As for PLTL, one can also parameterize the until and the release operator and
consider bounds of the form “>z”. However, this does not increase expressiveness
of the logic. Formally, we define

– (w, n,α) |= ϕU≤zψ if, and only if,there exists a j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) ≤ α(z) such that (w, n+ j,α) |= ψ and (w, n+k,α) |=
ϕ for every k in the range 0 ≤ k < j,

– (w, n,α) |= ϕR≤zψ if, and only if,for every j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) ≤ α(z): (w, n + j,α) |= ψ or there exists a k in the
range 0 ≤ k < j such that (w, n+ k,α) |= ϕ,

– (w, n,α) |= F>zϕ if, and only if,there exists a j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z) such that (w, n+ j,α) |= ϕ, and

– (w, n,α) |= G>zϕ if, and only if,for every j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z) satisfies (w, n+ j,α) |= ϕ.

– (w, n,α) |= ϕU>zψ if, and only if,there exists a j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z) such that (w, n+ j,α) |= ψ and (w, n+k,α) |=
ϕ for every k in the range 0 ≤ k < j, and

– (w, n,α) |= ϕR>zψ if, and only if,for every j ≥ 0 with
cst(wncn · · · cn+j−1wn+j) > α(z): (w, n + j,α) |= ψ or there exists a k in the
range 0 ≤ k < j such that (w, n+ k,α) |= ϕ.

Let ϕ ≡ ψ denote equivalence of the formulas ϕ and ψ, i.e., for every w, every n,
and every α, we have (w, n,α) |= ϕ if, and only if,(w, n,α) |= ψ. Then, we have
the following equivalences (which also restrict the use of variables as defined in
Definition 1):

– ϕU≤xψ ≡ ϕUψ ∧ F≤xψ

– ϕR≤yψ ≡ ϕRψ ∨G≤yψ

– F>yϕ ≡ G≤yFX(κ ∧ Fϕ)

– G>xϕ ≡ F≤xGX(¬κ ∨Gϕ)
– ϕU>yψ ≡ G≤y(ϕ ∧ FX(κ ∧ ϕUψ))
– ϕR>xψ ≡ F≤x(ϕ ∨GX(¬κ ∨ ϕRψ))

Before we begin proving some useful lemmas about cPLTL we first show that
the new logic is indeed more expressive than PLTL. Here, we use |=PLTL to denote

1 Note that the bound in the parity condition with costs may depend on the trace while
one typically uses global bounds for cPLTL (see, e.g., Section 4 and Section 5). However, for
games in finite arenas (and thus also for model checking) these two variants coincide [21].
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the model relation for PLTL, which is obtained by assigning cost one to every edge,
i.e., the scope of the parameterized operators is bounded in the length of infixes.
To simplify notion, let π(w0 c0 w1 c1 w2 c2 · · · ) = w0w1w2 · · · denote the projection
of a cost-trace to a trace in (2P )ω.

Lemma 1 Let ϕ = F≤xp. There is no PLTL formula ϕ′ such that for every variable

valuation α there is an α′ such that the following holds for every cost-trace w and every

position n: (w, n,α) |= ϕ if, and only if, (π(w), n,α′) |=PLTL ϕ′.

Proof We exploit the fact that ϕ′ has no access to the magnitude of the costs cn,
only to their signs via the proposition κ.

Towards a contradiction, assume there is such a ϕ′, let α be a variable valuation
and let α′ be the corresponding valuation such that (w, n,α) |= ϕ if, and only if,
(π(w), n,α′) |=PLTL ϕ′ for every cost-trace w and every n. Let

w0 = ∅ (α(x) + 1) {p} 0 ( ∅ 0 )ω,

i.e., p holds with cost α(x) + 1 for the first time, and let

w1 = ∅α(x) {p} 0 ( ∅ 0 )ω,

i.e., p holds with cost α(x) for the first time. Thus, (w0, 0,α) ∕|= ϕ and (w1, 0,α) |= ϕ.
However, we have π(w0) = π(w1), i.e., either both of the projections satisfy ϕ′ with
respect to α′ or both do not. This yields the desired contradiction. ⊓⊔

Note that ϕ′ in Lemma 1 may not depend on α. If it could, then we could
hardcode α into ϕ, provided there are propositions reflecting the exact costs in-
curred along an edge. Thus, the current statement of Lemma 1 is the most general
variant.

Note that we defined cPLTL formulas to be in negation normal form. Never-
theless, a negation can be pushed to the atomic propositions using the duality of
the operators. Thus, we can define the negation of a cPLTL formula.

Lemma 2 For every cPLTL formula ϕ there exists an efficiently constructible cPLTL

formula ¬ϕ s.t.

1. (w, n,α) |= ϕ if, and only if,(w, n,α) ∕|= ¬ϕ for every w, every n, and every α,

2. |¬ϕ| = |ϕ|.
3. If ϕ is well-formed, then so is ¬ϕ.
4. If ϕ is an LTL formula, then so is ¬ϕ.
5. If ϕ is a cPLTLF formula, then ¬ϕ is a cPLTLG formula and vice versa.

Proof We construct ¬ϕ by induction over the construction of ϕ using the dualities
of the operators:

– ¬(p) = ¬p
– ¬(ϕ ∧ ψ) = (¬ϕ) ∨ (¬ψ)
– ¬(ϕUψ) = ¬ϕR¬ψ
– ¬(F≤xϕ) = G≤x¬ϕ

– ¬(¬p) = p

– ¬(ϕ ∨ ψ) = (¬ϕ) ∧ (¬ψ)
– ¬(ϕRψ) = ¬ϕU¬ψ
– ¬(G≤yϕ) = F≤y¬ϕ

The latter four claims of Lemma 2 follow from the definition of ¬ϕ while the
first one can be shown by a straightforward induction over ϕ’s construction. ⊓⊔



8 Martin Zimmermann

Another important property of parameterized logics is monotonicity: increas-
ing (decreasing) the values for parameterized eventually operators (parameterized
always operators) preserves satisfaction.

Lemma 3 Let ϕ be a cPLTL formula and let α and β be variable valuations satisfying

α(x) ≤ β(x) for every x ∈ varF(ϕ) and α(y) ≥ β(y) for every y ∈ varG(ϕ). If

(w,α) |= ϕ, then (w,β) |= ϕ.

Especially, if we are interested in checking whether a formula is satisfied with
respect to some α, we can always recursively replace every subformula G≤yψ by
ψ ∨X(¬κU(¬κ ∧ ψ)), as this is equivalent to G≤yψ with respect to every variable
valuation mapping y to zero, which is the smallest possible value for y. Note that
we have to ignore the current truth value of κ, as it indicates the cost of the last
transition, not the cost of the next one.

3 The Alternating-Color Technique for Costs

In the following, we investigate model checking and infinite games for cPLTL and
present algorithms solving these problems. The tool of choice to solve these prob-
lems for parameterized temporal logics is the so-called alternating-color technique.
It was originally introduced for PROMPT–LTL by Kupferman et al. [23], but has
been shown to be applicable to extensions as well [19,38].

In this section, we introduce the alternating-color technique and extend it
again, this time to a setting with costs. To apply the technique, one introduces
a fresh proposition and interprets its truth values as colors. Then, a changepoint
is a position where the color differs from the one at the previous position. Now,
one replaces every parameterized eventually operator F≤xψ by an LTL formula ϕ

requiring ψ to be satisfied within at most one changepoint. Thus, if the distance
between changepoints is bounded by k ∈ N and ϕ is satisfied, then the parameter-
ized eventually is satisfied with respect to α(x) = 2k, as every longer infix contains
at least two changepoints. Conversely, if F≤xψ is satisfied with respect to α(x) and
if the distance between changepoints is always at least α(x), then ϕ is satisfied as
well, as there is at most one changepoint in every infix of length α(x).

Thus, one can inductively replace parameterized eventually operators by LTL
formulas that are equivalent on all traces where the distance between changepoints
is bounded from above and from below. These bounds arise from properties of the
problem we consider. In particular, in model-checking one always has an ultimately
periodic error trace, if an LTL formula does not hold. By requiring that the color
changes infinitely often (an LTL-definable property) one obtains an ultimately pe-
riodic error trace with the desired bounds on the distance. A similar argument
works for infinite games, too. Here, one relies on the existence of finite-state win-
ning strategies, which again bound the distance between changepoints.

Here, we extend the alternating-color technique to the setting with costs. The
main technical difficulty we have to overcome are cost-traces of finite cost, i.e.,
those that have a suffix of cost zero. On these, the parameterized eventually op-
erator degenerates to a classical eventually operator.

Fix a fresh atomic proposition p /∈ P . We say that a cost-trace

w′ = w′
0c

′
0w

′
1c

′
1w

′
2c

′
2 · · · ∈


2P∪{p} · N

ω
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is a coloring of a cost trace

w = w0c0w1c1w2c2 · · · ∈

2P · N

ω
,

if w′
n∩P = wn and c′n = cn for every n, i.e., w′ and w only differ in the truth values

of the new proposition p. A position n is a changepoint of w′, if n = 0 or if the
truth value of p in w′

n−1 and w′
n differs. A block of w′ is an infix w′

nc
′
n · · ·w′

n+j of w
′

such that n and n+j+1 are successive changepoints. If a coloring has only finitely
many changepoints, then we refer to its suffix starting at the last changepoint as
its tail, i.e., the coloring is the concatenation of a finite number of blocks and its
tail.

Let k ∈ N. We say that w′ is k-bounded if every block and its tail (if it has
one) has cost at most k. Dually, we say that w′ is k-spaced, if every block has cost
at least k. Note that we do not have a requirement on the cost of the tail in this
case.

Given a cPLTLF formula ϕ, let rel(ϕ) denote the LTL formula obtained from
ϕ by recursively replacing every subformula F≤xψ by

(p → pU(¬pUrel(ψ))) ∧ (¬p → ¬pU(pUrel(ψ))).

Intuitively, the relativized formula requires rel(ψ) to be satisfied within at most
one changepoint. On bounded and spaced colorings, ϕ and rel(ϕ) are “equivalent”.

Lemma 4 (cp. Lemma 2.1 of [23]) Let w be a cost-trace and let ϕ be a cPLTLF

formula.

1. Let (w,α) |= ϕ for some variable valuation α. Then, w′ |= rel(ϕ) for every (k+1)-
spaced coloring w′ of w, where k = maxx∈var(ϕ) α(x).

2. Let w′ |= rel(ϕ) for some k-bounded coloring w′ of w. Then, (w,α) |= ϕ, where

α(x) = 2k for every x.

Proof Note that w and its colorings coincide on their cost. Hence, when speaking
about the cost of an infix or suffix, we do not have to specify whether we refer to
w or to a coloring of w.

1.) Fix a (k+1)-spaced coloring w′ of w, where k = maxx∈var(ϕ) α(x). We show
that (w, n,α) |= ϕ implies (w′, n) |= rel(ϕ) by induction over the construction of ϕ.

The only non-trivial case is the one of a parameterized eventually: thus, assume
(w, n,α) |= F≤xψ, i.e., there is a j with cst(wncn · · · cn+j−1wn+j) ≤ α(x) and
(w, n+ j,α) |= ψ. By induction hypothesis, we have (w′, n+ j) |= rel(ψ). As w′ is
(k + 1)-spaced, i.e., the cost of each block is at least k + 1, there is at most one
changepoint between (and including) the positions n and n+ j − 1 in w′. Hence,
(w′, n) |= pU(¬pUrel(ψ))), if p ∈ w′

n, and (w′, n) |= ¬pU(pUrel(ψ))) otherwise.
Thus, (w′, n) |= rel(F≤xψ).

2.) Dually, fix a k-bounded coloring w′ of w and define the variable valuation α

with α(x) = 2k for every x. We show that (w′, n) |= rel(ϕ) implies (w, n,α) |= ϕ by
induction over the construction of ϕ.

Again, the only non-trivial case is the one of a parameterized eventually: thus,
let (w′, n) |= rel(F≤xψ). We assume (w′, n) |= p (the other case is dual). Then,
we have (w′, n) |= pU(¬pUrel(ψ)), i.e., rel(ψ) is satisfied at some position n + j

such that there is at most one changepoint between (and including) the posi-
tions n and n+ j − 1 in w′. As w′ is k-bounded, this implies that the cost of the
infix wncn · · ·wn+j is bounded by 2k. Furthermore, applying the induction hypoth-
esis yields (w, n+ j,α) |= ψ. Hence, (w, n,α) |= F≤xψ. ⊓⊔
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4 Model Checking

In this section, we solve the model checking problem for cPLTL via an application
of the alternating-color technique. Our approach is similar to the one of Kupferman
et al. for PROMPT–LTL model checking [23], but we have to overcome some
technical difficulties arising from cost-traces of cost zero. To this end, we ensure
that the parameterized eventually operators are treated as classical eventually
operators on tails of cost-traces of cost zero.

A transition system S is a tuple S = (S, sI , E, ℓ, cst) consisting of a finite di-
rected graph (S,E), an initial state sI ∈ S, a labeling function ℓ : S → 2P , and
a cost function cst : E → N. We encode the weights in binary, although the algo-
rithms we present in this section and their running times and space requirements
are oblivious to the exact weights. Furthermore, we assume that every state has at
least one successor to spare us from dealing with finite paths. Recall our require-
ment on cost-traces having a distinguished atomic property κ indicating the sign
of the cost of the previous transition. Thus, we require S to satisfy the following
property: if κ ∈ ℓ(v′), then cst(v, v′) > 0 for every edge (v, v′) ∈ E leading to v′.
Dually, if κ /∈ ℓ(v′), then cst(v, v′) = 0 for every edge (v, v′) ∈ E.

A path through S is a sequence π = s0s1s2 · · · with s0 = sI and (sn, sn+1) ∈ E

for every n. Its cost-trace tr(π) is defined as

tr(π) = ℓ(s0)cst(s0, s1)ℓ(s1)cst(s1, s2)ℓ(s2)cst(s2, s3) · · · ,

which satisfies our assumption on the proposition κ.
The transition system S satisfies a cPLTL formula ϕ with respect to a variable

valuation α, if the trace of every path through S satisfies ϕ with respect to α. The
cPLTL model checking problem asks, given a transition system S and a cPLTL
formula ϕ, whether S satisfies ϕ with respect to some α.

Theorem 1 The cPLTL model checking problem is PSpace-complete.

We begin by showing PSpace-membership. First note that we can restrict
ourselves to cPLTLF formulas: given a cPLTL formula ϕ, let ϕ′ denote the formula
obtained by recursively replacing every subformula G≤yψ by ψ∨X(¬κU(¬κ∧ψ)).
Due to Lemma 3 and the discussion below it, every transition system S satisfies
ϕ with respect to some α if, and only if,S satisfies ϕ′ with respect to some α′.

Next, we show how to apply the alternating-color: recall that the classical
algorithm for LTL model checking searches for a fair path, i.e., one that visits
infinitely many accepting states, in the product of S with a Büchi automaton
recognizing the models of the negated specification. If such a path exists, then S
does not satisfy the specification, as the fair path contains a path π through S and
an accepting run of the automaton on its trace, i.e., the trace does not satisfy the
specification. If there is no such fair path, then S satisfies the specification.

For cPLTL we have to find such a path for every α in order to show that S
does not satisfy the specification with respect to any α. To this end, one relativizes
the cPLTLF specification as described in Section 3 and builds an automaton for
the negation of the relativized formula in conjunction with a formula that ensures
that every ultimately periodic model is both k-bounded and k′-spaced for some
appropriate k and k′. Then, we search for a pumpable fair path in the product
of the system and the Büchi automaton recognizing the models of the negated
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specification, which is non-deterministically labeled by p. Applying Lemma 4 and
pumping a fair path through the product appropriately yields a counterexample
for every α. Thus, model checking is reduced to finding a pumpable fair path. Let
us stress again that this algorithm is similar to the one for PROMPT–LTL, we just
have to pay attention to some intricacies stemming from the fact that we want to
bound the cost, not the waiting time: there might be paths with finite cost, which
have to be dealt with appropriately.

Recall that p is the distinguished atomic proposition used to relativize cPLTL
formulas. A colored Büchi graph with costs (V, vI , E, ℓ, cst, F ) consists of a finite
direct graph (V,E), an initial vertex vI , a labeling function ℓ : V → 2{p}, a cost
function cst : E → N, and a set F ⊆ V of accepting vertices. A path v0v1v2 · · ·
is pumpable, if each of its blocks induced by p contains a vertex repetition such
that the cycle formed by the repetition has non-zero cost2. Note that we do not
have a requirement on the cost of the tail, if the path has one. The path is fair,
if it visits F infinitely often. The pumpable non-emptiness problem asks, given a
colored Büchi graph with costs, whether it has an initial pumpable fair path.

Lemma 5 If a colored Büchi graph with costs has an initial pumpable fair path, then

also one of the form π0π
ω
1 with |π0π1| ∈ O(n2), where n is the number of vertices of

the graph.

Proof Let π be an arbitrary initial pumpable fair path. First, assume it has only
finitely many changepoints. If there are two blocks that start with the same vertex,
then we can remove all blocks in between and obtain another initial pumpable fair
path. Thus, we can assume that π has at most n blocks. Furthermore, the length
of each block can be bounded by O(n) by removing cycles while retaining the state
repetition with non-zero cost and at least one accepting vertex (provided the block
has one). Now, consider the tail: by removing infixes one can find a cycle of length
at most n containing an accepting vertex and a path of length at most n leading
from the last changepoint to a vertex on the cycle. Hence, we define π0 to be the
prefix containing all blocks and the path leading to the cycle and define π1 to be
the cycle. Then, we have |π0π1| ∈ O(n2) and π0π

ω
1 is an initial pumpable fair path.

On the other hand, if π contains infinitely many changepoints, then we can re-
move blocks and shorten other blocks as described above until we have constructed
a prefix π0π1 such that π0π

ω
1 has the desired properties. In this case, we can as-

sume that the first position of π1 is a changepoint by “rotating” π1 appropriately
and appending a suitable prefix of it to π0. ⊓⊔

Let S = (S, sI , E, ℓ, cst) be a transition system and let ϕ be a cPLTLF formula.
Furthermore, consider the LTL formula

χ = (GFp ∧GF¬p) ↔ GFκ,

which is satisfied by a cost-trace, if the trace has infinitely many changepoints if,
and only if,3 it has cost ∞. Now, let A = (Q, 2P∪{p}, qI , δ, F ) be a non-deterministic
Büchi automaton recognizing the models of the LTL formula ¬rel(ϕ) ∧ χ, which

2 Note that our definition is more involved than the one of Kupferman et al., since we require
a cycle with non-zero cost instead of any circle.

3 Here, we use our assumption on κ indicating the sign of the costs.
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we can pick such that its number of states is bounded exponentially in |ϕ|. Now,
define the colored Büchi graph with costs

S × A = (S ×Q× 2{p}, (sI , qI , ∅), E′, ℓ′, cst′, F ′)

where

– ((s, q, C), (s′, q′, C′)) ∈ E′ if, and only if,(s, s′) ∈ E and q′ ∈ δ(q, ℓ(s) ∪ C),
– ℓ(s, q, C) = C,
– cst′((s, q, C), (s′, q′, C′)) = cst(s, s′), and
– F ′ = S × F × 2{p}.

Lemma 6 [cp. Lemma 4.2 of [23]] S does not satisfy ϕ with respect to any α if, and

only if,S × A has an initial pumpable fair path.

Proof Let S not satisfy ϕ with respect to any variable valuation. Fix k = (|S| · |Q|+
3) ·W , where W is the largest cost in S, and define the valuation α by α(x) = 2k
for every x. As S does not satisfy ϕ with respect to α, there is a path π through S
with (tr(π),α) ∕|= ϕ. Thus, due to Lemma 4.2, every k-bounded coloring of w does
not satisfy rel(ϕ).

Now, let w′ be a k-bounded and (k−W )-spaced coloring of tr(π) which starts
with p not holding true. Such a coloring can always be constructed, as W is the
largest cost appearing in S. Note that w′ satisfies χ by construction. Thus, we have
w′ |= ¬rel(ϕ)∧χ, i.e., there is an accepting run q0q1q2 · · · of A on w′. Consider the
path

(s0, q0, w
′
0 ∩ {p})(s1, q1, w′

1 ∩ {p})(s2, q2, w′
2 ∩ {p}) · · ·

where s0s1s2 · · · = π, which is fair by construction. We claim that it is pumpable:
consider a block, which is (k − W )-spaced. Thus, it contains at least |S| · |Q| + 2
many edges with non-zero cost, enough to enforce a vertex repetition with non-
zero cost in between. To this end, one takes the sets Vj of vertices visited between
the j-th and the (j+1)-th edge with non-zero cost (including the j-th edge). This
yields |S| · |Q|+ 1 non-empty sets of vertices of S × A that coincide in their third
component, as we are within one block. However, there are only |S| · |Q| many such
vertices, which yields the desired repetition.

Now, consider the converse implication and let α′ be an arbitrary variable
valuation. We show that S does not satisfy ϕ with respect to α′. Due to Lemma 3,
it is sufficient to show that S does not satisfy ϕ with respect to the valuation α

mapping every variable to k = minx∈var(ϕ) α
′(x).

Fix an initial pumpable fair path of S × A. It has a vertex repetition in every
block such that the induced cycle has non-zero cost. We pump each such cycle
k + 1 times to obtain the path

(s0, q0, C0)(s1, q1, C1)(s2, q2, C2) · · · .

By construction, π = s0s1s2 · · · is a path through S and

w′ = (ℓ(s0) ∪ C0)(ℓ(s1) ∪ C1)(ℓ(s2) ∪ C2) · · ·

is a coloring of its trace tr(π). Also, q0q1q2 · · · is an accepting run of A on w′, i.e.,
w′ |= ¬rel(ϕ)∧χ. Lastly, w′ is (k+1)-spaced by construction, as the cost function
of S × A is induced by the one of S.
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Assume towards a contradiction that S satisfies ϕ with respect to α, which im-
plies (tr(π),α) |= ϕ. Applying Lemma 4.1 yields that every (k+1)-spaced coloring
of tr(π) satisfies rel(ϕ). However, w′ is a (k + 1)-spaced coloring which satisfies
¬rel(ϕ), i.e., we have derived the desired contradiction. ⊓⊔

Now, we are ready to prove Theorem 1.

Proof PSpace-hardness holds already for LTL model checking [30], which is a
special case of cPLTL model checking. Membership is witnessed by the following
algorithm: check whether the colored Büchi graph S × A has an initial pumpable
fair path, which is correct due to Lemma 6. But as the graph is of exponential
size, it has to be constructed and tested for non-emptiness on-the-fly.

Due to Lemma 5, it suffices to check for the existence of an ultimately periodic
path π0π

ω
1 such that |π0π1| ≤ n ∈ O(|S×A|2), i.e., n is exponential in the size of ϕ

and quadratic in the size of S. To this end, one guesses a vertex v (the first vertex
of π1) and checks the following reachability properties:

1. Is v reachable from vI via a path where each block contains a cycle with non-
zero cost?

2. Is v reachable from v via a non-empty path that visits an accepting vertex
and which either has no changepoint or where each block contains a cycle with
non-zero cost? In this case, we also require that v and the last vertex on the
path from vI to v guessed in item 1.) differ on their third component in order
to make v a changepoint. This spares us from having a block that spans π0

and π1.

All these reachability problems can be solved in non-deterministic polynomial
space, as a successor of a vertex of S×A can be guessed and verified in polymonial
time and the length of the paths to be guessed is bounded by n, which can be
represented with polynomially many bits. ⊓⊔

Furthermore, by applying both directions of the proof of Lemma 6, we obtain
an exponential upper bound on the values of a satisfying variable valuation, if one
exists. This is asymptotically tight, as one can already show exponential lower
bounds for PROMPT–LTL [23].

Corollary 1 Fix a transition system S and a cPLTL-formula ϕ such that S satisfies ϕ

with respect to some α. Then, S satisfies ϕ with respect to a valuation that is bounded

exponentially in the size of ϕ and linearly in the number of states of S and in the

maximal cost in S.

Dually, one can show the existence of an exponential variable valuation that
witnesses whether a given cPLTLG specification is satisfied with respect to every
variable valuation. The following lemma states the contrapositive of this statement,
which we prove using pumping arguments that are similar to the ones for the
analogous results for PLTLG and PLDLG [20].

Lemma 7 Fix a transition system S and a cPLTLG-formula ϕ such that S does not

satisfy ϕ with respect to every α. Then, S does not satisfy ϕ with respect to a valuation

that is bounded exponentially in the size of ϕ and linearly in the number of states of S
and in the maximal cost in S.
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Proof Let A be a Büchi automaton recognizing the models of rel(¬ϕ)∧χ, which is
of exponential size in |ϕ|. Define k∗ = (4 · |A| · |S|+ 2) ·W , where W is the largest
cost in S, and let α∗ be the variable valuation mapping every variable to k∗. We
consider the contrapositive and show: if there is an α such that S does not satisfy
ϕ with respect to α, then S does not satisfy ϕ with respect to α∗.

Thus, assume there is an α and a path π such that (tr(π),α) |= ¬ϕ. Due to
upwards-monotonicity we can assume w.l.o.g. that α maps all variables to the same
value, call it k.

Let tr(π)′ be a (k∗+W+1)-bounded and (k∗+1)-spaced p-coloring of tr(π) that
starts with p not holding true in the first position, which can always be constructed
as W is the largest cost. Applying Lemma 4.1 shows that tr(π)′ satisfies rel(¬ϕ).
Furthermore, it satisfies χ by construction. Fix some accepting run of A on tr(π)′

and consider an arbitrary block of tr(π)′: if the run does not visit an accepting
state during the block, we can remove (if necessary) infixes of the block where the
run reaches the same state before and after the infix and where the state of S at
the beginning and the end of the infix are the same, until the block has length at
most |A| · |S| and thus cost at most |A| · |S| ·W .

On the other hand, assume the run visits at least one accepting state during
the block. Fix one such position. Then, we can remove infixes as above between
the beginning of the block and the position before the accepting state is visited
and between the position after the accepting state is reached and before the end
of the block. What remains is a block whose length is at most 2 · |A| · |S|+ 1, at
it has most |A| · |S| many positions before the designated position, this position
itself, and at most |A| · |S| many after the designated position. Hence, the block
has cost at most (2 · |A| · |S|+ 1) ·W .

Thus, we have constructed a (2 · |A| · |S|+ 1) ·W -bounded p-coloring tr(π̂)′ of
a trace tr(π̂) for some path π̂ of S, as well as an accepting run of A on tr(π̂)′.
Hence, tr(π̂)′ is a model of rel(¬ϕ) and applying Lemma 4.2 shows that tr(π̂) is
a model of ¬ϕ with respect to the variable valuation mapping every variable to
2 · (2 · |A| · |S|+1) ·W = k∗. Therefore, S does not satisfy ϕ with respect to α∗. ⊓⊔

5 Infinite Games

After having solved the model checking problem for cPLTL, we now turn our at-
tention to solving infinite games with winning conditions in cPLTL. Our approach
follows the one for the case of PLTL winning conditions [38], which in turn gener-
alized the proof for PROMPT–LTL realizability [23]. Again, we have to deal with
the existence of cost-traces with finite costs, which is done as in the case of model
checking.

An arena A = (V, V0, V1, vI , E, ℓ, cst) consists of a finite directed graph (V,E),
a partition (V0, V1) of V , an initial vertex vI ∈ V , a labeling ℓ : V → 2P , and a
cost function cst : E → N. Again, we encode the weights in binary, although the
algorithms we present here and their running times and space requirements are
oblivious to the exact weights. Also, we again assume that every vertex has at least
one successor to avoid dealing with finite paths. Finally, we ensure our requirement
on the proposition κ to indicate the sign of the costs in a cost-trace: if κ ∈ ℓ(v′),
then we require cst(v, v′) > 0 for every edge (v, v′) ∈ E leading to v′. Dually, if
κ /∈ ℓ(v′), then cst(v, v′) = 0 for every edge (v, v′) ∈ E.
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A play ρ = ρ0ρ1ρ2 · · · is a path through A starting in vI and its cost-trace tr(ρ)
is defined as

tr(ρ) = ℓ(ρ0) cst(ρ0, ρ1) ℓ(ρ1) cst(ρ1, ρ2) ℓ(ρ2) cst(ρ2, ρ3) · · · .

A strategy for Player i ∈ {0, 1} is a mapping σ : V ∗Vi → V with (v,σ(wv)) ∈ E

for every w ∈ V ∗ and v ∈ Vi. A play ρ is consistent with σ if ρn+1 = σ(ρ0 · · · ρn)
for every n with ρn ∈ Vi.

A cPLTL game G = (A,ϕ) consists of an arena A and a winning condition ϕ,
which is a cPLTL formula. A strategy σ for Player 0 is winning with respect to
some variable valuation α, if the trace of every play that is consistent with σ

satisfies the winning condition ϕ with respect to α.
We are interested in determining whether Player 0 has a winning strategy for

a given cPLTL game, and in determining a winning strategy for her if this is the
case, which we refer to as solving the game.

Theorem 2 Determining whether Player 0 has a winning strategy in a given cPLTL

game is 2ExpTime-complete. Furthermore, a winning strategy (if one exists) can be

computed in doubly-exponential time.

First, we note that it is again sufficient to consider cPLTLF formulas, as we
are interested in the existence of a variable valuation (see the discussion below
Lemma 3). Next, we apply the alternating-color technique: to this end, we modify
the arena to allow Player 0 to produce colorings of plays of the original arena and
use the relativized winning condition, i.e., we reduce the problem to a game with
LTL winning condition. The winner (and a winning strategy) of such a game can
be computed in doubly-exponential time [27,28].

To allow for the coloring, we double the vertices of the arena, additionally label
one copy with p and the other not, and split every move into two: first, the player
whose turn it is picks an outgoing edge, then Player 0 decides in which copy she
wants to visit the target, thereby picking the truth value of p.

Formally, given an arena A = (V, V0, V1, vI , E, ℓ, cst), the extended arena A′ =
(V ′, V ′

0 , V
′
1 , v

′
I , E

′, ℓ′, cst′) consists of

– V ′ = V × {0, 1} ∪ E,
– V ′

0 = V0 × {0, 1} ∪ E and V ′
1 = V1 × {0, 1},

– v′I = (vI , 0),
– E′ = {((v, 0), e), ((v, 1), e), (e, (v′, 0)), (e, (v′, 1)) | e = (v, v′) ∈ E},

– ℓ′(e) = ∅ for every e ∈ E and ℓ′(v, b) =


ℓ(v) if b = 0,

ℓ(v) ∪ {p} if b = 1,
and

– cst′((v, b), (v, v′)) = cst(v, v′) and cst′((v, v′), (v′, b′)) = 0.

A path through the new arena A′ has the form (ρ0, b0)e0(ρ1, b1)e1(ρ2, b2) · · · for
some path ρ0ρ1ρ2 · · · through A, where en = (ρn, ρn+1) and bn ∈ {0, 1}. Also, we
have |A′| ∈ O(|A|2). Note that we use the costs in A′ only to argue the correctness
of our construction, not to define the winning condition for the game in A′.

Also, note that the additional choice vertices of the form e ∈ E have to
be ignored when it comes to evaluating the winning condition on the trace of
a play. Thus, we consider games with LTL winning conditions under so-called
blinking semantics: Player 0 wins a play ρ = ρ0ρ1ρ2 · · · under blinking semantics,
if ℓ(ρ0)ℓ(ρ2)ℓ(ρ4) · · · satisfies the winning condition ϕ; otherwise, Player 1 wins.
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Winning strategies under blinking semantics are defined as expected. Determin-
ing whether Player 0 has a winning strategy for a given game with LTL winning
condition under blinking semantics is 2ExpTime-complete, which can be shown
by a slight variation of the proof for LTL games under classical semantics [27,
28]. Furthermore, if Player 0 has a winning strategy for such a game, then also a
finite-state one of at most doubly-exponential size in |ϕ|.

Such a strategy for an arena (V, V0, V1, vI , E, ℓ, cst) is given by a memory
structure M = (M,mI ,upd) with a finite set M of memory states, an initial
memory state mI ∈ M , and an update function upd: M × V → M , and by a
next-move function nxt: V0 × M → V satisfying (v,nxt(v,m)) ∈ E for every m

and every v. The function upd∗ : V + → M is defined via upd∗(v) = mI and
upd∗(wv) = upd(upd∗(w), v). Then, the strategy σ implemented by M and nxt is
defined by σ(wv) = nxt(v,upd∗(wv)). The size of σ is (slightly abusively) defined
as |M |.

Given a game (A,ϕ) with cPLTLF winning condition ϕ, define A′ as above and
let ϕ′ = rel(ϕ) ∧ χ, where χ = (GFp ∧ GF¬p) ↔ GFκ. Recall that χ is satisfied
by a cost-trace, if the trace has infinitely many changepoints if, and only if,it has
cost ∞.

Lemma 8 [cp. Lemma 3.1 of [23]] Player 0 has a winning strategy for (A,ϕ) with

respect to some α if, and only if,she has a winning strategy for (A′,ϕ′) under blinking

semantics.

Proof Let σ be a winning strategy for Player 0 in (A,ϕ) with respect to some fixed
α and define k = maxx∈var(ϕ) α(x). We define a strategy σ′ for A′ as follows:

σ′((ρ0, b0)(ρ0, ρ1) · · · (ρn−1, ρn)(ρn, bn)) = (ρn,σ(ρ0 · · · ρn))

if (ρn, bn) ∈ V ′
0, which implies ρn ∈ V0. Thus, at a non-choice vertex, Player 0

mimics the behavior of σ. At choice vertices, she alternates between the two copies
of the arena every time the cost has exceeded k + 1: let

w = (ρ0, b0)(ρ0, ρ1) · · · (ρn, bn)(ρn, ρn+1)

be a play prefix ending in a choice vertex and let n′ ≤ n be the last changepoint
in ℓ′(ρ0, b0) · · · ℓ′(ρn, bn). Now, we define

σ′(w) =






(ρn+1, 0) if (cst(ρn′ · · · ρn) < k + 1 and bn = 0) or

(cst(ρn′ · · · ρn) ≥ k + 1 and bn = 1),

(ρn+1, 1) if (cst(ρn′ · · · ρn) < k + 1 and bn = 1) or

(cst(ρn′ · · · ρn) ≥ k + 1 and bn = 0).

Let ρ = ρ0ρ1ρ2 · · · be a play in A′ that is consistent with σ′ and let

ρ′ = ρ0ρ2ρ4 · · · = (v0, b0)(v1, b1)(v2, b2) · · · .

By definition of σ′, the sequence v0v1v2 · · · is a play in A that is consistent with
σ and thus winning for Player 0 with respect to α, i.e., (tr(v0v1v2 · · · ),α) |= ϕ.
Also, w′ = ℓ′(v0, b0)ℓ

′(v1, b1)ℓ
′(v2, b2) · · · is a (k + 1)-spaced coloring of the trace

tr(v0v1v2 · · · ). Hence, w′ |= ϕ′ due to Lemma 4.1. Finally, w′ satisfies χ by con-
struction. Thus, σ′ is a winning strategy for (A′,ϕ′) under blinking semantics.
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Now, let σ′ be a winning strategy for Player 0 in (A′,ϕ′) which we can assume
(w.l.o.g.) to be implemented by M′ = (M ′,m′

I ,upd
′) and some next-move func-

tion nxt′ such that |M ′| is doubly-exponential in |ϕ|. We define a strategy σ for A
by simulating a play in A′ that is consistent with σ′.

To this end, define the memory structure M = (M,mI ,upd) for A with M =
(V × {0, 1})×M ′, mI = ((v, 0),m′

I), and

upd(((v, b),m), v′) = (nxt′(e,m′),upd′(m′,nxt′(e,m′)))

where e = (v, v′) and m′ = upd′(m, e). Intuitively, the update-function mimics two
moves in A′: first, the one from (v, b) to e = (v, v′) and then the move from this
choice vertex determined by the strategy σ′, which is given by nxt′(e,m′), where
m′ is the updated memory state.

Let w be a play prefix of a play in A. The memory state upd∗(w) = ((v, b),m)
encodes the following information: the simulated play w′ in A′ ends in (v, b), where
v is the last vertex of w, and we have upd′∗(w′) = m. Hence, it contains all
information necessary to apply the next-move function nxt′ to mimic σ′. Thus, we
define the next-move function nxt: V0 ×M → V for Player 0 in A by

nxt(v, ((v′, b),m)) =


v′′ if v = v′ and nxt′((v′, b),m) = (v′, v′′),

v otherwise, for some v ∈ V with (v, v) ∈ E.

By definition of M, the second case of the definition is never invoked, since
upd∗(wv) = ((v′, b),m) always satisfies v = v′.

It remains to show that the strategy σ implemented by M and nxt is indeed
a winning strategy for Player 0 for (A,ϕ) with respect to some α. To this end, let
k = (|V | · |M | + 3) · W and define α(x) = 2k for every x, where W is the largest
weight in A.

Let ρ0ρ1ρ2 · · · be a play in A that is consistent with σ. A straightforward
induction shows that there exist bits b0, b1, b2, · · · such that the play

(ρ0, b0)(ρ0, ρ1)(ρ1, b1)(ρ1, ρ2)(ρ2, b2) · · ·

in A′ is consistent with σ′. Hence, w′′ = ℓ′(ρ0, b0)ℓ
′(ρ1, b1)ℓ

′(ρ2, b2) · · · satisfies ϕ′.
We show that w′′ is k-bounded. This suffices to finish the proof as we can apply
Lemma 4.2 and obtain (tr(ρ),α) |= ϕ, as w′′ is a k-bounded coloring of tr(ρ). Thus,
σ is a winning strategy for Player 0 for (A,ϕ) with respect to α.

Towards a contradiction assume that w′′ is not k-bounded. Then, there exist
positions i < j such that

– ρi = ρj ,
– upd′∗((ρ0, b0) · · · (ρi, bi)) = upd′∗((ρ0, b0) · · · (ρj , bj)),
– the bits bi, . . . , bj are all equal, and
– cst(ρi · · · ρj) > 0.

To show this, one defines the sets Vj of vertices visited between the j-th and the
(j+1)-th edge with non-zero cost (including the j-th edge). This yields |V | · |M |+1
non-empty sets of vertices of (V × {0, 1}) × M that coincide on the bit stored in
their second component. Hence, we have derived the desired vertex repetition, as
there are only |V | · |M | such vertices.
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Thus, the play

ρ∗ = (ρ0, b0)(ρ0, ρ1) · · · (ρi−1, ρi)(ρi, bi)

(ρi, ρi+1)(ρi+1, bi+1) · · · (ρj−1, ρj)(ρj , bj)

ω
,

obtained by traversing the cycle between (ρi, bi) and (ρj , bj) infinitely often, is
consistent with σ′, since the memory states reached at the beginning and the end
of the loop are the same. Remember that the bits do not change between i and j.
Thus, tr(ρ∗) has only finitely many change points, but infinitely many occurrences
of κ and does therefore not satisfy χ under blinking semantics. This contradicts the
fact that σ′ is a winning strategy for (A′, rel(ϕ)∧χ) under blinking semantics. ⊓⊔

Now, we are able to prove Theorem 2.

Proof Hardness follows immediately from the 2ExpTime-hardness of determining
the winner of an LTL game [27,28], which is a special case.

Membership in 2ExpTime follows from the reductions described above: first,
we turn the winning condition into a cPLTLF formula and construct the LTL game
under blinking semantics obtained from expanding the arena and relativizing the
winning condition. This game is only polynomially larger than the original one and
its winner (and a winning strategy) is computable in doubly-exponential time. ⊓⊔

By applying both directions of the proof of Lemma 8, we obtain a doubly-
exponential upper bound on the values of a satisfying variable valuation, if one
exists. This is asymptotically tight, as one can already show doubly-exponential
lower bounds for PROMPT–LTL [38].

Corollary 2 Fix a cPLTL game G = (A,ϕ) such that Player 0 has a winning strategy

for G with respect to some α. Then, Player 0 has a winning strategy for G with respect

to a valuation that is bounded doubly-exponentially in the size of ϕ and linearly in the

number of vertices of A and in the maximal cost in A.

6 Parametric LDL with Costs

Recall the two main shortcomings of LTL, the lack of expressiveness and impos-
sibility to impose time- and cost-bounds. Here, we have dealt with the second
shortcoming by introducing cPLTL. However, we have not dealt with the first
shortcoming. In this section, we address both simultaneously by extending PLDL
to a cost-setting.

Linear Dynamic logic (LDL) [18,34] extends LTL by temporal operators that
are guarded by regular expressions, e.g., 〈r〉ϕ holds at position n, if there is a j such
that ϕ holds at position n+j and the infix between positions n and n+j−1 matches
r. The resulting logic has the full expressiveness of the ω-regular languages while
retaining many of LTL’s desirable properties like a simple syntax, intuitive seman-
tics, a polynomial space algorithm for model checking, and a doubly-exponential
time algorithm for solving games. Parametric LDL (PLDL) [19] allows to param-
eterize such operators, i.e., 〈r〉≤x ϕ holds at position n with respect to a variable
valuation α, if there is a j ≤ α(x) such that ϕ holds at position n+ j and the infix
between positions n and n+ j − 1 matches r. Model checking and solving games
with PLDL specifications is not harder than for LTL, although PLDL is more
expressive and has parameterized operators. In this section, we consider cPLDL



Parameterized Linear Temporal Logics Meet Costs 19

where the parameters bound the cost of the infix instead of the length. This logic
has the full expressiveness of the ω-regular languages and parameterized opera-
tors whose scope is bounded by costs instead of by time. Thus, it can express
modulo-counting properties not expressible in LTL, PLTL, and cPLTL, as well as
cost-bounds, which are not expressible in PLTL and PLDL.

Formally, formulas of cPLDL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈r〉ϕ | [r ]ϕ | 〈r〉≤z ϕ | [r ]≤z ϕ

r ::=φ | ϕ? | r + r | r ; r | r∗

where p ∈ P , z ∈ V, and where φ ranges over propositional formulas over P . As
for cPLTL, cPLDL formulas are evaluated on cost-traces with respect to variable
valuations. Satisfaction of atomic formulas and of conjunctions and disjunctions
is defined as usual, and for the four temporal operators, we define

– (w, n,α) |= 〈r〉ϕ if there exists j ≥ 0 such that (n, n + j) ∈ R(r, w,α) and
(w, n+ j,α) |= ϕ,

– (w, n,α) |= [r ]ϕ if for all j ≥ 0 with (n, n+j) ∈ R(r, w,α) we have (w, n+j,α) |=
ϕ,

– (w, n,α) |= 〈r〉≤z ϕ if there exists j ≥ 0 with cst(wncn · · · cn+j−1wn+j) ≤ α(z)
such that (n, n+ j) ∈ R(r, w,α) and (w, n+ j,α) |= ϕ, and

– (w, n,α) |= [r ]≤z ϕ if for all j ≥ 0 with cst(wncn · · · cn+j−1wn+j) ≤ α(z) and
with (n, n+ j) ∈ R(r, w,α) we have (w, n+ j,α) |= ϕ.

Here, the relation R(r, w,α) ⊆ N × N contains all pairs (m,n) ∈ N × N such that
wm · · ·wn−1 matches r and is defined inductively by

– R(φ, w,α) = {(n, n+ 1) | wn |= φ} for propositional ϕ,
– R(ψ?, w,α) = {(n, n) | (w, n,α) |= ψ},
– R(r0 + r1, w,α) = R(r0, w,α) ∪R(r1, w,α),
– R(r0 ; r1, w,α) = {(n0, n2) | ∃n1 s.t. (n0, n1) ∈ R(r0, w,α) and

(n1, n2) ∈ R(r1, w,α)}, and
– R(r∗, w,α) = {(n, n) | n ∈ N} ∪ {(n0, nk+1) | ∃n1, . . . , nk s.t.

(nj , nj+1) ∈ R(r, w,α) for all j ≤ k}.
Again, we restrict ourselves to well-formed formulas, i.e., those whose set of vari-
ables parameterizing diamond operators and whose set of variables parameterizing
box operators are disjoint.

Using the duality of the operators 〈r〉≤z and [r ]≤z (note that r is left un-
changed), one can prove an analogue of Lemma 2.

Lemma 9 For every cPLDL formula ϕ there exists an efficiently constructible cPLDL

formula ¬ϕ s.t.

1. (w, n,α) |= ϕ if, and only if,(w, n,α) ∕|= ¬ϕ for every w, every n, and every α, and

2. |¬ϕ| = |ϕ|.

Note that we do not claim that negation preserves well-formedness and that
we have not (yet) defined unipolar fragments of cPLDL. This is because this state-
ment is wrong: the negation of the well-formed cPLDL-formula [([p ]≤x p)?]≤x

p is

〈([p ]≤x p)?〉≤x
¬p, which is not well-formed. The issue is that negation does not flip

parameterized operators in tests, i.e., formulas of the form φ? in regular expres-
sions, which also requires us to be careful when defining the unipolar fragments of
cPLDL: let ϕ be a cPLDL formula.
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– ϕ is a cPLDL♦ formula, if it does not contain a parameterized box operator.
– ϕ is a cPLDL□ formula, if it does not contain a parameterized diamond oper-

ator and if its negation is a cPLDL♦ formula.

For cPLTLG formulas, the second conjunct in the second item above is trivial,
but, as we have seen in the example above, this is no longer true for cPLDL□. The
second conjunct is necessary to be able to solve problems for cPLDL□ by dualizing
the formula into an cPLDL♦ formula. This becomes crucial when we consider the
optimization problems in Setion 8, the only place where we deal with cPLDL□
formulas.

Finally, Lemma 3 holds for cPLDL, too.

Lemma 10 Let ϕ be a cPLDL formula and let α and β be variable valuations satisfying

α(x) ≤ β(x) for every x ∈ varF(ϕ) and α(y) ≥ β(y) for every y ∈ varG(ϕ). If

(w,α) |= ϕ, then (w,β) |= ϕ.

The alternating-color technique is applicable to PLDL [19]: to this end, one
introduces changepoint-bounded variants of the unparameterized diamond opera-
tor and of the unparameterized box operator whose semantics only quantify over
infixes with at most one changepoint. LDL formulas with changepoint-bounded op-
erators can be translated into Büchi automata of exponential size. As usual, the pa-
rameterized box operators can again be disregard due to monotonicity. Thus, given
a PLDL♦ formula, one replaces every diamond operator by a changepoint-bounded
one and can then show that both formulas are equivalent, provided the distance
between color-changes is appropriately bounded and spaced. This allows to extend
the algorithms for model checking and realizability based on the alternating-color
technique to PLDL. The detailed construction is described in [19].

In the setting with costs investigated here, the approach is similar: one has
to replace the parameterized diamond operators by changepoint-bounded ones.
Furthermore, the formula χ = (GFp ∧GF¬p) ↔ GFκ used in the applications of
the alternating-color technique in Sections 4 and 5 is replaced by an equivalent LDL
formula, which is possible as LDL subsumes LTL. The resulting formula is again
translatable into a Büchi automaton of exponential size. Thus, the constructions
presented in the previous two sections solving the model checking and the game
problem are again applicable.

Theorem 3 The cPLDL model checking problem is PSpace-complete and solving in-

finite games with cPLDL winning conditions is 2ExpTime-complete.

7 Multiple Cost Functions

In this section, we consider parameterized temporal logics with multiple cost func-
tions. These extensions allow to express, e.g., the Streett condition with costs,
which is not expressible in the logics we considered thus far. For the sake of sim-
plicity, we restrict our attention to cPLTL, although all results hold for cPLDL,
too.

Fix some dimension d ∈ N. The syntax of mult-cPLTL is obtained by equipping
the parameterized temporal operators by a coordinate i ∈ {1, . . . , d}, denoted by
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F≤ix and G≤iy. Here, a cost-trace is of the form w0 c0 w1 c1 w2 c2 · · · with wn ∈ 2P

and cn ∈ Nd. Thus, for every i ∈ {1, . . . , d}, we can define

csti(w0c0 · · · cn−1wn) =
n−1

j=0

(cj)i

for every finite cost-trace w0c0 · · · cn−1wn, where (cj)i denotes the i-th entry of
the vector cj . Furthermore, we require for every coordinate i a proposition κi such
that κi ∈ wn+1 if, and only if,(cn)i > 0.

The semantics of atomic formulas, boolean connectives, and unparameterized
temporal operators are unchanged and for the parameterized operators, we define

– (w, n,α) |= F≤izϕ if, and only if,there exists a j ≥ 0 with
csti(wncn · · · cn+j−1wn+j) ≤ α(z) such that (w, n+ j,α) |= ϕ, and

– (w, n,α) |= G≤izϕ if, and only if,for every j ≥ 0 with
csti(wncn · · · cn+j−1wn+j) ≤ α(z): (w, n+ j,α) |= ϕ.

In this setting, we consider the model checking problem for transition systems
with d cost functions and want to solve games in arenas with d cost functions.

Example 2 A Streett condition with costs (Qi, Pi)i∈{1,...,d} [21] can be expressed4

in mult-cPLTL via

FG


i∈{1,...,d}

(Qi → F≤ix Pi)


.

This property is not expressible in the logics with a single cost function, which
can again be shown by a pumping argument.

Again, we restrict ourselves to formulas where no variable parameterizes an
eventually- and an always operator, but we allow a variable to parameterize op-
erators with different coordinates. Furthermore, the fragments mult-cPLTLF and
mult-cPLTLG are defined as for cPLTL, i.e., a formula is a mult-cPLTLF formula
(a mult-cPLTLG formula), if it does not contain parameterized always operators
(parameterized eventually operators).

Lemma 2 can be extended to mult-cPLTL by adding the rules ¬(F≤ixϕ) =
G≤ix¬ϕ and ¬(G≤iyϕ) = F≤iy¬ϕ to the proof.

Lemma 11 For every mult-cPLTL formula ϕ there exists an efficiently constructible

mult-cPLTL formula ¬ϕ s.t.

1. (w, n,α) |= ϕ if, and only if,(w, n,α) ∕|= ¬ϕ for every w, every n, and every α,

2. |¬ϕ| = |ϕ|.
3. If ϕ is well-formed, then so is ¬ϕ.
4. If ϕ is an LTL formula, then so is ¬ϕ.
5. If ϕ is a mult-cPLTLF formula, then ¬ϕ is a mult-cPLTLG formula and vice versa.

Furthermore, Lemma 3 holds for mult-cPLTL as well.

Lemma 12 Let ϕ be a mult-cPLTL formula and let α and β be variable valuations

satisfying α(x) ≤ β(x) for every x ∈ varF(ϕ) and α(y) ≥ β(y) for every y ∈ varG(ϕ).
If (w,α) |= ϕ, then (w,β) |= ϕ.

4 The same disclaimer as for the parity condition with costs applies here. See Footnote 1.
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The alternating-color technique is straightforwardly extendable to the new logic
mult-cPLTL: one introduces a fresh proposition pi for each coordinate i and de-
fines χ =

d
i=1((GFpi ∧ GF¬pi) ↔ GFκi). Furthermore, the notions of i-blocks,

k-boundedness in coordinate i, and k-spacedness in coordinate i are defined as
expected. Then, the proofs presented in Section 4 and Section 5 can be extended
to the setting with multiple cost functions.

In the model checking case, the third component of the set of states of the
colored Büchi graph S × A has the form 2{p1,...,pd}, i.e., it is of exponential size.
However, this is no problem, as the automaton A is already of exponential size.
Similarly, in the case of infinite games, each vertex of the original arena has 2d

copies in A′, one for each element in 2{p1,...,pd} allowing Player 0 to produce ap-
propriate colorings with the propositions pi. The resulting game has an arena
of exponential size (in the size of the original arena and of the original winning
condition) and an LTL winning condition under blinking semantics. Such a game
can still be solved in doubly-exponential time. To this end, one turns the winning
condition into a deterministic parity automaton of doubly-exponential size with
exponentially many colors, constructs the product of the arena and the parity au-
tomaton, which yields a parity game of doubly-exponential size with exponentially
many colors. Such a game can be solved in doubly-exponential time [29].

Theorem 4 The mult-cPLTL model checking problem is PSpace-complete and solving

infinite games with mult-cPLTL winning conditions is 2ExpTime-complete.

Again, the same results hold for mult-cPLDL, which is defined as expected.

8 Optimization Problems

It is natural to treat model checking and solving games with specifications in pa-
rameterized linear temporal logics as an optimization problem: determine the opti-

mal variable valuation such that the system satisfies the specification with respect
to it. For parameterized eventually operators, we are interested in minimizing the
waiting times while for parameterized always’, we are interested in maximizing the
waiting times. Due to the undecidability results for not well-defined formulas one
considers the optimization problems for the unipolar fragments, i.e., for formulas
having either no parameterized eventuallies or no parameterized always’. In this
section, we present algorithms for such optimization problems given by cPLTL
specifications. In the following, we encode the weights of the transition system or
arena under consideration in unary to obtain our results. Whether these results
can also be shown for a binary encoding is an open question.

For model checking, we are interested in the following four problems: given
a transition system S and a cPLTLF formula ϕF and a cPLTLG formula ϕG,
respectively, determine

1. min{α|S satisfies ϕF w.r.t. α}minx∈varF(ϕF) α(x),
2. min{α|S satisfies ϕF w.r.t. α}maxx∈varF(ϕF) α(x),
3. max{α|S satisfies ϕG w.r.t. α}maxy∈varG(ϕG) α(y), and
4. max{α|S satisfies ϕG w.r.t. α}miny∈varG(ϕG) α(y).

Applying the monotonicity of the parameterized operators and (in the first
case) the alternating-color technique to all but one variable reduces the four op-
timization problems to ones where the specification has a single variable (cp. [1]).
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Furthermore, the upper bounds presented in Corollary 1 and in Lemma 7 yield
an exponential search space for an optimal valuation: if this space is empty, then
there is no α such that S satisfies ϕF with respect to α in the first two cases. On
the other hand, if the search space contains every such α, then S satisfies ϕG with
respect to every α in the latter two cases.

Thus, it remains the check whether the specification is satisfied with respect to
some valuation that is bounded exponentially. In this setting, one can construct
an exponentially sized non-deterministic Büchi automaton recognizing the models
of the specification with respect to the given valuation (using a slight adaption
of the construction presented in [38] accounting for the fact that we keep track
of cost instead of time). This automaton can be checked for non-emptiness in
polynomial space using an on-the-fly construction. Thus, an optimal α can be
found in polynomial space by binary search.

Theorem 5 The cPLTL model checking optimization problems can be solved in poly-

nomial space, if the weights are encoded in unary.

A similar approach works for infinite games as well. Here, we are interested in
computing

1. min{α|Pl. 0 has winning strategy for GF w.r.t. α}minx∈varF(ϕF) α(x),
2. min{α|Pl. 0 has winning strategy for GF w.r.t. α}maxx∈varF(ϕF) α(x),
3. min{α|Pl. 0 has winning strategy for GG w.r.t. α}minx∈varG(ϕG) α(x), and
4. min{α|Pl. 0 has winning strategy for GG w.r.t. α}maxx∈varG(ϕG) α(x).

and witnessing winning strategies for given cPLTL games GF with cPLTLF winning
condition ϕF and GG with cPLTLG winning condition ϕG.

Again, one can reduce these problems to the case of winning conditions with
a single variable and by applying determinacy of games with respect to a fixed
valuation. It even suffices to consider the case of cPLTLF winning conditions with
a single variable, due to duality of games: swapping the players and negating the
winning condition in a game with cPLTLG winning condition yields an equivalent
-game with cPLTLF winning condition. Corollary 2 gives a doubly-exponential
upper bound on an optimal variable valuation. Hence, one can construct a de-
terministic parity automaton of triply-exponential size with exponentially many
colors recognizing the models of the specification with respect to a fixed variable
valuation α that is below the upper bound (again, see [38] for the detailed con-
struction). Player 0 wins the parity game played in the original arena but using the
language of the automaton as winning condition if, and only if,she has a winning
strategy for the cPLTLF game with respect to α. Such a parity game can be solved
in triply-exponential time [29].

Theorem 6 The cPLTL optimization problems for infinite games can be solved in

triply-exponential time, if the weights are encoded in unary.

Furthermore, the same results hold for cPLDL using appropriate adaptions of
the automata constructions presented in [19,20]. Here, we apply the requirement
on negations of cPLDL□ formulas being cPLDL♦ formulas when dualizing a game
with cPLDL□ winning condition into a game with cPLDL♦ winning condition by
swapping the players and negating the winning condition. Without this require-
ment, we would not necessarily end up with a cPLDL♦ winning condition, but
possibly with a non-wellformed winning condition.
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Theorem 7 The cPLDL model checking optimization problems can be solved in poly-

nomial space and the cPLDL optimization problems for infinite games can be solved in

triply-exponential time, if the weights are encoded in unary.

However, for parameterized logics with multiple cost functions, these results do
not remain valid, as it does not suffice to reduce the optimization problems to ones
with a single variable, as a variable may bound operators in different dimensions.
Thus, one has to keep track multiple costs, which incurs an additional exponential
blow-up when done naively. Whether this can be improved is an open question.

9 Conclusion

LTL

LDL PLTL

PLDL

cPLDL

cPLTL

mult-cPLDL

mult-cPLTL

Fig. 1 Overview over the logics con-
sidered in this work.

We introduced parameterized temporal log-
ics whose operators bound the accumulated
cost instead of time as usual: cPLTL and
cPLDL extend PLTL and PLDL to the cost-
setting while mult-cPLTL and mult-cPLDL
extend them to the multi-dimensional cost-
setting. The logics we considered here and
their inclusions are depicted in Figure 1: the
upper four logics were introduced in this
work.

All four new logics retain the attractive
algorithmic properties of LTL like a polyno-
mial space model checking algorithm and a
doubly-exponential time algorithm for solv-
ing infinite games. For cPLTL and cPLDL,
even the optimization variants of these problems are not harder than for PLTL:
polynomial space for model checking and triply-exponential time for solving games,
if the weights are encoded in unary.

However, it is open whether these problems are strictly harder for logics with
multiple cost functions or if the weights are encoded in binary. Another open ques-
tion concerns the complexity of the optimization problem for infinite games: can
these problems be solved in doubly-exponential time, i.e., is finding optimal vari-
able valuations as hard as solving games? Note that this question is already open
for PLTL. Recently, a step towards this direction was made by giving an approx-
imation algorithm for this problem with doubly-exponential running time [31].
Finally, one could consider weights from some arbitrary semiring and correspond-
ing weighted parameterized temporal logics.
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7. Mikolaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS 2006, pages
285–296. IEEE Computer Society, 2006.

8. Mikolaj Bojańczyk and Szymon Toruńczyk. Weak MSO+U over infinite trees. In Christoph
D rr and Thomas Wilke, editors, STACS 2012, volume 14 of LIPIcs, pages 648–660. Schloss
Dagstuhl–Leibniz-Zentrum f r Informatik, 2012.

9. L. Bozzelli. Alternating Automata and a Temporal Fixpoint Calculus for Visibly Push-
down Languages. In L. Caires and V. T. Vasconcelos, editors, CONCUR 2007, volume
4703 of LNCS, pages 476–491. Springer, 2007.

10. Laura Bozzelli and César Sánchez. Visibly linear temporal logic. In Stéphane Demri,
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