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Abstract

Infinite Games are an important tool in the synthesis of finite-state controllers for reactive
systems. The interaction between the environment and the system is modeled by a finite
graph. The specification that has to be satisfied by the controlled system is translated
into a winning condition on the infinite paths of the graph. Then, a winning strategy
is a controller that is correct with respect to the given specification. Winning strategies
are often finitely described by automata with output.

While classical optimization of synthesized controllers focuses on the size of the
automaton we consider a different quality measure. Many winning conditions allow a
natural definition of waiting times that reflect periods of waiting in the original system.
We investigate time-optimal strategies for Request-Response Games, Poset Games - a
novel type of infinite games that extends Request-Response Games - and games with
winning conditions in Parametric Linear Temporal Logic. Here, the temporal operators
of classical Temporal Logics can be subscribed with free variables that represent bounds
on the satisfaction. Then, one is interested in winning strategies with respect to optimal
valuations of the free variables. The optimization objective, maximization respectively
minimization of the variable values, depends on the formula.

For Request-Response Games and Poset Games, we prove the existence of time-
optimal finite-state winning strategies. For games with winning conditions in Parametric
Linear Temporal Logic, we prove that optimal winning strategies are computable for
solitary games.
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Chapter 1

Introduction

Game Theory first came to prominence in 1944 with the seminal book [43] by Morgen-
stern and von Neumann, and was subsequently developed into an interdisciplinary field,
which covers economics, biology, political science, and computer science amongst other
fields. Nowadays, there is an abundance of different games tailored to model certain
aspects of nature, society, or mathematics that can in general be categorized along the
following dimensions.

Players: From single-player games over games with finitely many players to games with
infinitely many players.

Moves: The players choose their actions simultaneously or sequentially.

Duration: From a single action to games of infinite duration.

Payoffs: Are the gains and losses of the players balanced or not.

Cooperation: Do the players aim to maximize their own payoff or the payoff of a coalition
they belong to.

Information: Do the players observe all actions or is there uncertainty about the state
of the game.

Classically, there are two ways to represent games. A game in normal form consists
of a finite set of actions and a payoff function for each player. Every player chooses
an action (without knowledge of the choices of the other players) and the payoff is
determined from the tuple of chosen actions. The hand game Rock Paper Scissors can
be seen as a game in normal form. Two players simultaneously pick one of the following
actions: rock, paper, or scissors. The outcome is determined by the combination of
the choices: rock blunts scissors, paper covers rock, and scissors cut paper. Strategies
can either be pure, i.e., each player picks an action, or mixed, i.e., each player picks a
probability distribution over the set of actions. Combinations of strategies such that it is
disadvantageous for every player to unilaterally change her strategy, so called Equilibria,
are a key concept of game theory. An early milestone of Game Theory is the existence
of equilibria in mixed strategies due to Nash [42].
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A game in extensive form is played on a tree of finite height, where a token is placed
at the root. Each non-terminal node belongs to one of the players who decides to which
successor the token is moved if it reaches that node. The terminal nodes are marked with
a payoff for each player. Tic Tac Toe, for example, can easily be modeled in extensive
form.

Two other flavors of games can be found in logics. Game semantics define satisfaction
of a formula ϕ in a structure A as a game between two players, Verifier, who tries to
prove A |= ϕ, and Falsifier, who tries to prove A �|= ϕ. The positions of the game
are the subformulae of ϕ. For example, a disjunction ϕ1 ∨ ϕ2 is satisfied, if one of the
ϕi is satisfied. Therefore, disjunctions belong to Verifier and she can move to either
one of the disjuncts. A universally quantified formula ∀xϕ is unsatisfiable if there is
an element a of A such that ϕ[x\a] is unsatisfiable. Consequently, the positions ∀xϕ
belong to Falsifier and he can move to ϕ[x\a] for every a. For First-Order logic, these
Model-Checking Games are Reachability Games with finite plays only, while Model-
Checking Games for Fixed-Point logics have infinite plays. Parity Games, for example,
are the Model-Checking Games for the modal µ-Calculus [18, 17]. This explains the
importance of Parity Games for verification and the ongoing efforts in determining the
exact complexity of solving them. We return to this question later on.

Model Comparison Games on the other hand are a tool to prove inexpressibility
results. Such a game is played on two structures A and B. The existence of a winning
strategy for the first player is equivalent to the indistinguishability of A and B for the
logic under consideration. Thus, if one can exhibit a winning strategy for two structures
that differ in some property, then this property cannot be expressed in the corresponding
logic. Ehrenfeucht-Fräissé Games [14, 21] are used to prove that two structures satisfy
exactly the same First-Order formulae, while the modal µ-Calculus (and all the Temporal
Logics it subsumes) is bisimulation invariant, a notion which can be defined by a game
as well.

The type of game we are interested in arose in the 1960s from the theory of automata
on infinite objects. The breakthrough of this theory was Büchi’s proof that the Monadic
Second Order Theory of the natural numbers with the successor relation is decidable [5].
This was the first in a long line of decidability results which culminated in Rabin’s
Tree Theorem [47], which proves the decidability of the Monadic Second Order Logic
of the Binary Tree. All these results rely on the expressive equivalence of a logic and
an appropriate automaton model, for example Büchi Automata on infinite words and
Rabin Tree Automata on infinite trees for the results mentioned above. This equivalence
is also the origin of Model-Checking [10], where a specification is translated into an
automaton. Then, the well-developed techniques of automata theory can be applied to
check whether the system satisfies the specification. This approach is implemented in
numerous verification tools and is well-established in industrial applications.

Seeing automata from a different angle, Church posed in 1957 the following problem
inspired by the synthesis of switching circuits [8]: given a specification on two bitstreams,
an input stream and an output stream, compute a finite automaton with output that
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computes for every input stream an output stream, such that the pair of streams satisfies
the specification. This problem can easily be turned into a game between an environment
and a controller. The players choose bits in alternation, the first player constructs the
input sequence, and the second player constructs the output sequence while trying to
satisfy the specification. The controller’s winning strategy, if it is finitely describable, can
be converted into a circuit that is guaranteed to satisfy the specification on its behavior.
Büchi and Landweber [6] were able to solve the synthesis problem for specifications in
Monadic Second Order Logic. A key element of their proof was the determinization of
automata on infinite words due to McNaughton [39].

Subsequently, the setting was generalized to model systems for program verifica-
tion. The main characteristics of this type of games are reactiveness, the program
competes against an adversarial environment, and infinite duration, which models the
non-terminating nature of controllers, drivers and operating systems. An infinite game
is played on a graph whose set of vertices is partitioned into the positions of Player
0 and 1. The two players construct an infinite path by moving a token through the
graph. After ω moves, the winner is determined. A strategy for Player i is a lookup
table that contains a successor for each finite play ending in a vertex of Player i. In this
setting, Martin was able to prove his far-reaching Borel Determinacy Theorem [37]: in
every game whose set of winning paths for Player 0 is a Borel set, one of the players
has a winning strategy. The Borel sets are induced by a topology on infinite words and
encompass almost all winning conditions discussed in the literature. These conditions
are often acceptance conditions of automata on infinite objects that were transfered to
games, for example the Büchi and Co-Büchi, Muller, Rabin, Streett, and Parity condi-
tions (confer [25] for details). Others, like Reachability, Safety, and Request-Response
conditions [54] are defined for games, but are less compelling as acceptance conditions
for automata.

Arguably, the most important question in the theory of infinite games concerns the
complexity of solving Parity Games. Positional determinacy [17, 41] places the problem
in NP ∩ coNP and Jurdziński [31] improved this to UP ∩ coUP. Several algorithms
have been presented ([32, 4, 48] amongst others) over the course of time, the best with
subexponential running time [33]. Another promising algorithm was presented by Vöge
and Jurdziński [52], whose time complexity is still an open problem. It is unknown
whether there exists a polynomial-time algorithm.

Muller, Rabin, Streett, and Request-Response Games cannot be won with positional
strategies, but with finite-state strategies. The quality of such a strategy is typically
measured in the size of its memory. Matching upper and lower bounds hold for Muller,
Rabin, and Streett Games [13] and for Request-Response Games [54]. Since the lower
bounds are worst case results, one can still try to minimize the size of a given winning
strategy. As finite-state strategies are nothing more than automata with output, or
transducers, one can apply automata minimization techniques to the underlying mem-
ory structure. However, a minimization algorithm only minimizes the size of the mem-
ory structure, but does not change the strategy. While this implies the correctness of
the minimization, it cannot always yield a smallest strategy as it might be necessary
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to change the strategy. Winning strategies for Request-Response Games and Staiger-
Wagner Games (weak Muller Games) can be minimized by altering the strategy the
automaton implements [27].

In this work, we are interested in another kind of quality. Many winning conditions
allow an intuitive definition of waiting times.

Reachability Games: The number of moves before the token reaches one of the designated
vertices.

Büchi Games: The number of moves between the visits of designated vertices.

Co-Büchi Games: The number of moves before the token reaches the designated vertices
for good.

Parity Games: The number of moves between the visits of a vertex of maximal color
that is seen infinitely often.

Request-Response Games: The number of moves between a request and the subsequent
response.

In some games there are infinitely many waiting times that have to be aggregated. It
is natural to ask whether there are optimal strategies that minimize the (aggregated)
waiting times. For Reachability, Büchi, and Co-Büchi Games, the attractor-based al-
gorithms [25] compute optimal winning strategies. For Parity Games, there are two
optimizations goals: firstly to maximize the highest even color that is seen infinitely
often (without visiting a higher odd color infinitely often), and secondly to minimize the
intervals between visits of that color. The strategy improvement algorithm from [52]
computes optimal strategies in the following sense: its first priority is to maximize the
highest even color that is seen infinitely often and its second priority is to minimize the
waiting times between the visits of that color.

With the same goal in mind, finitary Parity and Streett Games are introduced [7]. In
these games, Player 0 wins only if there is a bound on the waiting times. Determinacy
and memory requirements can be proven and algorithms solving finitary games (see
also [28]) exist.

Time-optimal strategies for Request-Response Games were first investigated by Wall-
meier [53] and extended by Horn et. al. [29]. If the waiting times are aggregated by
taking the average mean of the accumulated waiting times, then optimal finite-state
strategies exist and can be computed effectively.

For games with winning conditions in Linear Temporal Logic (LTL), one can intro-
duce bounded operators to obtain a quantitative notion of satisfaction. The bounded
eventuality F≤10ϕ should be read as ”ϕ holds within the next 10 steps”. There is a long
history of extensions of LTL with such constructs. We want to mention two such logics.

Parametric Linear Temporal Logic [1] adds an abundance of additional operators to
LTL, parameterized both by constants and variables. Satisfaction is then defined with
respect to a variable valuation and turns into an optimization problem: find the best
valuation such that ϕ holds with respect to that valuation. The Satisfiability problem
and Model-Checking can be decided as well as several natural optimization problems.
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Prompt-LTL [35] adds the operator prompt-eventually Fp to LTL with the following
semantics. The formula Fpϕ is satisfied if there is some fixed k such that ϕ is satisfied
within k steps. Model-Checking and realizability, a game-theoretic problem in spirit of
Church’s synthesis problem, are decidable for Prompt-LTL.

In another line of research Gimbert and Zielonka [22, 23] determined necessary and
sufficient conditions for games that have optimal positional strategies. This class in-
cludes Parity Games, Mean-Payoff Games [15], and Discounted Payoff Games [55]. Also,
there are tight connections between discounted games and discounted versions of the
µ-Calculus [24, 11, 20].

Outline

Following this introduction, we fix our notation and present the components of infinite
games in Chapter 2. Also, we introduce some useful tools for solving games and state
basic results about infinite games which we will rely on throughout this thesis. The rest
of this work is devoted to the definition and computation of waiting time based quality
measures for strategies in infinite games.

We begin with Request-Response Games, for which a framework for defining time-
optimal strategies was already developed by Wallmeier [53]. Waiting times are defined
in the natural way and the quality of a play is measured in the long term average of the
waiting times. This framework is extended slightly by Horn et. al. [29] and time-optimal
finite-state winning strategies can be computed in both frameworks. We present another
proof in Chapter 3 for two reasons. Firstly, the presentation in [29] is erroneous. We fix
and complement this proof. By doing this, we obtain a flexible proof technique that can
be applied to other winning conditions as well.

We do this for Poset Games in Chapter 4, a novel winning condition extending
the Request-Response winning condition: responses are replaced by a poset of events
and a request is responded by an embedding of these events. This allows to express
more complicated conditions, for example problems from planning and scheduling that
cannot be modeled by a Request-Response winning condition. After covering some basic
notions of Order Theory, Poset Games are defined formally and solved by a reduction to
Büchi Games. To complete this introductory treatment, we prove that this reduction is
asymptotically optimal. Then, we turn our attention to the quality of a strategy. Waiting
times are given by the length of the interval between the request and the completion of
the corresponding embedding. The main theorem of this chapter states the existence
of time-optimal finite-state winning strategies. We close the chapter by discussing the
differences between the frameworks when applied to Request-Response Games.

For Request-Response Games and Poset Games, the existence of time-optimal finite-
state winning strategies is proved in Chapter 3 and Chapter 4, respectively. Both proofs
consist of two steps. The first one is to show that for every strategy of small value there
is another strategy, whose value is equal or smaller that bounds the waiting times. To
this end, a strategy improvement operator is defined that deletes costly loops. This
operator is applied infinitely often and the limit of these strategies bounds all waiting
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times. The value of an optimal strategy can be bounded from above by the value of
the finite-state strategy obtained from the reduction to Büchi Games, which implies
that an optimal strategy bounds the waiting times. In the second step, the game is
reduced to a Mean-Payoff Game, such that the values of the two games coincide. Since
optimal strategies for Mean-Payoff Games can be computed, this suffices to prove that
time-optimal finite-state winning strategies exist and can be computed effectively.

In Chapter 5 winning conditions in Parametric Linear Temporal Logic are analyzed.
Following prior work on satisfiability and Model-Checking of Parametric Linear Tem-
poral logic by Alur et. al. [1], we focus on two fragments, one obtained by adding the
operator F≤x, the other by adding G≤y to LTL, where x and y are free variables. Then,
one can ask whether Player 0 wins a game with respect to some, infinitely many, or
all variable valuations. We adapt the techniques developed for Satisfiability and Model-
Checking to infinite games and are able to prove that these questions and several natural
optimization problems can be solved effectively for solitary games. Some of the decision
problems are also decidable for two-player games, but most decision problems and all
optimization problems remain open for two-player games.

Chapter 6 concludes this work and gives some hints to open problems and future
research. The memory of the optimal strategies computed in Chapter 3 and 4 is very
large, but we give some pointers that should allow a dramatic reduction of the size.
Another interesting aspect is the trade-off between the size of a finite-state winning
strategy and its quality. Concerning games with winning conditions in Parametric Linear
Temporal Logic, the major open question is the analysis of two-player games. We hint
at some problems one encounters when trying to adapt the techniques for solitary games
to two-player games.
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Chapter 2

Preliminaries

In this section, we fix our notation and state some results. After beginning with the most
basic definitions in Section 2.1, we introduce automata on infinite words in Section 2.2
and Linear Temporal Logic in Section 2.3. Afterwards, we focus on games by defining
the different components of a game: arenas and plays in Section 2.4, winning conditions
in Section 2.5, and strategies in Section 2.6. Finite-state strategies and game reductions,
two closely related concepts, are presented in Section 2.7. While game reductions expand
the arena, a strategy restricts the set of possible plays in an arena. The various kinds of
restrictions are introduced in Section 2.8. To conclude the chapter, we state some results
about games in Section 2.9, on which we rely throughout this thesis. This chapter only
covers concepts important to our cause, defining and computing time-optimal winning
strategies for infinite games. Hence, many interesting aspects of infinite games are not
discussed here. For a more thorough introduction to the theory of automata on infinite
words and infinite games, we refer the reader to [25, 51, 50].

2.1 Numbers, Words, and Trees

The set of non-negative integers is denoted by N = {0, 1, 2, . . .}. For a natural number
n let [n] = {1, . . . , n}, especially [0] = ∅. For a set S denote the powerset of S by 2S and
the cardinality of S by |S|. An enumeration of a finite set S is a bijection e : [|S|] → S.

An alphabet Σ is a finite, non-empty set of letters or symbols, Σ∗ is the set of (finite)
words over Σ, ε ∈ Σ∗ denotes the empty word, and Σ+ = Σ∗\{ε} is the set of non-empty
words over Σ. Concatenation of words is denoted by juxtaposition, and the length of
a word w is denoted by |w|. An infinite word α over Σ is denoted by α = α0α1α2 . . .,
where αn ∈ Σ for all n ∈ N. The set of all infinite words over Σ is Σω. A language L is
a set L ⊆ Σ∗ or L ⊆ Σω.

A word x is a prefix of y, written x 	 y, if y = xz for some word z, and x is a proper
prefix of y, written x � y, if x 	 y and x �= y. Similarly, a word x is a prefix of an
ω-word α, written x � α, if α = xβ for some ω-word β. Given L ⊆ Σ∗ or L ⊆ Σω let
Pref(L) be the set of prefixes of the (ω-) words in L. A word x is an infix of a finite
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word y if there exist words y1, y2 such that y = y1xy2, and x is an infix of an infinite
word α, if x is infix of some prefix of α. A word x is a subword of y if x = x1 · · · xn and
there exist words y0, . . . , yn ∈ Σ∗ such that y = y0x1y1 · · · yn−1xnyn. An ω-word α is
ultimately periodic, if α = xyω for some x, y ∈ Σ∗.

For an ω-word α = α0α1α2 . . . ∈ Σω, let

Occ(α) = {a ∈ Σ | ∃n : αn = a}

be the occurrence set of α and

Inf(α) = {a ∈ Σ | ∃ωn : αn = a}

be the infinity set of α. The occurrence set of a finite word w is defined analogously.
Given a word w′ = wx, the left quotient of w from w′ is w−1w′ = x. This operation

can be lifted to languages L ⊆ Σ∗ and w ∈ Σ∗. The left quotient of w from L is
w−1L = {x ∈ Σ∗ |wx ∈ L }.

A prefix-closed set of words L ⊆ Σ∗ induces the tree T(L) = (L,E) where the set of
edges is given by E = {(w,wa) | w,wa ∈ L, a ∈ Σ}. Similarly, K ⊆ Σω induces a tree
with vertex set V = Pref(K). However, there might exist infinite paths of T(Pref(K))
that are not in K. Given a tree T(L) for some L ⊆ Σ∗ and w ∈ L, let T(L)�w = T(w−1L)
be the subtree of T(L) rooted in w.

Given a sequence (wn)n∈N of finite words such that wn � wn+1 for all n, limn→∞wn

denotes the unique ω-word α, such that wn � α for every n.
Let (fn)n∈N be a sequence of functions fn : A → B and f : A → B. We say that

(fn)n∈N converges to the limit f , limn→∞ fn = f , if

∀a ∈ A∃na ∈ N ∀n ≥ na : fn(a) = f(a).

Otherwise, (fn)n∈N diverges. Obviously, if (fn)n∈N converges, then the limit f is uniquely
determined.

2.2 Automata on Infinite Words

A Büchi automaton A = (Q,Σ, q0,∆, F ) consists of a finite set Q of states, a finite
alphabet Σ, an initial state q0 ∈ Q, a transition relation ∆ ⊆ Q × Σ × Q, and a set
F ⊆ Q of final states. A Muller Automaton is a tuple M = (Q,Σ, q0,∆,F) where Q, Σ,
q0, and ∆ are as above and F ⊆ 2Q.

A run of an automaton on an ω-word α = α0α1α2 . . . ∈ Σω is an infinite sequence
ρ = ρ0ρ1ρ2 . . . ∈ Qω such that ρ0 = q0 and (ρn, αn, ρn+1) ∈ ∆ for all n. The automaton
A accepts α, if there exists a run ρ of A on α such that Inf(ρ) ∩ F �= ∅, and M
accepts α, if there exists a run ρ of M on α such that Inf(ρ) ∈ F . The language of
an automaton, L(A) and L(M), respectively, is the set of ω-words accepted by the
corresponding automaton.
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An automaton is deterministic, if for every (s, a) ∈ Q × Σ there is exactly one s′

such that (s, a, s′) ∈ ∆, i.e., ∆ is equivalent to a function δ : Q × Σ → Q. Non-
deterministic Büchi Automata and deterministic Muller Automata (and many other
types of automata) accept the same class of languages, the so-called regular languages.

2.3 Linear Temporal Logic

Let P be a set of atomic propositions. A labeled graph G = (V,E, l) consists of a set V
of vertices, a set E ⊆ V × V of edges, and a labeling function l : V → 2P .

The set LTL of Linear Temporal Logic formulae is defined inductively by

• p ∈ LTL and ¬p ∈ LTL if p ∈ P ,

• ϕ ∧ ψ ∈ LTL and ϕ ∨ ψ ∈ LTL if ϕ,ψ ∈ LTL, and

• Xϕ ∈ LTL, ϕUψ ∈ LTL, and ϕRψ ∈ LTL if ϕ,ψ ∈ LTL.

Additionally, we define tt = p ∨ ¬p and ff = p ∧ ¬p for some p ∈ P , Fϕ = ttUϕ
and Gϕ = ffRϕ. The size of ϕ, denoted by |ϕ|, is defined as the number of distinct
subformulae of ϕ.

Let G = (V,E, l) be a labeled graph and ρ = ρ0ρ1ρ2 . . . ∈ V ω a path in G. The
satisfaction relation |= is defined inductively by

• (ρ, n) |= p iff p ∈ l(ρn),

• (ρ, n) |= ¬p iff p /∈ l(ρn),

• (ρ, n) |= ϕ ∧ ψ iff (ρ, n) |= ϕ and (ρ, n) |= ψ,

• (ρ, n) |= ϕ ∨ ψ iff (ρ, n) |= ϕ or (ρ, n) |= ψ,

• (ρ, n) |= Xϕ iff (ρ, n+ 1) |= ϕ,

• (ρ, n) |= ϕUψ iff ∃k ≥ 0 such that (ρ, n + k) |= ψ and ∀l < k : (ρ, n+ l) |= ϕ, and

• (ρ, n) |= ϕRψ iff ∀k ≥ 0: either (ρ, n+ k) |= ψ or ∃l < k such that (ρ, n + l) |= ϕ.

Finally, define ρ |= ϕ, if (ρ, 0) |= ϕ. In this case, we say ρ is a model of ϕ. Although,
we only allow negation of atomic propositions LTL is closed under negation, due to the
duality of ∧ and ∨, by ¬Xϕ ≡ X¬ϕ, and ¬(ϕUψ) ≡ (¬ϕ)R(¬ψ). A formula ϕ ∈ LTL
defines the (regular [5]) language L(ϕ) of ω-words over the alphabet 2P , consisting of
the ω-words that are a model of ϕ.

2.4 Arenas, Plays, and Games

The games we consider in this thesis are turn-based two-player games of perfect informa-
tion and infinite duration. They are played on a directed graph equipped with a partition
of the vertices that determines the positions of Player 0 and Player 1. The positions of
Player 0 are drawn as circles whereas Player 1’s positions are drawn as rectangles. For
pronominal convenience, we assume that Player 0 is female while Player 1 is male.



10 2 Preliminaries

To begin a play a token is placed at an initial vertex. Then, at every step the player,
at whose position the token sits, moves the token along an edge to another vertex. This
way, the players build up a play, an infinite sequence of vertices. After ω steps the
outcome of the play is determined. Most of the games we consider are zero-sum games,
i.e., one of the players wins a play while the other one loses it. In the following, we
introduce the basic ingredients of infinite games.

An arena G = (V, V0, V1, E) consists of a finite, directed graph (V,E) where the
vertex set V is the disjoint union of the positions of Player 0, V0, and the positions of
Player 1, V1. The moves are given by the edge relation E ⊆ V × V , which we require
to contain at least one outgoing edge for every vertex. A solitary arena for Player i is
an arena (V, V0, V1, E) such that V1−i = ∅. Equivalently, one could allow every vertex in
V1−i to have exactly one successor. Then, Player 1 − i has only one legal move at every
position, which could also be made by Player i.

We disallow dead ends in order to avoid the nuisance of defining the winner of finite
plays. This does not impose a restriction since every arena with dead ends can be
equipped with a sink. However, the modification has to respect the intended winning
condition. This depends on the actual winning condition and the way finite plays ending
in dead ends are scored. Finally, we consider only finite arenas. Some results we present
do only hold for these, because they rely on counting arguments. However, all definitions
are applicable to infinite arenas without modifications.

A play ρ = ρ0ρ1ρ2 . . . is an infinite sequence of vertices such that (ρn, ρn+1) ∈ E for
all n. In proofs, we have to deal with finite prefixes of plays. All suitable definitions for
infinite plays are defined for finite prefixes accordingly, but are not explicitly stated.

Example 2.1. To illustrate the definitions above, consider the arena G = (V, V0, V1, E)
depicted in Figure 2.1, which is our running example throughout this chapter. The
positions of Player 0 are V0 = {s2, s4}, Player 1’s positions are V1 = {s0, s1, s3, s5}. The
arcs denote the possible moves. A possible play in G is ρ = s0s2s4s5s3s

ω
1 .

s0

s1

s2

s3

s4

s5

Figure 2.1: The arena G
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A game G = (G,ϕ) consists of an arena G = (V, V0, V1, E) and a winning condition
ϕ specifying the set of winning plays Win ⊆ V ω. A play ρ is won by Player 0, if
ρ ∈ Win. Otherwise, it is won by Player 1. In the following, we often consider games
with designated initial vertex: an initialized game (G, s, ϕ) consists of a game (G,ϕ) and
a vertex s of G. In such a game, all plays start in s. Finally, a solitary game for Player i
is a game played in a solitary arena for Player i.

2.5 Winning Conditions

The most general outcome of a play is a payoff for each player. This is modeled by payoff
functions pi for Player i specifying the payoff pi(ρ) for every play ρ. Yet, most games,
both in real life and in mathematics, are antagonistic: the gain of a player is the loss of
the other player. Mathematically speaking, the payoffs for every play sum up to zero.
Accordingly, such games are called zero-sum games. For most of our purposes we can
even abstract from an actual payoff and just declare a winner for each play. Then, the
other player loses the play. This corresponds to the general definition of a game from
above employing a set of winning plays for Player 0. We stick to this with the exception
of one type of games that is introduced at the end of this section.

While it would suffice to specify the set Win of winning plays for Player 0 directly,
games typically employ a winning condition ϕ that defines Win indirectly. The advantage
lies in the intuitive nature of these winning conditions, which simplifies reasoning about
those games considerably.

Nevertheless, we begin in an abstract setting: the Borel Hierarchy consists of ω-lan-
guages and is build up from a class of basic languages, comprised of the open sets Z ·Σω

for Z ⊆ Σ∗, by applying complementation and countable union. To avoid delving into
topology, we refer the curious reader to [34]. We just observe that every regular language
is a Borel set , a set contained in the Borel Hierarchy.

G is a Borel Game [37], if the set of winning plays is a Borel set. This broad class,
which encompasses most of the zero-sum games that can be found in literature, is of
interest, since it enjoys useful properties. As it is often easy to show that a set of winning
plays, defined by a winning condition ϕ, is Borel, this is often the first step in the analysis
of a new type of game.

As hinted at above, the set of winning plays is typically given implicitly by a winning
condition ϕ, oftentimes as requirements on Occ(ρ) or Inf(ρ). Several conditions have
been investigated in the literature. We introduce here only those that are of interest to
our work.

Büchi Games: ϕ = F ⊆ V and ρ ∈ Win iff Inf(ρ) ∩ F �= ∅.

Generalized Büchi Games: ϕ = (Fj)j=1,...,k where Fj ⊆ V and ρ ∈ Win iff Inf(ρ)∩Fj �= ∅
for all j ∈ [k].

Request-Response Games: ϕ = (Qj , Pj)j=1,...,k, where Qj, Pj ⊆ V , and ρ ∈ Win iff
∀j ∀n(ρn ∈ Qj → ∃n′ ≥ n : ρn′ ∈ Pj).
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Muller Games: ϕ = F ⊆ 2V and ρ ∈ Win iff Inf(ρ) ∈ F .

Parity Games: ϕ = c : V → [k], for some k, and ρ ∈ Win iff max(Inf(c(ρ))) is even.
Here, c is a coloring of the arena’s vertices. For a play ρ = ρ0ρ1ρ2 . . . ∈ V ω let
c(ρ) = c(ρ0)c(ρ1)c(ρ2) . . ..

LTL Games: ϕ ∈ LTL and ρ ∈ Win iff ρ |= ϕ. Here, the graph underlying the arena is
assumed to be labeled.

It is easy to show that all conditions introduced above define a Borel set of winning
plays. An important subclass of Borel Games are regular games, games whose winning
plays for Player 0 form a regular language.

Example 2.2. We continue Example 2.1 by specifying two games with arena G.

(i) The initialized Borel Game G1 = (G, s0,Win) with Win = {ρ | {s1, s3} ⊆ Occ(ρ)}.
The play s0s2s4s5s3s

ω
1 is won by Player 0 whereas the play (s0s2s1)ω is won by

Player 1.

(ii) The Büchi Game G2 = (G,F ) with F = {s1}. The play s3(s2s4)ω is won by
Player 1; however, Player 0 can do better with s3(s2s1s0)ω, for example, a play
that she wins.

A class of games that does not fit into the framework outlined above are Mean-
Payoff Games [15]. They are not zero-sum and the payoffs are defined by an integer-
labeling of the edges. The players try to maximize respectively minimize certain means
of the sum of labels seen on a play. A (initialized) Mean-Payoff Game G = (G, s, d, l)
consists of an arena G = (V, V0, V1, E), an initial vertex s ∈ V , d ∈ N, and a function
l : E → {−d, . . . , d} assigning integer labels to the edges. For a play ρ = ρ0ρ1ρ2 . . .
define the gain v0(ρ) for Player 0,

v0(ρ) = lim inf
n→∞

1
n

n−1∑
i=0

l(ρi, ρi+1),

and the loss v1(ρ) for Player 1,

v1(ρ) = lim sup
n→∞

1
n

n−1∑
i=0

l(ρi, ρi+1).

Player 0 tries to maximize v0(ρ) whereas Player 1 tries to minimize v1(ρ). Obviously,
the gain for Player 0 is never higher than the loss for Player 1.

2.6 Strategies and Positional Strategies

After introducing the way infinite games are played, we now consider the most important
and interesting aspect of games: how to choose the next move? In general, this decision
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may depend on the history of the play, the sequence of moves made by the players
so far. Strategies are introduced in this general sense, but typically a more restrictive
notion suffices, which limits the amount of information about the history that is used to
determine the next move. The most extreme choice is to use no information at all, i.e.,
the choice of the next move depends only on the current position of the token. It turns
out that several games can be won with those simple strategies.

Let G = (V, V0, V1, E) be an arena. A strategy for Player i is a (partial) mapping
σ : V ∗Vi → V such that (s, σ(ws)) ∈ E for all w ∈ V ∗ and all s ∈ Vi. The set of
all strategies for Player i (in a fixed arena) is denoted by Γi. We denote strategies for
Player 0 (and the indefinite Player i) by σ and strategies for Player 1 by τ .

A play ρ0ρ1ρ2 . . . is played according to σ or is consistent with σ, if ρn+1 = σ(ρ0 . . . ρn)
for every ρn ∈ Vi. The strategy σ is a winning strategy for Player i from s ∈ V , if every
play starting in s that is played according to σ is won by Player i.

The winning region Wi of Player i is

Wi = {s ∈ V | Player i has a winning strategy from s}.

Obviously, we have W0 ∩W1 for every game. A game is determined , if W0 ∪W1 = V ,
i.e., from every vertex, one of the players has a winning strategy. An initialized game
(G, s, ϕ) is won by Player i, if she has a winning strategy from s. Otherwise she loses the
game. Determinacy means that exactly one of the players wins (G, s, ϕ) while the other
one loses the game. This is trivially true for a single play, but not for a game in general.
Nevertheless, all zero-sum games we consider in this thesis are determined. Note that
our definition of determinacy is not applicable to games that are not zero-sum; however,
the definition can be extended accordingly. Solving a game G amounts to determining
W0 and W1 and corresponding winning strategies.

A rather restrictive notion of strategies is obtained by prohibiting the use of any
information about the history of the play. The choice of the next move only depends
on the vertex the token is at. Nevertheless, these strategies suffice to win many kinds
of games. Formally, we say a strategy σ for Player i is positional , if σ(ws) = σ(w′s)
for all w,w′ ∈ V ∗ and all s ∈ Vi. Hence, a positional strategy is fully specified by a
mapping that assigns a successor to every vertex in Vi. We use both representations
interchangeably.

Example 2.3. Again, we continue Example 2.1 by defining winning strategies for the
two games defined in Example 2.2.

(i) For G1, with initial vertex s0, the winning condition for Player 0 requires the token
to visit both s1 and s3. Therefore, Player 0 cannot move the token to s1 as soon as
it reaches s2 after the first move of Player 1. Rather, she has to move it via s4 to
s5 first, from which Player 1 has only one choice, namely, to move the token to s3.
From there, he can either move the token to s1 directly, and lose thereby, or move
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it to s2, from where Player 0 can move it to s1, and again win the play in doing
so. The remainder of the play is irrelevant, then. Thus, we define the strategy σ1

for Player 0 for a finite play w and s ∈ V0 as follows

σ1(ws) =

⎧⎪⎪⎨
⎪⎪⎩
s4 if s = s2 and s3 /∈ Occ(w)

s1 if s = s2 and s3 ∈ Occ(w)

s5 if s = s4

As reasoned above, σ1 is a winning strategy for Player 0 in G1. Note however, that
σ1 is not positional.

(ii) For the Büchi Game G2, the winning condition requires the token to visit s1 infi-
nitely often. We define a positional strategy σ2 by σ2(s2) = s1 and σ2(s4) = s5. It
is easy to verify that every play consistent with σ2 visits s1 infinitely often. Thus,
σ2 is a winning strategy from every vertex for Player 0 in G2.

2.7 Finite-State Strategies and Game Reductions

A compromise between a positional strategy and a strategy with infinite domain is a
strategy with memory. Here, the decision about the next move does not take into account
the complete history, but some abstraction of it. Thus, two different histories can have
the same abstraction and therefore share the same next move. Oftentimes, there are
only finitely many abstractions; hence, the strategy is realizable with finite memory.
Nevertheless, we give all definitions as general as possible.

Let G = (V, V0, V1, E) be an arena. A memory structure M = (M, init,update) for G
consists of a non-empty set M of memory states, an initialization function init : V →M ,
and an update function update : M × V →M .

The memory content reached after w = w0 . . . wn ∈ V +, update∗(w), is defined in-
ductively by update∗(w0) = init(w0) and

update∗(w0 . . . wn) = update(update∗(w0 . . . wn−1), wn).

A function next : Vi×M → V is a next-move function for Player i, if (s,next(s,m)) ∈ E
for all m ∈M and s ∈ Vi. A next-move function induces a strategy with memory M for
Player i via σ(w0 . . . wn) = next(wn,update∗(w0 . . . wn)).

We call the strategy σ finite-state, if M is finite. We call |M | the size of M and
(slightly abusive) the size of an induced (finite-state) strategy.

Remark 2.4. If |M | = 1, then is σ positional.

Example 2.5. The winning strategy σ1 from Example 2.3 for G1 from Example 2.2 can
be implemented as finite-state strategy. The memory is used to remember whether s3
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has been visited on the play so far, and the choice of the next move at s2 depends on
that. Formally, we define M = (M, init,update) as follows.

• M = {0, 1},

• init(s0) = 0 (init can be defined arbitrarily for all other states, since all plays start
at the initial vertex s0), and

• update(b, s) =

{
1 if b = 0 and s = s3

0 otherwise
.

The next-move function is given by

next(s, b) =

⎧⎪⎪⎨
⎪⎪⎩
s5 if s = s4

s4 if s = s2 and b = 0

s1 if s = s2 and b = 1

.

The strategy σ implemented by M and the function next is the winning strategy σ1 from
Example 2.3.

An arena G = (V, V0, V1, E) and a memory structure M for G induce the arena

G× M = (V ×M,V0 ×M,V1 ×M,Eupdate)

where Eupdate = {((s,m), (s′,m′)) | (s, s′) ∈ E and m′ = update(m, s′)}. Every play
ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in the expanded arena G × M has a unique projected
play ρ = ρ0ρ1ρ2 . . . in G. Conversely, every play ρ = ρ0ρ1ρ2 . . . in G has a unique
expanded play ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in G×M induced by M via m0 = init(ρ0)
and mn+1 = update(mn, ρn+1).

Often, a game (G,ϕ) can be reduced to a game with expanded arena G × M with
winning condition ϕ′ for a suitable memory structure M. A reduction allows to modify
strategies for the expanded arena to strategies for the original arena. If games with
winning condition ϕ′ are easier to solve than games with ϕ, then a reduction is oftentimes
the natural way to solve games with winning condition ϕ.

Let G = (G,ϕ) and G′ = (G′, ϕ′) be games, and M a memory structure for G. We
say G is reducible to G′ via M, written G ≤M G′, if G′ = G× M and every play in G′ is
won by the same player that wins the projected play of G.

If |M| = 1, then G is isomorphic to G × M. We say that G is equivalent to G′, if
G ≤M G′ for some memory structure M with |M| = 1. Informally speaking, if G and G′

are equivalent, then ϕ′ is at least as expressive as ϕ.

Example 2.6. Let G be an arena.

(i) Let (G,F ) be a Büchi Game. The Parity Game (G, c) with c(s) = 1, if s /∈ F , and
c(s) = 2, if s ∈ F , is equivalent to (G,F ).
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(ii) Let (G, c) be a Parity Game. The Muller Game (G,F) is equivalent to (G, c), if
F ∈ F iff max{c(s) | s ∈ F} is even.

Our main interest in game reductions is their usage in solving games. But before
we state the reduction theorem, we define the composition of memory structures. This
allows us to give a more general statement than the one that is used in most reductions,
which is an easy corollary. Let M = (M, init,update) be a memory structure for an
arena G and let M′ = (M ′, init′,update′) be a memory structure for G×M. We obtain
a memory structure M′′ = M × M′ = (M ′′, init′′,update′′) for G where M ′′ = M ×M ′,
init′′(s) = (init(s), init′(s, init(s))), and

update′′((m,m′), s) = (update(m, s),update′(m′, (s,update(m, s)))).

Theorem 2.7 (Reduction Theorem). Let M = (M, init,update) be a memory struc-
ture for an arena G and M′ = (M ′, init′,update′) be a memory structure for G × M.
Furthermore, let G and G′ be games with arena G respectively G × M. If G ≤M G′ and
Player i has a winning strategy σ′ with memory M′ for G′ from position (s0, init(s0)),
then she also has a winning strategy σ with memory M × M′ for G from s0.

Proof. Let σ′ be induced by next′ : (Vi ×M) ×M ′ → V ×M . We need to define a
next-move function next : Vi × (M ×M ′) → V such that it induces a winning strategy
σ for G. For (s,m) ∈ Vi ×M and m′ ∈ M ′ such that next′((s,m),m′) = (s′,m′′), let
next(s, (m,m′)) = s′.

Let ρ = ρ0ρ1ρ2 . . . be a play according to σ in G such that ρ0 = s0. Furthermore, let
ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . . and ρ′′ = (ρ0, (m0,m

′
0))(ρ1, (m1,m

′
1))(ρ2, (m2,m

′
2)) . . .

be the unique expanded plays in G′ = G×M respectively in G×(M×M′). By definition,
we have (ρ0,m0) = (s0, init(s0)). Thus, if ρ′ is played according to σ′, then it is won
by Player i. Since G ≤M G′, ρ is then won by Player i as well. Hence, σ is a winning
strategy for Player i from s for G.

So, it remains to show that ρ′ is consistent with σ′: let (ρn,mn) ∈ Vi ×M . We have
ρn+1 = σ(ρ0 . . . ρn) = next(ρn, (mn,m

′
n)). Since next(ρn, (mn,m

′
n)) is the first compo-

nent of next′((ρn,mn),m′
n), we have next′((ρn,mn),m′

n) = (ρn+1,m) for some m ∈ M .
Since ((ρn,mn), (ρn+1,m)) is an edge of G×M, we have m = update(mn, ρn+1) = mn+1.
Hence, we have σ′((ρ0,m0) . . . (ρn,mn)) = next′((ρn,mn),m′

n) = (ρn+1,mn+1) for all
(ρn,mn) ∈ Vi ×M . Therefore, ρ′ is played according to σ′.

Corollary 2.8. Let G′ = G×M, σ′ be a strategy in G and σ be the induced strategy in
G as above. Furthermore, let ρ and ρ′ be plays in G consistent with σ respectively in G′

consistent with σ′.

(i) The expanded play of ρ is consistent with σ′.

(ii) The projected play of ρ′ is consistent with σ.
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Another important consequence of the theorem is concerned with the case of posi-
tional winning strategies for G′.

Corollary 2.9. If G ≤M G′ and Player i has a positional winning strategy for G′ from
position (s, init(s)), then she has a winning strategy with memory M for G from s.

The last corollary relates the winning regions of the two games.

Corollary 2.10. If G ≤M G′ and W ′
i is the winning region of Player i in G′, then

Wi = {s ∈ V | (s, init(s)) ∈W ′
i} is the winning region of Player i in G.

Example 2.11. Let G = (G,ϕ) be a regular game, i.e., the set of winning plays for
Player 0, Win ⊆ V ω, is a regular language. Then, Win is the language accepted by some
deterministic Muller Automaton M = (Q,V, q0, δ,F) [25]. Define M = (Q, init,update)
where init(s) = q0 for all s ∈ V and update = δ. Finally, define the Muller Game
G′ = (G× M,F ′) where

{(v1, q1), . . . , (vn, qn)} ∈ F ′ ⇔ {q1, . . . , qn} ∈ F .

Then, we have G ≤M G′, i.e., every regular ame can be reduced to a Muller Game.

2.8 Unravelings and Restricted Arenas

Given an arena G = (V, V0, V1, E) and an initial vertex s ∈ V let, TG,s = (V ∗, V ∗
0 , V

∗
1 , E

∗)
be the unraveling of G from s where V ∗ is the set of finite plays of G starting in s, V ∗

i

contains exactly those plays in V ∗ that end in a vertex of Vi, and (ws′, ws′s′′) ∈ E∗ iff
ws′s′′ ∈ V ∗ and (s′, s′′) ∈ E. A play ρ∗ = (ρ0)(ρ0ρ1)(ρ0ρ1ρ2) . . . in TG,s starting in s is
uniquely determined by the sequence ρ = ρ0ρ1ρ2 . . ., which is a play in G starting in s.
Conversely, every play in G determines a unique play in TG,s. Thus, we denote plays in
TG,s by the respective play in G.

Also, every winning condition for G can be translated into a winning condition for
the unraveled arena such that the winner of a play ρ in G and its counterpart ρ∗ in TG,s

are the same. Finally, a strategy σ∗ for TG,s can be transformed into a strategy σ in G
by σ(ρ0 . . . ρn) = σ∗((ρ0) . . . (ρ0 . . . ρn)). The reverse transformation, from a strategy σ
in G into a strategy σ∗ for TG,s, is given by σ∗((ρ0) . . . (ρ0 . . . ρn)) = σ(ρ0 . . . ρn).

Thus, we can reason about an arena G or its unraveling TG,s and translate the
results back and forth. The main benefit of reasoning about the unraveling instead
of the original arena is that TG,s is a tree, thus every strategy σ∗ is positional. This
considerably simplifies the discussion about arbitrary strategies for an arena.

For a strategy σ for Player i in G let Tσ
G,s be the restriction of TG,s to those plays

that are consistent with σ. Every vertex in V ∗
i has exactly one child in the restricted

unraveling. Conversely, every subtree obtained from TG,s by deleting all but one child
(and the subtrees rooted in these vertices) of every vertex in V ∗

i induces a strategy for
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Player i. For strategies σ and τ for Player 0 respectively 1 let T
σ,τ
G,s be the restriction to

the unique play that is consistent with σ and τ .
For a finite play w denote the subtree of TG,s rooted in w by TG,s�w. The definitions

for Tσ
G,s�w and T

σ,τ
G,s�w are analogous.

For positional strategies in G, we do not need to take the detour via the unraveling to
define restricted arenas: let G = (V, V0, V1, E) be an arena and σ : Vi → V a positional
strategy for Player i. The restriction of G to σ is G�σ = (V, V0, V1, E

′) where

E′ = {(s, σ(s)) | s ∈ Vi} ∪ {(s, s′) ∈ E | s ∈ V1−i}.

Note that the unraveling ofG�σ from s is Tσ
G,s. Also, G�σ is a solitary game for Player 1−i

(in the wider sense discussed above).
For s ∈ V , and strategies σ and τ for Player 0 respectively Player 1, we define the

play ρ(s, σ, τ) = ρ0ρ1ρ2 . . . where ρ0 = s and

ρn+1 =

{
σ(ρ0 . . . ρn) if ρn ∈ V0

τ(ρ0 . . . ρn) if ρn ∈ V1

.

Again, ρ(s, σ, τ) is equal to the only play in T
σ,τ
G,s. If both strategies are positional, then

ρ(s, σ, τ) is the only play in (G�σ)�τ starting in s. If G is a solitary arena for Player 0,
then we have ρ(s, σ, τ) = ρ(s, σ, τ ′) for all strategies τ and τ ′ for Player 1, i.e., the
strategy of Player 1 is irrelevant. Therefore, we can write ρ(s, σ) for short. We use the
same notation for Player 1, if there is no ambiguity.

Remark 2.12. Let σ and τ be finite-state strategies for Player 0 respectively Player 1.
Then, ρ(s, σ, τ) is ultimately periodic.

2.9 Basic Results

To conclude this chapter, we state some results about the various games introduced so
far, which are used in the later chapters. The most general one concerns Borel Games.

Theorem 2.13 ([37]). Borel Games are determined.

This result immediately implies the determinacy of all games introduced above (save
Mean-Payoff Games, for which our notion of determinacy does not apply). However,
pure determinacy is generally not enough. Positional or finite-state strategies suffice to
win the games introduced above. A game is positionally determined if from every vertex
one of the players has a positional winning strategy. Analogously, a game is determined
with finite-state strategies, if from every vertex one of the players has a finite-state
winning strategy. The existence of finite-state winning strategies is typically proven by
a reduction to a simpler game. The following result is a cornerstone of the theory of
infinite games.
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Theorem 2.14 ([17]). Parity Games are positionally determined.

As Büchi Games are a special case of Parity Games, we obtain a similar result.

Corollary 2.15. Büchi Games are positionally determined.

Proof. The Büchi Game (G,F ) is equivalent to the Parity Game over G with coloring
c, where c(s) = 2 for s ∈ F and c(s) = 1 for s /∈ F

Determinacy of Muller Games can be derived most easily from the positional de-
terminacy of Parity Games by a reduction, although it was first proven directly in [6].
The memory structure used in the reduction keeps record of the vertices, ordered by
their latest visit in the play up to that position, equipped with a marker that signals
the infinity set of a play. This structure, called latest appearance record (LAR), is an
improvement of the order vector, introduced by McNaughton [38]. A formal exposition
can be found in [25]. We just note that the size of the memory is bounded by (|G|+ 1)! .

Theorem 2.16 ([26]). Muller Games are reducible to Parity Games with finite memory.
Thus, they are determined with finite-state strategies.

Another corollary completes the discussion about regular games started in Exam-
ple 2.11.

Corollary 2.17. Every regular game is determined and both players have finite-state
winning strategies.

Proof. Combine the construction from Example 2.11 and Theorem 2.16.

The last type of zero-sum game we deal with here are LTL Games. They are a special
case of the regular games discussed in Corollary 2.17, which is the key to the proof of
the following theorem.

Theorem 2.18. LTL Games are finite-state determined.

We also note the complexity of solving LTL Games, as we use them as target for
reductions.

Theorem 2.19 ([49, 45]). Solving LTL Games is 2EXPTIME-complete. Solving soli-
tary LTL Games is PSPACE-complete.

The complexity of solving games for several syntactic fragments of LTL is discussed
in great detail by Alur and La Torre [3]. They show that the restriction to a subset of
the operators can lower the complexity drastically.

Lastly, we consider Mean-Payoff Games. Since they are not zero-sum games, our
notion of determinacy does not apply here. Instead, we say that a strategy σ for Player 0
guarantees v ∈ R for her if v0(ρ) ≥ v for all ρ consistent with σ. Similarly, τ for Player 1
guarantees v ∈ R for him if v1(ρ) ≤ v for all ρ consistent with τ .
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Theorem 2.20 ([15, 55]). Let (G, s, d, l) be an initialized Mean-Payoff Game. There
exists a value vM (G) and positional strategies σ and τ such that σ and τ guarantee
vM (G) for Player 0 respectively Player 1. Furthermore, the value and the strategies are
effectively computable.

Notice that the strategies σ and τ are optimal in the sense that there are no strategies
that guarantee a better value for one of the players. Assume there is a strategy σ′ for
Player 0 that guarantees v0 > vM (G). Then

vM (G) < v0 = v0(ρ(v, σ′, τ)) ≤ v1(ρ(s, σ′, τ)) ≤ vM (G),

which is a contradiction. Analogously, there is no strategy τ ′ for Player 1 that guarantees
v1 < vM (G). Also, we have v0(ρ(s, σ, τ)) = v1(ρ(s, σ, τ)) = vM (G).



Chapter 3

Request-Response Games

Request-Response Games, first introduced by Wallmeier et. al. [54], are characterized by
a very intuitive winning condition: some vertices of the arena are designated as requests
while others are responses. Player 0’s goal is to respond to every request. Formally,
the winning condition of G = (G, (Qj , Pj)j=1,...,k) consists of a finite collection of pairs
(Qj , Pj), where Qj and Pj are subsets of the arena’s vertices. We call the pair (Qj , Pj)
the j-th (Request-Response) condition. A request (of condition j) is a visit of a vertex
in Qj and a response (of condition j) is a visit of a vertex in Pj. Furthermore, a request
of condition j is open after a finite play if there was a request of condition j that has
not yet been responded. It is Player 0’s goal to answer every request of condition j by a
subsequent response, where a single response answers all open requests accepted so far.
Formally, Player 0 wins a play ρ, iff

∀j ∀n(ρn ∈ Qj → ∃n′ ≥ n : ρn′ ∈ Pj).

If we label the arena such that l(s) = {qj | s ∈ Qj} ∪ {pj | s ∈ Pj}, then the set of
winning plays is also specified by the LTL formula

ϕ :=
k∧

j=1

G (qj → Fpj) .

Thus, G is equivalent to the LTL Game (G,ϕ). Conversely, every (generalized) Büchi-
Game can easily be reduced to an equivalent Request-Response Game.

A classical example for controller synthesis is a busy intersection with traffic lights,
equipped with sensors in the streets that detect cars waiting at a red light, and pedestrian
lights with buttons for waiting pedestrians. The arena consists of vertices encoding the
state of the system: the colors of the lights and flags for the requests. All undesirable
(read: unsafe, i.e., too many green lights) states are ignored. The transitions model
the changes of the color, sensor readings, and pushed buttons. If a light changes to
green, its flag is set to false. The desired behavior, every request by a waiting car
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or pedestrian is granted, can be modeled by a Request-Response pair for every light.
This example illustrates the need for time-optimal winning strategies. A traffic light
that is green every other day satisfies the specification, but is not useful at all. Every
request should be served as soon as possible. Nevertheless, it might be advantageous
to prioritize some Request-Response conditions over others, for example if one of the
streets is a major thoroughfare and the other is a small side street. All this can be
implemented in the framework we introduce in this Chapter. However, the framework
ignores multiple requests, thus the light with the most cars waiting is not served first.
In Chapter 4 we discuss how to factor this in as well.

The intuitive notion of open requests naturally leads the way to the definition of
waiting times: every time a condition is requested that is not open at the moment, a
clock is started. This clock is stopped as soon as the request is responded. All requests
of a condition that is already open at that moment are ignored. Thus, instead of just
determining winning strategies, we are now interested in time-optimal strategies, i.e.,
strategies that minimize the waiting times. This changes the strategy problem from
a decision problem to an optimization problem. Since a play is infinite, we need to
aggregate the periods of waiting for a response to define the measure of a strategy.
Then, the value of a strategy is the worst value of the plays consistent with the strategy.

A rather simple choice for aggregation is to uniformly bound the waiting times.
Such a bound can be found by showing the existence of finite-state winning strategies:
Request-Response Games are easily reducible to Büchi Games by keeping track of the
open requests in an extra component of the expanded arena. The set F is chosen such
that F is visited infinitely often iff no request is open indefinitely. This reduction does
not only prove determinacy of Request-Response Games but also gives an upper bound
on the waiting times: by playing according to the finite-state strategy derived from the
reduction, Player 0 ensures that every request is open for at most |G| ·k moves, provided
that she has a winning strategy at all. However, this bound needs not to be optimal.

It might be desirable for Player 0 to keep one request open for more steps than
she has to in order to satisfy other requests more quickly. This is especially true in
cases where the conditions have different priorities, which can be modeled by penalty
functions that aggravate the waiting times. Thus, the global bound on the waiting time
might be very high, but the average waiting time decreases. This shows the need for an
approach that aggregates the waiting times over the infinite duration of the play, thereby
permitting a trade-off between the conditions. The average number of open request, the
average waiting time, and the average accumulated waiting time are three types of
aggregations discussed by Wallmeier [53]. He argues that only the latter one meets all
desired properties of such a measurement: the winner of a game can be determined
from its value and longer waiting times are increasingly penalized. Horn et. al. [29]
showed that, with respect to the average accumulated waiting time, optimal finite-state
strategies exist and can be computed. We will repeat this proof here, since it contains an
error (in the proof of Proposition 9) which requires a modification of the proof technique.
This is done in this chapter, in order to adapt the corrected technique to a novel winning
condition presented in Chapter 4.



3.1 Solving Request-Response Games 23

The proof consists of two steps. First, we show that it is not optimal to keep a
request open arbitrarily long, but that there exists a bound such that waiting times
above that bound are not worthwhile. The following observation is key: if a condition is
open long enough, then the play visits a vertex twice such that the waiting times for all
other conditions are higher at the second visit than they were at the first visit. Hence,
Player 0 can play after the first visit as if it was the second visit. Thus, she skips a
portion of the play without neglecting the other conditions. By skipping only costly
loops, Player 0 can ensure that the value of the play decreases. Applying this infinitely
often shows that an optimal strategy uniformly bounds the waiting times.

Thus, we can restrict our search for an optimal winning strategy to a finite domain.
The second step of the proof consists of a straight-forward reduction from the problem
of finding an optimal strategy for Request-Response Games to the same problem for
Mean-Payoff Games. The memory of the expanded arena is used to keep track of the
waiting times. The first step guarantees that this arena is still finite.

This chapter is structured as follows: we begin by reducing Request-Response Games
to Büchi Games in Section 3.1, a result which has a corollary that turns out to be useful
to us. In Section 3.2, we define waiting times and the value of a play and discuss some
properties. Then, we are able to state the main theorem of this chapter and spend
the rest of it to prove the theorem: in Subsection 3.2.1 we carry out the first step,
showing that for every strategy of small value, there is another strategy of even smaller
value that additionally bounds the waiting times of all conditions. The second step, the
reduction to Mean-Payoff Games, is presented in Subsection 3.2.2. For the remainder
of this chapter, let G = (V, V0, V1, E) be an arena and let G = (G, s0, (Qj , Pj)j=1,...,k) be
an initialized Request-Response Game.

3.1 Solving Request-Response Games

Request-Response Games are reducible to Büchi Games. This implies determinacy of G
and the existence of finite-state winning strategies. We present the proof here, since it
gives a bound on the value of an optimal strategy, which we present in Section 3.2, after
we have given all necessary definitions.

Theorem 3.1 ([54]). Request-Response Games are reducible to Büchi Games.

Proof. The memory is used to keep track of the open requests. Furthermore, a counter
is used to check that no condition is open indefinitely. Every time the counter changes
its value a final state is visited. Therefore, we have to take precautions if there is only
one condition: if k = 1, then we add another condition (Q2, P2) with Q2 = P2 = ∅. Let
M = (M, init,update) where

• M = 2[k] × [k] × {0, 1},

• init(s) = ({j ∈ [k] | s ∈ Qj\Pj}, 1, 0), and
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• update((M,m, f), s) = (M ′,m′, f ′) where

◦ M ′ = (M ∪ {j ∈ [k] | s ∈ Qj})\{j ∈ [k] | s ∈ Pj},

◦ m′ =

{
m if m ∈M ′

(m mod k) + 1 otherwise
, and

◦ f ′ =

{
0 if m = m′

1 otherwise
.

To complete the definition of the Büchi Game, we specify the set F = V ×2[k]× [k]×{1}
of recurring states. So, we define G′ = (G×M, F ) and have to show G ≤M G′. Therefore,
let ρ = ρ0ρ1ρ2 . . . be a play in G and

ρ′ = (ρ0, (M0,m0, f0))(ρ1, (M1,m1, f1))(ρ2, (M2,m2, f2)) . . .

be the unique expanded play in G× M.

Player 1 wins ρ

⇔ ∃j ∃n′ : (ρn ∈ Qj ∧ ∀n ≥ n′ : ρn /∈ Pj)

⇔ ∃j ∀ωn : j ∈Mn

⇔ ∃j ∀ωn : mn = j

⇔ ∀ωn : f ′n = 0

⇔ ∀ωn : ρ′n �∈ F

⇔ Player 1 wins ρ′

This reduction is asymptotically optimal.

Lemma 3.2 ([54]). There is a family of initialized Request-Response Games (Gn)n∈N

such that

(i) the size of the arena of Gn is linear in n,

(ii) the number of Request-Response conditions of Gn is linear in n,

(iii) Player 0 wins Gn, but

(iv) she has no finite-state winning strategy of size less than n · 2n.

3.2 Time-optimal Strategies for Request-Response Games

In this section, we begin the treatment of time-optimal strategies for Request-Response
Games by formalizing the intuitive notion of waiting times and by defining the value
of a strategy, following [29]. The waiting time for condition j, tj : V ∗ → N, is defined
inductively by tj(ε) = 0 and
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• If tj(w) = 0, then tj(ws) =

{
1 if s ∈ Qj\Pj

0 otherwise

• If tj(w) > 0, then tj(ws) =

{
0 if s ∈ Pj

tj(w) + 1 otherwise
.

Let t(w) = (t1(w), . . . , tk(w)) be the waiting time vector . We compare vectors compo-
nentwise, i.e., t(x) ≤ t(y) iff tj(x) ≤ tj(y) for all j. A strategy σ for Player 0 uniformly
bounds the waiting time for condition j to B, if tj(w) ≤ B for all finite plays w consistent
with σ. From the definition of tj we can directly derive the following remark about the
evolution of the waiting time.

Remark 3.3. tj(x) ≤ tj(y) implies tj(xs) ≤ tj(ys) for all x, y ∈ V ∗ and all s ∈ V .

The value of a play is determined by the average accumulated waiting time. However,
we want to be able to prioritize some conditions. Thus, we use a penalty function fj for
every condition j to define the value of a play. We require fj to be strictly increasing,
since otherwise longer stretches of open requests could be desirable. Even worse, if we
choose fj to be a constant function, i.e., the penalty for an open request is the same,
no matter how long the request is open already, then there are no optimal finite-state
strategies as we show in Example 3.4.

So, given a family (fj : N → N)j=1,...,k of strictly increasing penalty functions, define

• the penalty for condition j after w: pj(w) = fj(tj(w)),

• the penalty after w: p(w) =
∑k

j=1 pj(w),

• the value of a play vR(ρ) = lim supn→∞ 1
n

∑n−1
i=0 p(ρ0 . . . ρi), and

• the value of a strategy vR(σ) = supτ∈Γ1
vR(ρ(s0, σ, τ)).

A strategy σ for Player 0 is optimal , if vR(σ) ≤ vR(σ′) for all σ′ ∈ Γ0.

Example 3.4. Consider the arena G with initial vertex s0 given in Figure 3.1 with the
winning condition comprised of the two conditions ({s0}, {s1}) and ({s0}, {s4}) and let
the value of a play be defined with respect to the constant penalty functions f1, f2 with
f1(t) = f2(t) = 1 for all t > 0 and f1(0) = f2(0) = 0.

s0s1 s3

s2

s4

r1, r2
p1

p2

Figure 3.1: The arena G for a game that has no optimal winning strategies for constant
penalty functions
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Note that every winning strategy has to use both loops infinitely often. However,
using the left loop twice instead of the right loop once in a play ρ0 . . . ρn−1 decreases∑n−1

i=0

∑2
j=1 fj(tj(ρ0 . . . ρi)) by one. Thus, for a given finite-state strategy σ, the unique

resulting play ρ(s, σ) = xyω is ultimately periodic, by Remark 2.12. The period y visits
the right loop at least once. Also, since G is a solitary arena, we have vR(ρ) = vR(σ).

Let y′ result from y by replacing every visit of the right loop by two visits of the
left loop and let ρ′ = x(yy′)ω. This play is realized by a finite-state strategy σ′. Then,
vR(ρ′) < vR(ρ) and therefore vR(σ′) = vR(ρ′) < vR(ρ) = vR(σ). Thus, Player 0 has no
optimal finite-state strategy.

We continue by some simple, but useful, observations about the value of a play
respectively a strategy.

Lemma 3.5. Let ρ be a play and σ a strategy for Player 0.

(i) If vR(ρ) <∞, then Player 0 wins ρ.

(ii) If vR(σ) <∞, then σ is a winning strategy for Player 0.

Proof. (i) Consider the contraposition: let ρ = ρ0ρ1ρ2 . . . be winning for Player 1. Then,
there exists a condition j that is requested at some ρn, but never responded at any ρn+n′ .
Then

tj(ρ0 . . . ρn+n′) = n′ ≤ fj(tj(ρ0 . . . ρn+n′)) ≤ p(ρ0 . . . ρn+n′),

since fj is strictly increasing. Thus,

1
n+ n′

n+n′−1∑
i=0

p(ρ0 . . . ρi) ≥ 1
n+ n′

· n
′ · (n′ − 1)

2
=

n′ − 1
2 · ( n

n′ + 1
)

for all n′ ∈ N, which diverges to infinity. Therefore, vR(ρ) = ∞.
(ii) Towards a contradiction assume σ is not a winning strategy. Then, there ex-

ists a strategy τ for Player 1 such that the play ρ(s0, σ, τ) is won by Player 1. Then,
vR(ρ(s0, σ, τ)) = ∞ by (i) and therefore vR(σ) = ∞, which yields the desired contradic-
tion.

The other implication of the statements does not hold: Player 0 can win a play, even
if its value diverges. An example is a play such that the waiting time for a condition is
not uniformly bounded, but every request is responded eventually. However, we show
that this is not necessary. If Player 0 wins a game, then she can also win and uniformly
bound the waiting times.

Now, we return to the reduction of Request-Response Games to Büchi Games. The
strategy induced by the reduction uniformly bounds the waiting time in terms of the



3.2 Time-optimal Strategies for Request-Response Games 27

size of the arena and the number of Request-Response conditions. This also bounds the
value of an optimal strategy. Our interest in the proof of Theorem 3.1 stems from the
following corollary.

Corollary 3.6. If Player 0 wins G, then she also has a winning strategy σ such that
vR(σ) ≤ ∑k

j=1 fj(|G| · k) = : bR(G).

Proof. Let Player 0 win G. Then, she also has a positional winning strategy σ′ from
(s0, init(s0)) in G′ from Theorem 3.1. Consider a play ρ′ in G× M�σ′ and assume that
there is an infix w of ρ′ of length greater than |G| such that w does not contain a vertex
from F . This implies the existence of a play, played according to σ′ that visits F only
finitely often, which contradicts the fact that σ′ is a winning strategy. Hence, every
infix of length greater than |G| of a play ρ that is consistent with σ′ visits F at least
once. This means that the m-component of the memory state of ρ′ changes after at
most |G| moves. This component ranges over [k]; hence, after at most |G| · k moves,
the m-component has cycled through all possible values. Thus, every j cannot be in the
M -component of more than |G| · k consecutive memory states. The index j leaves the
M -component at a vertex (s′,m′) of ρ′ if s′ ∈ Pj .

Now, consider a play ρ = ρ0ρ0ρ2 . . . of G according to the winning strategy σ obtained
by the reduction. It is a projection of a play according to σ′, which directly implies
tj(ρ0 . . . ρn) ≤ |G| · k for all n and all j ∈ [k]. Thus,

1
n

n−1∑
i=0

p(ρ0 . . . ρi) =
1
n

n−1∑
i=0

k∑
j=1

fj(tj(ρ0 . . . ρi))

≤ 1
n

n−1∑
i=0

k∑
j=1

fj(|G| · k)

=
k∑

j=1

fj(|G| · k) = bR(G).

This implies vR(ρ) ≤ bR(G) for every play ρ consistent with σ. Therefore, we obtain
vR(σ) ≤ bR(G).

This completes our preparation and we are now able to state the main theorem of
this chapter; The rest of this chapter is devoted to prove it. This result was already
claimed in [29]. We present a new proof here, which can be adapted to other winning
conditions. Nevertheless, the definition of the strategy improvement operator and the
results about it are from [29]. Then, we deviate and define an improvement scheme
transforming a winning strategy into a winning strategy that additionally bounds all
waiting times, without increasing the value of the strategy.
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Theorem 3.7. If Player 0 wins G, then she also has an optimal winning strategy.
Furthermore, this strategy is finite-state and effectively computable.

The proof consists of two major steps. The first one, presented in Subsection 3.2.1,
is to prove that from every winning strategy of value less than bR(G), we can construct
another winning strategy with smaller value that uniformly bounds the waiting times
for all conditions. This is achieved by improving the strategy repeatedly with a strategy
improvement operator that deletes costly loops of the plays consistent with the strategy
under consideration. Hence, if Player 0 wins G, then vR(σ) ≤ bR(G) for the optimal
winning strategy σ by Theorem 3.1 and Corollary 3.6. Thus, an optimal strategy also
bounds the waiting times for all conditions. These bounds allow us to find an optimal
strategy in the second step by reducing the Request-Response Game to a Mean-Payoff
Game, presented in Subsection 3.2.2. The expanded game is constructed such that the
plays of both games have the same value. Thus, an optimal positional strategy for the
Mean-Payoff Game, which exists by Theorem 2.20, induces an optimal strategy for the
Request-Response Game.

3.2.1 Strategy Improvement for Request-Response Games

In this subsection, we prove the following statement: if Player 0 has a winning strategy
of value less than bR(G), then she also has a strategy of smaller or equal value, which
uniformly bounds the waiting times of all conditions. Let σ0 be a winning strategy for
Player 0 with value vR(σ0) ≤ bR(G). Inductively, we define strategies σ1, . . . , σk with
the following properties.

• All strategies are winning strategies for Player 0,

• bR(G) ≥ vR(σ0) ≥ vR(σ1) ≥ · · · ≥ vR(σk), and

• σj uniformly bounds the waiting times for all conditions j′ ≤ j to some bound
that only depends on the size of the arena and the number of Request-Response
conditions.

The first part of this subsection repeats work of Horn et. al. [29]. A strategy improvement
operator is defined for every condition and we show that the value does not increase,
if the strategy is improved. In the second part of this subsection, which contains novel
material, we define an improvement scheme which applies each strategy improvement
operator infinitely often to a given winning strategy σj−1, obtaining the limit strategy
σj. Here, our proof differs from the work in [29], which applies the strategy improvement
operator for condition only once. Afterwards, we have to lift the properties of a single
improvement step to the limit of the improved strategies. Then, we are able to prove
that the limit strategies do bound the waiting times.

Intuitively, the strategy σj from above is defined as σj−1 unless the waiting time for
condition j exceeds some bound. In this case, Player 0 skips loops in which the request is
not responded. However, she also has to make sure that she does not miss a response of
some other condition that might be open from that point onwards. Therefore, she only
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skips loops in which the waiting time of all conditions at the end of the loop is greater
than the waiting time at the beginning. By deleting loops, she might form new loops that
could be deleted, also. Therefore, the strategy improvement operator has to be applied
infinitely often. If there are no more loops to skip, then the length of an infix, in which
a request is open continuously, can be bounded. Mathematically speaking, we apply
the strategy improvement operator infinitely often and define σj to be the limit of the
improved strategies. In the following, we introduce the strategy improvement operator
Ij for the j-th condition and discuss some useful properties as presented in [29]. These
properties are then lifted to the limit of the improved strategies.

Given a winning strategy σ such that vR(σ) ≤ bR(G), we define the improved strategy
Ij(σ) as a strategy with memory M = (M, init,update) and next-move function next as
follows: The set of memory states M consists of finite plays played according to σ and
is defined implicitly. The initialization function is given by init(s0) = s0. The update
function is going to be defined such that the last vertex of w and update∗(w) are equal.
So, when defining update(w, s) for w ∈M and s ∈ V , we can assume that the last vertex
of w and s are connected by an edge in G. We consider two cases.

If condition j is not even open or Player 0 has not waited too long, she continues
to play according to σ. Therefore, we define update(w, s) = ws if tj(ws) ≤ f−1

j (bR(G)).
If she has waited too long, she looks ahead to skip a loop that she would have played
according to σ, but which does not contain a response of condition j. However, she
has to make sure that she does not carelessly skip responses of the other conditions if
they are open. Thus, if tj(ws) > f−1

j (bR(G)), consider the tree obtained from Tσ
G,s0

�ws

by deleting on every path the subtrees attached to the first vertex belonging to Pj.
This tree is finite, since every infinite path corresponds to a losing play for Player 0
played according to σ. This cannot happen, since σ is a winning strategy. Now consider
the set of vertices z of the tree, such that z ends in s and t(ws) ≤ t(z). This set is
non-empty as it contains ws. Let z′s be a vertex of maximal depth in this set. Then,
update(w, s) = z′s.

To finish the definition of the strategy, we define next(s,w) = σ(w). It is clear that
the last vertices of w and update∗(w) are equal for every prefix w consistent with Ij(σ),
and that Ij behaves as intended, i.e., w is a subword of update∗(w) for every w consistent
with Ij(σ). Also, update∗ is monotonous with respect to the prefix relation, i.e., if x 	 y,
then also update∗(x) 	 update∗(y). Furthermore, in both cases of the definition, the
updated memory is a prefix of a play according to σ.

Lemma 3.8 ([29]). update∗(w) is consistent with σ for all w consistent with Ij(σ).

Proof. By induction over w: every play starts in s0, so the induction base is trivial,
as update∗(s0) = init(s0) = s0 holds. For the induction step, let w = ρ0 . . . ρn be
played according to Ij(σ). Applying the induction hypothesis, we can assume that
update∗(ρ0 . . . ρn−1) is consistent with σ. By definition of update we have

update∗(ρ0 . . . ρn) = update(update∗(ρ0 . . . ρn−1), ρn).
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Furthermore, as noted above, the last vertex of update∗(ρ0 . . . ρn−1) is ρn−1. Finally, if
ρn−1 ∈ V0, then

ρn = Ij(σ)(ρ0 . . . ρn−1) (3.1)

= next(ρn−1,update∗(ρ0 . . . ρn−1))

= σ(update∗(ρ0 . . . ρn−1)).

Analogously to the definition, we consider two cases: either, we have

update(update∗(ρ0 . . . ρn−1), ρn) = update∗(ρ0 . . . ρn−1)ρn.

Then, by induction hypothesis and (3.1), update∗(ρ0 . . . ρn) is consistent with σj−1.
Otherwise, in the second case of the definition, we have

update(update∗(ρ0 . . . ρn−1), ρn) = update∗(ρ0 . . . ρn−1)ρnz
′,

where z′ is a path in Tσ
G,s0

�update∗(ρ0...ρn−1)ρn
. Together with the induction hypothesis

and (3.1), this shows that update∗(ρ0 . . . ρn) is consistent with σ.

This allows us to bound the waiting time of a finite play by the waiting time of its
memory content.

Lemma 3.9 ([29]). t(w) ≤ t(update∗(w)) for all w consistent with Ij(σ).

Proof. By induction over w. The base case is t(s0) = t(init(s0)) = t(update∗(s0)).
For the induction step we can assume t(w) ≤ t(update∗(w)). By Remark 3.3, we get
t(ws) ≤ t(update∗(w)s). Now consider two cases: if tj(update∗(w)s) ≤ f−1

j (bR(G)), we
have

update∗(ws) = update(update∗(w), s) = update∗(w)s

and thus

t(ws) ≤ t(update∗(w)s) = t(update∗(ws)).

On the other hand, if tj(update∗(w)s) > f−1
j (bR(G)), we have

update∗(ws) = update(update∗(w), s) = zs

where t(zs) ≥ t(update∗(w)s) and thus

t(ws) ≤ t(update∗(w)s) ≤ t(zs) = t(update∗(ws)).

This result implies that the uniform bounds of σ are also realized by Ij(σ).
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Lemma 3.10 ([29]). If σ uniformly bounds the waiting time for some condition j′ to
B, so does Ij(σ).

Proof. We have tj′(w) ≤ B for all finite plays w consistent with σ. Now, let w be
a play consistent with Ij(σ). Since update∗(w) is played according to σ we conclude
tj′(update∗(w)) ≤ B and tj′(w) ≤ tj′(update∗(w)) by Lemma 3.9. Thus, Ij(σ) uniformly
bounds the waiting time for condition j′ to B.

Now, we show that the value of the improved strategy does not increase, applying
Lemma 3.9.

Lemma 3.11 ([29]). vR(Ij(σ)) ≤ vR(σ).

Proof. For ρ = ρ0ρ1ρ2 . . . let

update∗(ρ) = lim
n→∞update∗(ρ0 . . . ρn),

which is consistent with σ for every play ρ consistent with Ij(σ) by Lemma 3.8. We
show vR(ρ) ≤ vR(update∗(ρ)) for all ρ consistent with Ij(σ), which implies the claim.
To this end, we define

S = {w′ � update∗(ρ) | ¬∃w � ρ : update∗(w) = w′}.

S contains exactly the vertices of the loops skipped by Player 0. Let w′ ∈ S: by definition
of update, we know tj(w′) > f−1

j (bR(G)) and thus p(w′) > bR(G) ≥ vR(σ). Hence,

lim sup
n→∞

1
n

n−1∑
i=0

p(update∗(ρ0 . . . ρi)) ≤ vR(update∗(ρ)) (3.2)

since the average decreases, if the summation omits the summands for the prefixes
in S. Now, let w � ρ: we have t(w) ≤ t(update∗(w)) by Lemma 3.9 and therefore
p(w) ≤ p(update∗(w)). Thus,

1
n

n−1∑
i=0

p(ρ0 . . . ρi) ≤ 1
n

n−1∑
i=0

p(update∗(ρ0 . . . ρi)).

The latter term converges to a value less than or equal to vR(update∗(ρ)) by (3.2). Thus,
we conclude vR(ρ) ≤ vR(update∗(ρ)).

We can immediately conclude that σj is a winning strategy for Player 0.

Corollary 3.12 ([29]). Ij(σ) is a winning strategy for Player 0, if σ is a winning
strategy.
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Proof. We have bR(G) ≥ vR(σ) ≥ vR(Ij(σ)) by Lemma 3.11. Applying Lemma 3.5
proves the statement.

This concludes our discussion of the strategy improvement operator Ij. Proposition 9
of [29] claims that the waiting times for all conditions are already bounded, if each Ij
is applied only once. However, the proof is erroneous. To overcome this, the remainder
of this subsection is used to present a modified proof, which applies every Ij infinitely
often. We prove that the limit of these strategies exists and bounds the waiting time for
condition j. Additionally, we have to lift the lemmata stated above for Ij to the limit
of the improved strategies. Let σ0 be a winning strategy such that vR(σ0) ≤ bR(G). We
define

• σj,0 = σj−1 for j ∈ [k],

• σj,n+1 = Ij(σj,n) for j ∈ [k] and n ≥ 0, and

• σj = limn→∞ σj,n for j ∈ [k].

The improvement scheme is visualized in Figure 3.2. Before we begin to discuss the
scheme, we have to show that it is well-defined, i.e., (σj,n)n∈N converges. To this end, let
(Mj,n, initj,n,updatej,n) be the memory structure and nextj,n be the next-move function
used to define σj,n.

σ0 σ1,0

σ1,1

σ1,2

σ1

σ2,0

σ2,1

σ2,2

σ2

σk,0

σk,1

σk,2

σk

=

I1

I1

I1

I2

I2

I2

Ik

Ik

Ik

lim lim lim

=

...
...

...

. . .

Figure 3.2: The improvement scheme for a Request-Response Game
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Lemma 3.13. Let j ∈ [k]. Then, limn→∞ σj,n exists.

Proof. First, we show by induction that (update∗j,n)n∈N converges to the identity func-
tion: for the induction base, we have update∗j,n(s0) = s0 for all n. Now assume that
update∗j,n(w) = w for all n ≥ nw. If tj(ws) ≤ f−1

j (bR(G)), then updatej,n(w, s) = ws.
Hence, update∗j,n(ws) = ws for all n ≥ nw = nws. Thus, let tj(ws) > f−1

j (bR(G)) and let
Tn be T

σj,n−1

G,s0
�ws limited to the first visit of Pj . By definition, update∗j,n(ws) is a vertex

of Tn. Since every path in Tn is a path in Tn−1 from which some loops might be deleted,
the size of the Tn is decreasing. Finally, if Tn = Tn+1, then we have Tn′ = Tn for all
n′ ≥ n. Thus, there is an index nws ≥ nw such that the Tn are equal for all n ≥ nws.
From that index on, we have updatej,n(w, s) = ws and thus update∗j,n(ws) = ws. Thus,
the sequence of the update functions converges to the identity function.

Now, we have

σj,n(ρ0 . . . ρi)

=nextj,n(ρi,update∗j,n(ρ0 . . . ρi))

=nextj,n(ρi, ρ0 . . . ρi)

=σj,n−1(ρ0 . . . ρi)

for all plays ρ0 . . . ρi and all sufficiently large n. Thus, (σj,n)n∈N converges.

Remark 3.14. x 	 y implies nx ≤ ny for all x and y.

To complete the discussion we lift the results stated in the Lemmata 3.10 and 3.11
for a single improvement step to the limit of the infinitely many improvement steps.
Therefore, we need to compose the functions update∗j,n in a backwards manner in order
to determine for every play ρ′ consistent with σj the play ρ consistent with σj−1 such
that ρ′ is obtained from ρ by skipping some loops. This can be done, since (σj,n)n∈N

converges. So, every finite play w that is consistent with σj, is consistent with almost
all σj,n. To this end, we define update∗j,[m,n] for 1 ≤ m ≤ n by

update∗j,[m,m](w) = update∗j,m(w)

and

update∗j,[m,n+1](w) = update∗j,[m,n](update∗j,n+1(w)).

Example 3.15. This construction is illustrated in Figure 3.3, where a request of j
is open in the dashed intervals. Assume x is consistent with σ3,n. Then, we have
x2 = update∗j,3(x) = update∗j,[3,3](x), which is consistent with σj,2. Applying update∗j,2,
we obtain x1 = update∗j,2(x2) = update∗j,[2,3](x), which is consistent with σj,1. Finally,
we apply update∗j,1, and obtain x0 = update∗j,1(x1) = update∗j,[1,3](x), which is consistent
with σj,0 = σj−1.
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x

x2 = updatej,3(x)

x1 = updatej,2(x2)

x0 = updatej,1(x1)
� �� �

skipped

� �� �

skipped

� �� �

skipped

Figure 3.3: Reconstruction of a play with update∗j,[m,n]

This reconstruction can be generalized. Applying Lemma 3.8 inductively, we can
show that update∗j,[m,n](w) is a finite play consistent with σj,m−1 for every play w consis-
tent with σj,n. Especially update∗j,[1,nw](w) is consistent with σj,0 = σj−1. Analogously,
applying Lemma 3.9 inductively, we get t(w) ≤ t(update∗j,[m,n](w)) for all w consistent
with σn.

As (σj,n)n∈N converges, we are able to reconstruct the original play for every play
that is consistent with σj, i.e., with the limit of the σj,n. For every finite play x according
to σj, there is an nx such that update∗j,n(x) = x for all n ≥ nx. We define update∗j,ω by

updatej,ω(x) = update∗j,[1,nx](x).

Example 3.16. Going back to Figure 3.3, assume nx ≤ 3, i.e., x is consistent with
σj,n for all n ≥ 3 and especially σj. Then, we have update∗j,ω(x) = x0, which is a play
consistent with σj−1.

Again, by the remarks from above, we know that update∗j,ω(x) is consistent with σj−1

and t(x) ≤ t(update∗j,ω(x)) for every play x consistent with σj. Now we are able to lift
the results to the limit of the improvement steps.

Lemma 3.17. Let j ∈ [k].

(i) If σj−1 uniformly bounds the waiting time for condition j′ to B, then so does σj .

(ii) vR(σj) ≤ vR(σj−1).

Proof. Both proofs are analogous to the proofs of Lemma 3.10 and Lemma 3.11 with
update∗j,ω instead of update∗.
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(i) We have tj′(x) ≤ B for all finite plays x consistent with σj−1. Now, let x be a
play consistent with σj. Since update∗j,ω(x) is a prefix of a play according to σj−1 we
conclude tj′(x) ≤ tj′(update∗j,ω(x)) ≤ B. Thus, σj uniformly bounds the waiting time
for condition j′.

(ii) For ρ = ρ0ρ1ρ2 . . . let

update∗j,ω(ρ) = lim
n→∞update∗j,ω(ρ0 . . . ρn),

which is consistent with σj−1 for every play ρ consistent with σj. Again, we show
vR(ρ) ≤ vR(update∗j,ω(ρ)) for all ρ consistent with σj , which implies the claim. To this
end, we define

S = {x′ � update∗j,ω(ρ) | ¬∃x � ρ : update∗j,ω(x) = x′}.

Here, S contains exactly the vertices of the loops skipped by Player 0 throughout all im-
provement steps. Let x′ ∈ S, then tj(x′) > f−1

j (bR(G)) still holds, as every improvement
step only deletes loops of update∗j,ω(ρ) after a waiting time of at least f−1

j (bR(G)) steps.
Thus, p(x′) > bR(G) ≥ vR(σ) and

lim sup
n→∞

1
n

n−1∑
i=0

p(update∗(ρ0 . . . ρi)) ≤ vR(update∗(ρ)) (3.3)

since the average decreases, if the summation omits the summands for the prefixes in S.
Lastly, let x � ρ. We have t(x) ≤ t(update∗j,ω(x)) by the above remarks and therefore

p(x) ≤ p(update∗j,ω(x)). Thus,

1
n

n−1∑
i=0

p(ρ0 . . . ρi) ≤ 1
n

n−1∑
i=0

p(update∗(ρ0 . . . ρi)).

The latter term converges to a value less than or equal to vR(update∗(ρ)) by (3.3). Thus,
we conclude vR(ρ) ≤ vR(update∗(ρ)).

Again, we obtain the following corollary.

Corollary 3.18. σj is a winning strategy for Player 0 for all j ∈ [k].

Proof. We have bR(G) ≥ vR(σ0) ≥ vR(σ1) . . . ≥ vR(σj) by Lemma 3.17. Applying
Lemma 3.5 yields the result.

It remains to show that σj uniformly bounds the waiting time for condition j. A
sequence t1, . . . , tn ∈ N

k of vectors is called non-dickson, if there is no pair of indices
1 ≤ i < j ≤ n such that ti ≤ tj . If the vectors are waiting time vectors of a play such
that condition j is open continuously, then the strategy improvement operator Ij does
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not skip a loop in that period. Dickson’s Lemma [12] guarantees that such a sequence
cannot be infinite, but this does not suffice for our purpose. Since the entries in our
vectors can only increase by one, be reset to zero or stay zero, we are able to obtain a
finite bound that only depends on the number of conditions and the size of the arena.

Let w1 and w2 be finite plays such that w1 � w2. We say that the prefixes w1

and w2 are dickson save condition j if the last vertices of w1 and w2 are equal and
tj′(w1) ≤ tj′(w2) for all j′ �= j. Now, let xy be a play. We say that y is non-dickson save
condition j if xy does not have a pair of dickson prefixes that both contain a non-empty
part of y. If y is non-dickson save condition j, then there is no loop in y that is deleted by
the strategy improvement operator Ij . We bound the length of such a sequence in terms
of the size of the arena and the number of conditions by a function b, following [53].

If there is only one condition, namely j, there must not be a state repetition in y.
Thus, the length of a non-dickson sequence can be bounded by the number of vertices
in |G|; hence, we define b(m, 1) := m. Now assume that there are k + 1 conditions.
Every condition j′ �= j has to be requested and responded at least once in every infix of
length b(|G|, k): assume condition j′ does not. Then its waiting time is non-decreasing
throughout the infix and two dickson prefixes for the other k conditions that exist by
assumption, are also dickson for k + 1 conditions, which is what we try to avoid. Thus,
the waiting times are bounded by b(|G|, k) after an initial prefix of length b(|G|, k). Thus,
there cannot be more than

b(|G|, k) + |G| · b(|G|, k)k

steps without two dickson prefixes. Thus,

b(m,k + 1) := b(m,k) +m · b(m,k)k.

Lemma 3.19. σj uniformly bounds the waiting time for condition j to
f−1

j (bR(G)) + b(|G|, k).

Proof. Towards a contradiction, assume that there is a play w consistent with σj such
that tj(w) > f−1

j (bR(G)) + b(|G|, k) and let w = xy such that |y| = b(|G|, k) + 1. Then,
tj(xy′) > f−1

j (bR(G)) for all y′ 	 y, y′ �= ε. Furthermore, there exists an N such that
update∗j,N(xy′) = xy′ for all y′ 	 y. Thus, y is a non-dickson sequence since there cannot
be two dickson prefixes in y, as they would be skipped by Ij at some stage n. But this
yields the desired contradiction as |y| = b(|G|, k) + 1 contradicts the definition of b.

The preceding results are now combined to prove the existence of a winning strategy
with value less than or equal to the original strategy’s value that additionally uniformly
bounds all waiting times.

Lemma 3.20. For every winning strategy σ0 for G for Player 0 of value vR(σ0) ≤ bR(G),
there is a winning strategy σk that uniformly bounds the waiting time for all conditions
j ∈ [k] to f−1

j (bR(G)) + b(|G|, k). Furthermore, vR(σk) ≤ vR(σ0).
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Proof. By induction over j. The strategy σj is a winning strategy by Corollary 3.12
and by induction hypothesis. It uniformly bounds the waiting time for condition j to
f−1

j (bR(G)) + b(|G|, k) by Lemma 3.19 and the waiting time for the conditions j′ < j

to f−1
j′ (bR(G)) + b(|G|, k) by induction hypothesis and by Lemma 3.17. Furthermore,

vR(σj) ≤ vR(σj−1) ≤ σ0 by Lemma 3.17 and by induction hypothesis.

This concludes the first step: we have proved that the search for an optimal strategy
can be restricted to a finite domain.

3.2.2 Reducing Request-Response Games to Mean-Payoff Games

This subsection concludes the proof of Theorem 3.7 by constructing a Mean-Payoff Game
whose plays are the plays of G annotated with their (bounded) waiting times. This
construction is from [29], while the correctness proof is our own work. Lemma 3.20
guarantees that the waiting times can be bounded by

bj := f−1
j (bR(G)) + b(|G|, k).

So, Player 0 can play optimally without ever keeping a request open for more than bj
steps. If a waiting time grows too big, then the play in the expanded arena ends up in
a sink component. Thus, the expanded arena is finite. To construct it, we define the
memory structure M = (M, init,update) where

• M =
(∏k

j=1{0, . . . , bj}
)
∪ {m↑},

• init(s) = (t1, . . . , tk) where tj = 1 if s ∈ Qj\Pj and tj = 0 otherwise, and

• update is given by

◦ update(m↑, s) = m↑ for all vertices s,
◦ if (t1, . . . , tk) such that tj = bj and s /∈ Pj for some j, then

update((t1, . . . , tk), s) = m↑, and
◦ otherwise update((t1, . . . , tk), s) = (t′1, . . . , t′k) where

t′j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if tj = 0 and s /∈ Qj\Pj

1 if tj = 0 and s ∈ Qj\Pj

0 if tj > 0 and s ∈ Pj

tj + 1 if tj > 0 and s /∈ Pj

.

Since in a Mean-Payoff Game it is Player 1’s goal to minimize the limit superior of the
average edge weights, we have to switch the Player’s positions. We define V ′

0 = V1 ×M ,
V ′

1 = V0 ×M and G′ = (V ×M,V ′
0 , V

′
1 , Eupdate). To complete the definition of the game,

we need to give the weight function l: Let

d =
k∑

j=1

fj(bj + 1).
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Then, l((s,m), (s′,m↑)) = d for all (s,m) ∈ V ×M and

l((s, (t1, . . . , tk)), (s′, (t′1, . . . , t
′
k))) =

k∑
j=1

fj(tj).

Now, we define the Mean-Payoff Game G′ = (G′, (s0, init(s0)), d, l).
The following remark lists some simple observations about the connections between

the plays of G and G′.

Remark 3.21. (i) Let update(w) �= m↑. Then, t(w) = update∗(w). Furthermore,
update∗(w) = m↑ iff there exists a prefix w′ 	 w such that tj(w′) > bj for some j.

(ii) Let ρ be a play in G such that the waiting time for every condition j is uniformly
bounded by bj and let ρ′ be the expanded play in G′. Then, vR(ρ) = v1(ρ′).

(iii) Let ρ′ be a play in G′ that does not visit a vertex with memory state m↑ and ρ the
projected play in G. Then, v1(ρ′) = vR(ρ).

Now, we are able to prove Theorem 3.7, which stated that Player 0 has an optimal
winning strategy if she wins G.

Proof. We begin by relating strategies and values for Player 0 for G and Player 1 in G′.
Let σ be a strategy for Player 0 for G that uniformly bounds the waiting times for all j

to bj. We define τ ′ for Player 1 in G′ by τ ′((ρ0,m0) . . . (ρn,mn)) = σ(ρ0 . . . ρn). We claim
τ ′ guarantees vR(σ) for Player 1 in G′. Assume it does not. Then, Player 0 has a strategy
σ′ for G′ such that v1(ρ(s0, σ′, τ ′)) > vR(σ). The projected play ρ of ρ(s0, σ′, τ ′) is
consistent with σ by construction of τ ′. Thus, vR(σ) ≥ vR(ρ) = v1(ρ(s0, σ′, τ ′)) > vR(σ)
by Remark 3.21 (ii), which amounts to a contradiction.

Conversely, let τ ′ be a strategy for Player 1 in G′ that guarantees a loss d′ < d.
Thus, no play consistent with τ ′ visits a vertex with memory state m↑. Let σ be the
strategy for Player 0 for G induced by τ ′ via G ≤M G′. We claim vR(σ) ≤ d′. Assume
Player 1 has a strategy τ for G such that vR(ρ(s0, σ, τ)) > d′. The expanded play ρ′ of
ρ(s0, σ′, τ ′) is consistent with τ ′ by Lemma 2.8. Thus, d′ ≥ v1(ρ′) = vR(ρ(s0, σ, τ)) > d′

by Remark 3.21 (iii), which again amounts to a contradiction.
Now, we can begin with the actual proof: since Player 0 wins G, Corollary 3.6 and

Lemma 3.20 guarantee that she also has a winning strategy σ that uniformly bounds the
waiting times for all conditions j to bj . Let τ ′ be the induced strategy for Player 1 in
G′. Every play consistent with τ ′ does not reach a vertex with memory state m↑. Thus,
this strategy guarantees a loss less than d. Hence, also vM (G′) < d.

Let τopt be a positional strategy guaranteeing vM (G′) for Player 1 in G′. We show
that the strategy σopt induced by G ≤M G′ and τopt is an optimal winning strategy for
Player 0 for G. This suffices, since σopt is finite-state with memory M and effectively
computable by Theorem 2.20.
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By the remarks above, we have vR(σopt) = vM (G′). To conclude the proof, we assume
towards a contradiction that σopt is not optimal, i.e., there is a strategy σ for Player 0 for
G such that vR(σ) < vR(σopt). By Lemma 3.20, we can assume without loss of generality
that σ uniformly bounds the waiting time for condition j to bj. Then, the strategy τ ′

for Player 1 in G′ induced by σ guarantees vR(σ) < vR(σopt) = vM (G′), which is the
contradiction we were looking for, since τopt is optimal for G′.

Corollary 3.22. The value vR(σ) of an optimal strategy for Player 0 is effectively
computable.

Proof. Construct G′ and compute vM (G′). If vM (G′) = d, then Player 0 loses G and
vR(σ) = ∞ for every strategy σ for Player 0. Otherwise, let σ be the optimal strategy
for G from Theorem 3.7. The values vM (G′) and vR(σ) coincide.





Chapter 4

Poset Games

Request-Response Games offer many desirable properties like an intuitive winning con-
dition suitable for real-life applications, finite-state determinacy, and the existence of
finite-state time-optimal winning strategies. However, their winning condition is not
flexible enough to model many interesting synthesis problems, since it can only specify a
single event that answers a response. Consider the intersection example from Chapter 3
and assume there is also a level crossing at that intersection. Then, if a train arrives, all
lights have to be changed to red (independently of each other), then the boom barrier
has to be lowered, and then the train may cross the street. The barrier can be raised,
after the train has left the crossing. This sequence of events cannot be modeled by a
Request-Response winning condition.

To obtain a new class of games with a more flexible winning condition while retaining
the good characteristics of Request-Response Games, we replace the responses by a finite
set of events. Additionally, we allow a partial ordering of the events, as it is often given
in planning problems. Then, Player 0 has to satisfy the events in an order that is
compatible with the required ordering. Mathematically speaking, the responses form a
finite poset and Player 0’s goal is to visit vertices of the arena that allow an embedding
of the requested poset. The events triggered by an approaching train can be modeled
by a poset. Lowering the boom barrier has to be preceded by changing all lights to red,
and is followed by an all-clear signal for the train. Finally, the boom may be raised only
if the train has left the crossing.

As intended, the Poset winning condition carries over the intuitive notion of waiting
times: every time a request is encountered, a clock is started that is not stopped until all
events have been satisfied in a compatible order. Compared to Request-Response Games,
there is a conceptual difference. In the case of overlapping embeddings there might be
several active clocks for a single condition. In contrast, in Request-Response Games
there is a single clock for every condition. Requests that are encountered, while another
request of that condition is still open, are ignored. Since Request-Response Games are
a special case of Poset Games, the framework with multiple clocks is applicable to them
as well. This establishes an alternative for defining time-optimal strategies for Request-
Response Games.
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The value of a play in a Poset Game is the limit of the average accumulated value
of all active clocks. So, there is a new kind of trade-off: it still might be worthwhile to
keep a request open longer than it has to be, in order to respond to another condition
more quickly. But it might also be worthwhile to accept several requests of the same
condition while responding to another request. As discussed earlier, this approach pe-
nalizes Player 0 for every request that is encountered, not only for the first one. This
seems to be reasonable in many applications like the traffic light example from above
or an elevator system. In these examples, multiple requests indicate importance of the
corresponding response and should be answered first (assuming that the users do not
try to cheat the system).

Another example that motivates the analysis of Poset Games is an elevator system,
where one can ensure that certain floors are served first (the executive floor, for example).
Lastly, aspects of planning can be modeled by a Poset winning condition. In Critical-
Path scheduling [30], a planning problem consists of a finite set of tasks and some
ordering relation between them. This ordering could state that the roof of a house
can only be build if the walls are brought up completely, while the mail box and the
windows are independent of each other. To model planning in an infinite game, the
arena has designated vertices that allow to begin a certain task and others that signal
the completion of a task. The Poset winning condition can be used to specify the ordering
constraints of the tasks. Then, Player 0 has to determine a plan for every request. Note
that the embeddings might overlap, however. Hence, she wins by constructing one and
a half houses, if a second house is requested while she is only half done with the first
house. These anomalies have to be ruled out by manipulating the arena, since the Poset
winning condition is not expressive enough to prohibit such events.

We begin this chapter with some background from Order Theory and define Poset
Games in Section 4.1. Afterwards, we solve Poset Games by reducing them to Büchi
Games in Section 4.2. This implies determinacy of Poset Games with finite-state strate-
gies. Afterwards, we define our framework for time-optimal strategies by introducing
waiting times in Section 4.3 and state the main theorem of this chapter: if Player 0 wins
a Poset Game, then she also has an optimal winning strategy, which is finite-state and
effectively computable. We adapt the corrected proof technique for Request-Response
Games due to Wallmeier, Horn et. al. [53, 29], which we presented in Chapter 3, to
obtain similar results for Poset Games: we show that Player 0 can skip loops, if a re-
quest is open for a long time. Iterating this, we show that for every winning strategy
for Player 0, there is another winning strategy whose value is not higher and addition-
ally bounds the waiting times for all conditions. This is especially true for an optimal
strategy, which therefore can be assumed to bound all waiting times. The improvement
of winning strategies is presented in Subsection 4.3.1. As the optimal winning strategy
bounds all waiting times, it can be found by a reduction to Mean-Payoff Games presented
in Subsection 4.3.2. Since a Request-Response Game can be seen as a Poset Game, there
are two frameworks for defining time-optimal winning strategies for Request-Response
Games. We close this chapter by discussing the differences between the two approaches.
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4.1 Posets and Poset Games

We begin by introducing exactly the amount of Order Theory we need to deal with Poset
Games in the remainder of this chapter. These games are then defined formally to close
this section.

A partially ordered set , or poset for short, P = (D,�) consists of a non-empty domain
D and a binary relation � over D that is

• reflexive: d � d for all d ∈ D,

• antisymmetric: d � d′ and d′ � d implies d = d′, and

• transitive: d � d′ and d′ � d′′ implies d � d′′.

A labeled poset (D,�, l) is a poset with an additional labeling function l : D → P for a
set P of atomic propositions. If D is finite, we define the transitive reduction �red by
d �red d′ iff d �= d′ and there is no d′′ such that d′′ �= d, d′′ �= d′, and d � d′′ � d′. The
reduction �red contains all the essential information of �, i.e., the reflexive and transitive
closure of �red is �. The transitive reduction is also the basis of Hasse diagrams, a
graphical representation of finite posets. In such a diagram, the elements of the domain
are drawn as vertices and a directed edge from d to d′ denotes the ordering relation
d �red d′. By reducing �, most posets can be clearly represented in a graphic without
losing any information.

Example 4.1. (2S ,⊆) is a poset for every set S. A Hasse Diagram for (2{a,b},⊆) is
given in the upper part of Figure 4.1. The solid edges represent the transitive reduction
graphically.

∅

{a} {b}

{a, b}

ρ

{{a, b}} {∅} {∅} {{a}} {{b}}{{a, b}}{{b}}{{a, b}} {∅} {{a}} {∅}

Figure 4.1: A poset P and an embedding f of P in ρ

A subset D′ ⊆ D of a poset P = (D,�) is upwards-closed , if d ∈ D′ and d � d′ imply
d′ ∈ D′. Dually, D′ ⊆ D is downwards-closed , if d ∈ D′ and d′ � d imply d′ ∈ D′. The
complement of an upwards-closed subset is downwards-closed, and vice versa. We denote
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the set of non-empty upwards-closed subsets of D by Up(P) and the set of non-empty
downwards-closed subsets by Down(P). The number of non-empty downwards-closed
(and upwards-closed) subsets of a poset can be bounded from below by |D| and from
above by 2|D| − 1. Notice that we disregard the empty set.

Given a labeled graph (V,E, lG), a path ρ = ρ0ρ1ρ2 . . . of G, and a finite labeled
poset P = (D,�, lP ), an embedding of P in ρ is a function f : D → N such that
lP (d) ∈ lG(ρf(d)) and d � d′ implies f(d) ≤ f(d′). The length of an embedding f is
maxd∈D f(d), and it is minimal , if its length is minimal in the set of all embeddings, i.e.,
maxd∈D f(d) ≤ maxd∈D f ′(d) for all embeddings f ′. An embedding of P in a finite path
w is defined analogously.

Example 4.2. Figure 4.1 shows an embedding f of P = (2{a,b},⊆, l) where l(S) = S

for every S ⊆ {a, b}. The labeling of ρ is given by the subsets below the positions. The
length of f is 7, but it is not a minimal embedding.

Every subset D′ ⊆ D induces a poset by restricting � to D′ ×D′. Thus, closed sets
and embeddings are also defined for subsets of a poset. Furthermore, every embedding
of a downwards-closed subset D′ in a finite play x can be completed to an embedding of
D in xy, if D\D′ can be embedded in y. Hence, a poset can be embedded element by
element.

To define Poset Games, we generalize Request-Response Games by replacing the
responses by labeled posets, and require that a request is responded by an embedding of
that poset. A (initialized) Poset Game (G, s0, (qj ,Pj)j=1,...,k) consists of a labeled arena
G with labeling function lG, an initial vertex s0, and a finite collection of (Request-Poset)
conditions (qj ,Pj), where the request qj ∈ P is a proposition and Pj = (Dj ,�j , lj) is
a finite, labeled poset. We assume tacitly that the domains of the posets are pairwise
disjoint. Player 0’s goal is to answer every request qj by an embedding of Pj . Thus, we
define ρ = ρ0ρ1ρ2 . . . ∈ Win iff

∀j ∀n (qj ∈ lG(ρn) → ρnρn+1ρn+2 . . . allows an embedding of Pj) .

Again, a request of condition j is a vertex s such that qj ∈ lG(s). A response of that
request is a finite play w starting in s that allows an embedding of Pj . If w does not
allow an embedding, then the request is still open after w. However, unlike in Request-
Response Games, the notion of an open request is no longer binary, but it can be refined:
we say that D ⊆ Dj is open after the finite play ρ0 . . . ρn, if there was a request at position
k ≤ n such that the elements in Dj\D could be embedded in ρk . . . ρn, but no superset
of Dj\D could be embedded in this suffix. This means Player 0 was able to embed the
elements of Dj\D (which form a downwards-closed subset by the requirements on an
embedding) and the elements of D (which form an upwards-closed subset) have to be
embedded yet.

Example 4.3. Let Dj = {d1, d2, d3}, �j be specified by d1 �red
j d2 �red

j d3, and
lj(d) = d for all d ∈ Dj . Finally, let (qj, (Dj ,�j, lj)) be a condition and ρ as in Figure 4.2.
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The positions of ρ are denoted above and the sets below are the labels of each position.
The vertices ρ0, ρ3, ρ6, and ρ7 are requests, Dj is open after the finite play ρ0ρ1, and
there are three open requests after ρ0 . . . ρ6: The set Dj from the request at ρ6, {d2, d3}
from the request at ρ3, and {d3} from the request at ρ0. All requests are responded
completely with ρ9.

ρ

{qj} ∅ {d1} {qj} {d2} {d1} {qj} {qj, d1} ∅ {d2, d3} ∅

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10

Figure 4.2: A play with (open) requests

4.2 Solving Poset Games

In this section, we solve Poset Games by a reduction to Büchi Games. The idea is to
use memory to keep track of the requests that have not yet been responded completely.
However, it is not sufficient to store a subset of Dj only, which represents open elements
that still have to be embedded, and require that no element stays in that set indefinitely.

Example 4.4. Consider a game with a single condition composed of a request q and
a poset ({d1, d2} �) with d1 � d2 (for the sake of readability, we omit the labeling
functions), and the play ρ in Figure 4.3. After every finite prefix of ρ, d2 has to be
embedded once more, since every time it is embedded and the latest request is responded,
it is requested again, but cannot be embedded, since d1 blocks it.

ρ

q d1 q, d2 d1 q, d2 d1 q, d2 d1 q, d2 d1 q, d2

Figure 4.3: A play ρ with overlapping embeddings

This example demonstrates the need for a finer memory structure to store open
requests. For every request of condition j, we keep track of those elements of Dj that
are already embedded and those that are still open. Since there is a set for every request,
we can determine, whether every request is responded eventually. By adding a clock to
every such set, which measures the length of the embedding, we lay the groundwork for
defining the waiting times in Section 4.3.
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Formally, we define the set of open requests of condition j after the finite play w
inductively by Openj(ε) = ∅ and

Openj(ws) = {(Embj(D, s), t + 1) | (D, t) ∈ Openj(w) ∪ {(Newj(s), 0)}}\{∅} × N

where

Newj(s) =

{
Dj if qj ∈ lG(s)
∅ otherwise

and

Embj(D, s) = {d ∈ D | ∃d′ ∈ D : d′ �j d and lj(d′) /∈ lG(s)}.

Newj signals a new request and adds the domain Dj to the set of open requests. To
compute the embedding monotonically, Embj determines those elements of D ∈ Up(Pj)
that cannot be embedded in s since their or some smaller element’s labeling is not
compatible with the labeling of s. Finally, Openj takes the open requests of w and
embeds as many elements as possible into s, thereby determining the open requests of
ws: If (D, t + 1) ∈ Openj(ρ0 . . . ρn), then there was a request of condition j at position
n− t, and the elements of Dj\D can be embedded into ρn−t . . . ρn, and Player 0 has to
embed all elements of D to respond to the request. For every t, there is at most one
D ∈ Up(Pj) such that (D, t) ∈ Openj(w). Also, Openj(w) contains only upwards-closed
subsets of Dj, which can be shown by an easy induction. The number of open requests
D of condition j after w is

sj,D(w) = |{t | (D, t) ∈ Openj(w)}|.

Example 4.5. Consider the play ρ from Example 4.4 once more: The open requests
Openj(w) toggle between {({d1, d2}, 1)} and {({d2}, 2)}

We say that D ∈ Up(Pj) is open indefinitely in ρ = ρ0ρ1ρ2 . . ., if there exists n
such that (D, t) ∈ Openj(ρ0 . . . ρn+t) for all t. In the next lemma we show that this
characterizes the losing plays for Player 0.

Lemma 4.6. Let ρ = ρ0ρ1ρ2 . . . be a play and j ∈ [k].

(i) If Player 0 wins ρ, then (Openj(ρ0 . . . ρn))n∈N induces a minimal embedding fn of
Pj in ρnρn+1ρn+2 . . . for every n such that qj ∈ lG(ρn).

(ii) ρ is won by Player 0 iff there is no D ∈ Up(Pj) that is D open indefinitely.

Proof. We begin by defining the sequence (Dn,t)t∈N for every request of condition j

at position n by Dn,0 = Embj(Dj , ρn) and Dn,t+1 = Embj(Dn,t, ρn+t+1). We have
Dn,t ⊇ Dn,t+1 and (Dn,t, t+ 1) ∈ Openj(ρ0 . . . ρn+t), if Dn,t �= ∅.
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(i) Let qj ∈ lG(ρn) and let f be a minimal embedding of Pj in ρnρn+1ρn+2 . . .,
whose existence is guaranteed, since ρ is won by Player 0. We define the embedding
fn by fn(d) = min{t | d /∈ Dn,t}. We show that fn is well-defined and minimal by
proving d /∈ Dn,f(d) by Noetherian induction (on �red

j ) over d. Let d ∈ Dj . Towards a
contradiction, assume d ∈ Dn,f(d).

If f(d) = 0, then d ∈ Dn,0 = Embj(Dj , ρn), i.e., there exists a d′ ∈ Dj such
that d′ �j d and lj(d′) /∈ lG(ρn). Since d′ �j d implies f(d′) = 0, and we conclude
lj(d′) ∈ lG(ρn+f(d′)), which yields the desired contradiction.

If f(d) = t + 1, then d ∈ Dn,t+1 = Embj(Dn,t, ρn+t+1), i.e., there exists a d′ ∈ Dn,t

such that d′ �j d and lj(d′) /∈ lG(ρn+t+1). Since f is an embedding, lj(d) ∈ lG(ρn+f(d)),
which rules out d′ = d. Thus, d′ �red

j d, which allows us to apply the induction hypothesis
to obtain d′ /∈ Dn,f(d′). If f(d′) < t + 1, then d′ /∈ Dn,t, since Dn,f(d′) ⊇ Dn,t. On the
other hand, f(d′) = t + 1 implies lj(d′) ∈ lG(ρn+t+1). So, both cases yield the desired
contradiction.

(ii) We have

Openj(ρ0 . . . ρn) = {(Dn′,t, t+ 1) | n′ + t = n, qj ∈ lG(ρn′), and Dn′,t �= ∅},

which can be verified by an easy induction. In (i) we have seen that (Dn,t)n∈N converges
to the empty set for every n, if Player 0 wins ρ. Thus, there cannot be a D ∈ Up(Pj)
that is open indefinitely. On the other hand, if there is no D ∈ Up(Pj) that is open
indefinitely, then (Dn,t)n∈N converges to the empty set for every n. We define an em-
bedding fn for every n such that q ∈ lG(ρn), analogously to the one defined in (i) by
fn(d) = min{t | d /∈ Dn,t}. It remains to show that fn is an embedding: The element d
leaves (Dn,t)n∈N at fn(d) iff the labeling requirement is fulfilled, by definition of Embj.
Also,

min{t | d′ /∈ Dn,t} = fn(d′) > fn(d) = min{t | d /∈ Dn,t}

for d′ �j d contradicts the definition of Embj .

We now prove that Poset Games are reducible to Büchi Games. This implies deter-
minacy with finite-state strategies. Additionally, this reduction gives an upper bound on
the value of an optimal winning strategy for Player 0, a corollary stated in Section 4.3
after having introduced waiting times and values of strategies.

Theorem 4.7. Poset Games are reducible to Büchi Games.

The first idea is to use the memory to store the sets openj (without the clocks to
obtain a finite memory structure) and employ a cyclic counter to ensure that no D is
open indefinitely. While this is correct due to Lemma 4.6, we can do better than a
double exponential blow-up. We have seen in Example 4.4 that just keeping track of
the elements of the domains that still have to be embedded does not generate enough
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information to decide the winner of a play. An element could be in that set since it
is either requested and embedded infinitely often (as in the example), or it cannot be
embedded at all. The extra information needed can be generated by marking every
position the element could be mapped to. In the example, there are infinitely many
positions of ρ that allow an embedding of d2. Thus, we need two different subsets of
Dj : The set Oj contains the elements that still have to be embedded, i.e., the union of
the sets in Openj. The set Mj contains exactly those elements that could be embedded
in the last vertex of the finite play. Then, a play is good for Player 0 if every element
that is indefinitely in Oj is infinitely often contained in Mj . This can be checked using
a cyclic counter.

Proof. We begin the definition of the memory structure with the counter that cycles
through the elements of the domains. By enumerating Dj consecutively in an order
compatible with �j we are able to give a better bound on the value of the induced
strategy. Therefore, let ej : [|Dj |] → Dj be an enumeration of Dj such that d � d′

implies e−1
j (d) ≤ e−1

j (d′), let l =
∑k

j=1 |Dj |, and define e : [l] → ⋃k
j=1{j} ×Dj by

e

⎛
⎝

⎛
⎝j′−1∑

j=1

|Dj |
⎞
⎠ + h

⎞
⎠ = (j′, ej′(h)) for h ∈ [|Dj′ |].

e is an enumeration with the desired properties. We assume without loss of generality
l > 1, since the counter does not cycle if l = 1.

We define the memory structure M = (M, init,update) with memory

M =
k∏

j=1

(Up(Pj) × 2Dj ) × [l] × {0, 1},

initialization function

init(s) = (Emb1(New1(s)), ∅, . . . ,Embk(Newk(s)), ∅, 1, 0),

and update function

update((O1,M1, . . . , Ok,Mk,m, f), s) = (O′
1,M

′
1, . . . , O

′
k,M

′
k,m

′, f ′)

where

• O′
j =

{
Embj(Dj , s) if qj ∈ lG(s)

Embj(Oj , s) if qj /∈ lG(s)
,

• M ′
j = {d ∈ O′

j | lj(d) ∈ lG(s)},
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• m′ =

{
(m mod l) + 1 if e(m) = (j, d) and d /∈ O′

j or d ∈M ′
j

m if e(m) = (j, d) and d ∈ O′
j and d /∈M ′

j

, and

• f ′ =

{
1 if m �= m′

0 otherwise
.

It is easy to verify that the update function is well-defined, i.e., O′
j is upwards-closed if

Oj is upwards-closed. Finally, let

F = V ×
k∏

j=1

(Up(Pj) × 2Dj ) × [l] × {1}

and G′ = (G× M, F ) be the Büchi Game in the expanded arena.
It remains to show G ≤M G′. Let ρ = ρ0ρ1ρ2 . . . be a play of G and ρ′ = ρ′0ρ

′
1ρ

′
2 . . .

the unique expanded play in G′ where ρ′n = (ρn, (On
1 ,M

n
1 , . . . , O

n
k ,M

n
k ,m

n, fn)).
Let ρ be winning for Player 0 and assume towards a contradiction that ρ′ is winning

for Player 1. Then, the counter stops at some position n′ with some value c and does
not change anymore. This means d ∈ On

j and d /∈Mn
j for all n ≥ n′, where e(c) = (j, d).

If condition j is requested infinitely often in ρ, then Pj is embedded infinitely often
in ρ. Thus, there are infinitely many n such that d ∈ Mn

j , which yields the desired
contradiction. On the other hand, if there is a final request at position n, then there is
also an embedding f of Pj in ρnρn+1ρn+2 . . .. It holds On+t

j = {d ∈ Dj | f(d) > t}. Thus,
the Oj-component is empty from some position onwards, which again is a contradiction.

Now, let ρ′ be winning for Player 0. For every n such that qj ∈ lG(ρn), we have to
construct an embedding fn of Pj in ρnρn+1ρn+2 . . .. Since ρ′ is won by Player 0, there
are infinitely many positions n′ such that d /∈ On′

j or d ∈Mn′
j .

Let qj ∈ lG(ρn). We define the sequence (Dn,t)t∈N by Dn,0 = Embj(Dj , ρn) and
Dn,t+1 = Embj(Dn,t, ρn+t+1). We have Dn,t ⊆ On+t

j for all t, which can be verified by
an easy induction. Also, Dn,t ⊇ Dn,t+1 for all t. Now, if Dn,t = ∅ for some t, then the
sequence induces fn by fn(d) = min{t | d /∈ Dn,t} as we have shown in the proof of
Lemma 4.6 (ii). Hence, it remains to be shown that for every d ∈ Dj there is a t such
that d /∈ Dn,t.

Towards a contradiction, assume there exists t such that ∅ �= Dn,t = Dn,t′ for all
t′ ≥ t, and let d be minimal in Dn,t, i.e., there is no d′ �= d such that d′ �j d and
d′ ∈ Dn,t. Thus, d ∈ On+t′

j for all t′ ≥ t. Since ρ′ is winning for Player 0, there is some
t′ > t such that d ∈Mn+t′

j , which implies that d can be embedded in ρn+t′ , i.e., we have
d /∈ Embj(Dn,t′−1, ρn+t′) = Dn,t′ , which yields the desired contradiction.

Note that by the choice of e, it takes at most l + |Dj | visits to a vertex of F after a
request to complete the embedding fn.
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M is essentially a deterministic automaton, which can be turned into a Büchi Au-
tomaton with set F of accepting states defined similarly to the one in the proof above.

Corollary 4.8. Poset Games are regular.

In an implementation the size of the memory structure can be reduced drastically
since every state with Mj �⊆ Oj is not reachable. However, for our purposes this opti-
mization is not necessary. The size of M can be bounded by

|M | =

⎛
⎝ k∏

j=1

|Up(Pj)| · 2|Dj |

⎞
⎠ ·

⎛
⎝ k∑

j=1

|Dj |
⎞
⎠ · 2

≤
⎛
⎝ k∏

j=1

22·|Dj |

⎞
⎠ · l · 2

=
(

22·�k
j=1 |Dj |

)
· l · 2

= l · 22·l+1

We finish this section by proving that the reduction presented here is asymptotically
optimal.

Lemma 4.9. There is a family of initialized Poset Games (Gn)n∈N such that

(i) the size of the arena of Gn is linear in n,

(ii) the sum of the cardinalities of the posets’ domains is linear in n,

(iii) Player 0 wins Gn, but

(iv) she has no finite-state winning strategy of size less than n · 2n.

Proof. Every Request-Response Game with k Request-Response conditions is equivalent
to a Poset Game with k Poset conditions whose domains are singletons. So, we can use
the games from Lemma 3.2 and translate them into Poset Games Gn. The first three
statements are clear. For the last claim, assume Player 0 has a finite-state strategy of
size smaller than n · 2n. This is also a small finite-state winning strategy for the original
Request-Response Game, which yields a contradiction.

4.3 Time-optimal Strategies for Poset Games

In this section we define waiting times for Poset Games and values for strategies, discuss
some simple properties, and state the main theorem about Poset Games.

Unlike waiting times for Request-Response Games, which ignore a request while an
earlier request of the same condition is already open, waiting times for Poset Games
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are defined for every request. For Request-Response Games there is a single clock for
every condition. It is started if a request occurs and stops as soon as it is responded,
ignoring all intermediate requests. For Poset Games, a clock is started for every request.
Hence, there are possibly several active clocks for a single condition at the same time.
We introduced these clocks already when we defined the set of open requests Openj. To
aggregate the clock values to the value of a play, we take the limit of the accumulated
sum of the different clocks for all open requests. Again, we employ a family of strictly
increasing penalty functions (fj : N → N)j=1...k to be able to prioritize certain conditions.
We define for D ∈ Up(Pj)

• the totalized waiting time for D after w: tj,D(w) =
∑

(D,t)∈Openj(w) t,

• the totalized waiting time for condition j after w: tj(w) =
∑

D∈Up(Pj)
tj,D(w),

• the penalty for condition j after w: pj(w) = fj(tj(w)),

• the penalty after w: p(w) =
∑k

j=1 pj(w),

• the value of a play ρ: vP (ρ) = lim supn→∞
1
n

∑n−1
i=0 p(ρ0 . . . ρi), and

• the value of a strategy σ: vP (σ) = supτ∈Γ1
vP (ρ(s0, σ, τ)).

A strategy σ for Player 0 is optimal if vP (σ) ≤ vP (σ′) for all strategies σ′.

The following Lemma is the analogon of Lemma 3.5 for Poset Games and its proof
goes along the same lines: if Player 1 wins a play, then the waiting times increase without
a bound and its value diverges.

Lemma 4.10. Let ρ be a play and σ a strategy for Player 0.

(i) If vP (ρ) <∞, then Player 0 wins ρ.

(ii) If vP (σ) <∞, then σ is a winning strategy for Player 0.

Note that the other directions of the statements are false. There is a play of infinite
value that is won by Player 0.

There are two different kinds of bounds on the waiting time. Firstly, the clocks can
be bounded which implies that the length of every embedding is bounded. Secondly, the
sum of the clocks can be bounded which indirectly bounds the lengths of the embeddings.
Both approaches are intimately tied and we use their interplay throughout this chapter.
Let σ be a strategy for Player 0 and D ∈ Up(Pj) for some condition j.

• σ uniformly bounds the waiting time for D to B, if t ≤ B for all (D, t) ∈ Openj(w)
and for all finite plays w consistent with σ.

• σ uniformly bounds the totalized waiting time for D to B, if tj,D(w) ≤ B for all
finite plays w consistent with σ.

The following statements are easily derived from the definitions above.
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Remark 4.11. Let σ be a strategy for Player 0.

(i) If σ uniformly bounds the waiting time for all D ∈ Up(Pj) to B, then every request
of condition j is responded by an embedding of Pj whose length is at most B.

(ii) If σ uniformly bounds the totalized waiting time for all D ∈ Up(Pj) to B, then
every request of condition j is responded by an embedding of Pj whose length is at
most B.

(iii) If σ uniformly bounds the waiting time for D to B, then σ also uniformly bounds
the totalized waiting time for D to B·(B+1)

2 .

(iv) If σ uniformly bounds the totalized waiting time for D to B, then σ also uniformly
bounds the waiting time for D to B.

Now, we can pick up the reduction of Poset Games to Büchi Games and show that
if Player 0 wins G, then the value of an optimal strategy can be bounded in terms of the
size of the arena and in the size of the winning condition.

Corollary 4.12. Let l =
∑k

j=1 |Dj |. If Player 0 wins G, then

vP (σ) ≤
k∑

j=1

fj

(
|Up(Pj)| |G|(l + |Dj |)(|G|(l + |Dj |) + 1)

2

)
= : bP (G)

for an optimal strategy σ.

Proof. We go along the lines of the proof of Corollary 3.6. Let σ′ be the positional
winning strategy for G′ from Theorem 4.7 and σ be the induced finite-state strategy for
G. There is no infix of length |G| of a play ρ′ played according to σ′ that does not visit
F at least once. If there is such an infix, then there is a loop in that infix in which no
vertex of F is visited. Moving through that loop indefinitely is consistent with σ′. Thus,
it is not a winning strategy for Player 0, contrary to our assumptions. Therefore, the
counter m changes its value after at most |G| steps. In the proof of Theorem 4.7 the
counter is constructed in a way that it takes at most l + |Dj | visits to a state in F to
complete an embedding after a request in the projected play. Hence, the length of every
embedding of Pj in a play consistent with σ is bounded by |G| · (l + |Dj |), which gives

tj,D(w) ≤ |G| · (l + |Dj |) · (|G| · (l + |Dj |) + 1)
2

for every finite play w consistent with σ, by Remark 4.11 (iii). We obtain

1
n

n−1∑
i=0

p(ρ0 . . . ρi) =
1
n

n−1∑
i=1

k∑
j=1

fj

⎛
⎝ ∑

D∈Up(Pj )

tj,D(ρ0 . . . ρi)

⎞
⎠
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≤ 1
n

n−1∑
i=1

k∑
j=1

fj

⎛
⎝ ∑

D∈Up(Pj)

|G|(l + |Dj |)(|G|(l + |Dj |) + 1)
2

⎞
⎠

=
k∑

j=1

fj

(
|Up(Pj)| |G|(l + |Dj |)(|G|(l + |Dj |) + 1)

2

)
= bP (G)

for every play ρ = ρ0ρ1ρ2 . . . that is played according to σ. Hence, vP (ρ) ≤ bP (G) for
every play ρ consistent with σ.

We now state the main theorem of this chapter and spend the next two subsections
proving it. In Subsection 4.3.1, we show that an optimal winning strategy uniformly
bounds the totalized waiting times for all D ∈ Up(Pj). This allows us to reduce the
problem of searching an optimal strategy for Poset Games to the same problem for
Mean-Payoff Games, which is presented in Subsection 4.3.2. The proof idea is similar
to the corresponding proof for Request-Response Games; however, we have to refine the
first step to overcome the possible overlapping of embeddings.

Theorem 4.13. If Player 0 wins a Poset Game G, then she also has a finite-state
optimal winning strategy which is effectively computable.

4.3.1 Strategy Improvement for Poset Games

In this Subsection, we do the first step of proving Theorem 4.13. Therefore, we adapt the
technique described in Subsection 3.2.1 to Poset Games. In a play of a Request-Response
Game, Player 0 skips a loop if the waiting time for condition j exceeds a certain bound
and the condition is not responded in that loop, i.e., the loop is between a request and a
response. Additionally, she has to take care that she does not miss responses of the other
conditions. Therefore, she only skips a loop if the waiting times for all other conditions
are higher at the end of the loop than they were at the beginning. In a Poset Game
the situation is more complicated. Player 0 cannot just skip an arbitrary loop between
a request and the end of the corresponding embedding since the positions to which an
element is embedded must not be deleted. So, she can only skip loops in between those
positions. This is illustrated in Figure 4.4. Player 0 can skip loops in the intervals I
between the positions where d1 and d2 hold and the positions where d2 and d3 hold,
respectively.

ρ

q d1 d2 d3

I︷ ︸︸ ︷ I︷ ︸︸ ︷ I︷ ︸︸ ︷

Figure 4.4: The intervals I where Player 0 can improve her strategy
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So, we define a strategy improvement operator for each such interval. Again, the
waiting times for the other conditions and all of their open requests have to be respected.
Thus, we require that the totalized waiting time for every D′ ∈ Up(Pj′) for every j′ is
higher at the end of the loop than it was at the beginning. However, there is another
difference in the waiting time framework. In a Poset Game there might be several active
clocks at a given time. Thus, the totalized waiting time can increase by more than
one unit in a single step. The correctness of the strategy improvement operator Ij for
Request-Response Games was based on Remark 3.3, which states that tj(x) ≤ tj(y)
implies tj(xs) ≤ tj(ys). An easy induction then proves that skipping loops does only
decrease the waiting times. However, this does not hold for the totalized waiting time
in a Poset Game: consider finite plays x, y such that Openj(x) = {(D, 1), (D, 2)} and
Openj(y) = {(D, 3)}. Then, tj,D(x) = 3 = tj,D(y). Now, assume that no element of D
can be embedded in s. Then, tj,D(xs) = 4, but tj,D(ys) = 3. So, we have to strengthen
the condition that determines the loops to skip. The problem in the example is caused
by the fact that there are two active clocks for D at x but only one at y. So, the growth
of the totalized waiting time of two clocks outgrows the totalized waiting time of a single
clock. It turns out that this is the only reason for a violation of the desired inequality.

Lemma 4.14. Let x, y ∈ V ∗ and s ∈ V such that tj,D(x) ≤ tj,D(y) and sj,D(x) ≤ sj,D(y)
for all j ∈ [k] and all D ∈ Up(Pj). Then, tj,D(xs) ≤ tj,D(ys) and sj,D(xs) ≤ sj,D(ys)
for all j ∈ [k] and all D ∈ Up(Pj).

Proof. We have

tj,D(xs)

=
∑

(D,t)∈Openj(xs)

t

=|{Embj(Newj(s), s) ∩ {D}}| +
∑

(D′,t′)∈Openj(x):

Emb(D′,s)=D

(t′ + 1)

=|{Embj(Newj(s), s) ∩ {D}}| +
∑

D′∈Up(Pj):
Emb(D′,s)=D

(tj,D′(x) + sj,D′(x))

≤|{Embj(Newj(s), s) ∩ {D}}| +
∑

D′∈Up(Pj):
Emb(D′,s)=D

(tj,D′(y) + sj,D′(y))

=|{Embj(Newj(s), s) ∩ {D}}| +
∑

(D′,t′)∈Openj(y):

Emb(D′,s)=D

(t′ + 1)

=
∑

(D,t)∈Openj(ys)

t

=tj,D(ys)
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and

sj,D(xs)

=|{t | (D, t) ∈ Openj(xs)}|
=|{Embj(Newj(s), s) ∩ {D}}| +

∑
(D′,t′)∈Openj(x):

Emb(D′,s)=D

|{t′ | (D′, t′) ∈ Openj(x)}|

=|{Embj(Newj(s), s) ∩ {D}}| +
∑

(D′,t′)∈Up(Pj ):
Emb(D′,s)=D

sj,D′(x)

≤|{Embj(Newj(s), s) ∩ {D}}| +
∑

(D′,t′)∈Up(Pj ):
Emb(D′,s)=D

sj,D′(y)

=|{Embj(Newj(s), s) ∩ {D}}| +
∑

(D′,t′)∈Openj(y):

Emb(D′,s)=D

|{t′ | (D′, t′) ∈ Openj(y)}|

=|{t | (D, t) ∈ Openj(ys)}|
=sj,D(ys).

Note that an open request is always an upwards-closed subset of the domain. Hence,
we define the strategy improvement operator Ij,D for every subset D ∈ Up(Pj). Given
a winning strategy σ so that vP (σ) ≤ bP (G), the strategy Ij,D(σ) is defined using a
memory structure M = (M, init,update). The set of memory states M is a subset of the
finite plays consistent with σ and defined implicitly. The initialization function is given
by init(s0) = s0. We define the update function such that the following invariant holds:
the last vertices of w and update∗(w) are equal for every play w consistent with Ij,D(σ).

Player 0 only skips loops if the totalized waiting time for D is guaranteed to be
higher than the value of the strategy. Then, the value of the play does not increase from
taking the shortcut. Thus, if tj,D(ws) ≤ f−1

j (bP (G)), let update(w, s) = ws. Hence,
if the totalized waiting time is small, then she copies the original play according to σ.
Otherwise, if tj,D(ws) > f−1

j (bP (G)) consider the unraveling Tσ
G,s0

�ws restricted to those
paths wsx such that Openj(wsx′) ∩ ({D} × N) �= ∅ for all x′ 	 x. This tree is finite,
since σ is a winning strategy. The set of finite plays zs ending in s in the restricted
unraveling such that tj′,D′(zs) ≥ tj′,D′(ws) and sj′,D′(zs) ≥ sj′,D′(ws) for all j′ ∈ [k]
and all D′ ∈ Up(Pj′) is non-empty as it contains ws. Let zs be a play of maximal length
in that set. Then, update(ws) = zs. So, if the totalized waiting time for D is sufficiently
high, then Player 0 looks ahead for a loop such that the totalized waiting times for all
subsets D′ ∈ Up(Pj′) are higher at the end of the loop than they were at the beginning.
Then, she jumps ahead and continues to play as if she had finished the loop already.
The condition on the subsets D′ ensures that she does not miss a vertex that she has to
visit in order to embed an element of the posets.
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It is clear that the invariant is satisfied in both cases of the definition: the last vertices
of update∗(w) and w are equal. Finally, let next(ws, s) = σ(ws). This concludes the
definition of the improved strategy Ij,D(σ).

The following Lemma is an easy adaptation of the corresponding result for the strat-
egy improvement operator for Request-Response Games. The proof is the same as the
one for Lemma 3.8.

Lemma 4.15. update∗(w) is consistent with σ for all w consistent with Ij,D(σ).

For the next result, the analogon of Lemma 3.9, we apply Lemma 4.14.

Lemma 4.16. Let σ be a winning strategy for Player 0 in G, j ∈ [k], and D ∈ Up(Pj).
Then, tj′,D′(w) ≤ tj′,D′(update∗(w)) for all w consistent with Ij,D(σ), for all j′ ∈ [k]
and all D′ ∈ Up(Pj′).

Proof. By induction over w, we prove the stronger claim tj′,D′(w) ≤ tj′,D′(update∗(w))
and sj′,D′(w) ≤ sj′,D′(update∗(w)) for all w consistent with Ij,D(σ). The induction base
is clear as every play starts in s0 and we have s0 = init(s0) = update∗(s0). By the
induction hypothesis, we can assume

tj′,D′(w) ≤ tj′,D′(update∗(w)) and sj′,D′(w) ≤ sj′,D′(update∗(w))

for all j′ ∈ [k] and all D′ ∈ Up(Pj′). Furthermore, Lemma 4.14 gives

tj′,D′(ws) ≤ tj′,D′(update∗(w)s) and sj′,D′(ws) ≤ sj′,D′(update∗(w)s).

There are two possibilities for update∗(ws). If tj,D(update∗(w)s) ≤ f−1
j (bP (G)), then

update∗(ws) = update(update∗(w), s) = update∗(w)s.

Thus,

tj′,D′(ws) ≤ tj′,D′(update∗(w)s) = tj′,D′update∗(ws)

and

sj′,D′(ws) ≤ sj′,D′(update∗(w)s) = sj′,D′update∗(ws).

If tj,D(update∗(w)s) > f−1
j (bP (G)), then

update∗(ws) = update(update∗(w), s) = zs

where tj′,D′(zs) ≥ tj′,D′(update∗(w)s) and sj′,D′(zs) ≥ sj′,D′(update∗(w)s) by definition
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of Ij,D. Hence,

tj′,D′(ws) ≤ tj′,D′(update∗(w)s) ≤ tj′,D′(zs) = tj′,D′(update∗(ws))

and

sj′,D′(ws) ≤ sj′,D′(update∗(w)s) ≤ sj′,D′(zs) = sj′,D′(update∗(ws))

for all j′ ∈ [k] and all D′ ∈ Up(Pj′).

The following results are again easy implications of Lemma 4.16. They conclude the
discussion of the strategy improvement operator for Poset Games.

Lemma 4.17. Let σ be a winning strategy for Player 0 for G, j ∈ [k], and D ∈ Up(Pj).

(i) If σ bounds the totalized waiting time for some D′ ∈ Up(Pj) to B, then so does
Ij,D(σ).

(ii) vP (Ij,D(σ)) ≤ vP (σ).

(iii) Ij,D(σ) is a winning strategy for Player 0, if σ is a winning strategy for her.

We now explain how to improve a given strategy by applying the strategy improve-
ment operators. Every interval in which a request is continuously open is divided into
several smaller intervals by the positions into which an element of the poset is embedded.
The order of improvement reduces the early subintervals, those with large D, first and
then the later ones, with small D.

Example 4.18. Consider the play ρ, depicted in Figure 4.5, of a game with a single
condition (q, (D,�)) where D = {d1, d2, d3} and d1 �red d2 �red d3 (again, we ignore the
labeling functions). The improvement scheme to be defined starts with the improvement
with respect to D, then with respect to {d2, d3} and finally with respect to {d3}.

ρ

q d1 d2 d3

Ij,{d1,d2,d3
}︷ ︸︸ ︷ Ij,{d2,d3

}︷ ︸︸ ︷ Ij,{d3
}︷ ︸︸ ︷

Figure 4.5: The order of improvement with Ij,D for D ⊆ {d1, d2, d3}

Thus, if the strategy is improved with respect to some D ∈ Up(Pj), then we are
sure that the earlier subintervals are already improved and do not have to be changed
(for condition j). The order of improvement is given by an enumeration of the upwards-
closed subsets of Dj for every j: for j ∈ [k], let cj = |Up(Pj)| and ej : [cj ] → Up(Pj) be
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an enumeration such that |D| > |D′| implies e−1
j (D) < e−1

j (D′). Thus, the subsets are
enumerated in order of decreasing size. The single step operator deletes loops of every
long interval in which no element of the domain is embedded. However, the residues
of the interval may form new loops that have to be deleted. Therefore, Ij,D is applied
infinitely often for every D ∈ Up(Pj) of every condition j.

Given a winning strategy σ0 for Player 0 such that vP (σ0) ≤ bP (G), we define

• σj,l,0 =

{
σj−1 if l = 1
σj,l−1 otherwise

for j ∈ [k] and l ∈ [cj ],

• σj,l,n+1 = Ij,ej(l)(σj,l,n) for j ∈ [k], l ∈ [cj ], and n ∈ N,

• σj,l = limn→∞ σj,l,n for j ∈ [k] and l ∈ [cj ], and

• σj = σj,cj for j ∈ [k].

For notational convenience, we define σj,0 = σj−1 for j ∈ [k]. The improvement scheme
is visualized in Figure 4.6.

σ0 σ1,1 σ1,2 σ1,c1−1 σ1,c1 σ1=. . .

σ1 σ2,1 σ2,2 σ2,c2−1 σ2,c2 σ2=. . .

σ2

σk−1

. . .

. . .

...

σk−1 σk,1 σk,2 σk,ck−1 σk,ck σk=. . .

I1,e1(1) I1,e1(2)
I1,e1(c1)

Ik,e2(1) Ik,e2(2)
Ik,e2(c2)

Ik,ek(1) Ik,ek(2)
Ik,ek(ck)

=

=

=

Figure 4.6: The improvement scheme for a Poset Game

It remains to lift the lemmata stated above for a single improvement step to the limit
of the improvement steps and to show that σk uniformly bounds the waiting time for all
j ∈ [k] and all D ∈ Up(Pj). Then, σk also uniformly bounds the totalized waiting time
for all j ∈ [k] and all D ∈ Up(Pj) by Lemma 4.11.

The strategy improvement operator skips loops if the values tj,D(w) and sj,D(w) (for
every D) are higher at the end of the loop than they were at the beginning. To obtain
the desired bounds we again determine the maximal length of a non-dickson sequence



4.3 Time-optimal Strategies for Poset Games 59

[12] of vectors containing these values, which can only increase, be reset to zero or stay
zero. This results in a bound that depends only on the number of vertices of the arena
and the number of upwards-closed subsets.

Let w1 and w2 be finite plays such that w1 � w2, and let D ∈ Up(Pj). We say
that w1 and w2 are dickson save D iff the last vertices of w1 and w2 are equal and
tj′,D′(w1) ≤ tj′,D′(w2) and sj′,D′(w1) ≤ sj′,D′(w2) for all j′ and all D′ ∈ Up(Pj′) such
that D �= D′. If w1 and w2 are dickson save D, the totalized waiting time for D is high
enough and strictly increasing in between w1 and w2, then the strategy improvement
operator Ij,D deletes the loop (w1)−1w2.

Now, let xy be a finite play. We say that y is non-dickson save D if xy does not
have a pair of dickson prefixes that both do contain a non-empty part of y. The strategy
improvement operator Ij,D does not delete any loops in a prefix that is non-dickson save
D. We bound the length of a non-dickson sequence in terms of the size of the arena and
the number of upwards-closed subsets by a function b.

If there is only one subset, namely D, then there must not be a state repetition in y.
Thus, the length of a non-dickson sequence can be bounded by the number of vertices
in |G|; hence, we define b(m, 1) := m. Now, assume there are k + 1 subsets. If tj′,D′

is non-decreasing for some subset D′ with D′ �= D for more than b(|G|, k) steps (which
implies that sj′,D′ is non-decreasing as well), then there are two dickson prefixes, with
respect to the other k subsets in that infix that are also dickson for all k + 1 subsets.
Hence, in every non-dickson sequence the value tj′,D′ for every subset D′ �= D has to be
reset to 0 in every infix of length b(|G|, k). If tj′,D′(x) = 0, then we can bound tj′,D′(xy)
and sj′,D′(xy) by

|y| · (|y| + 1)
2

.

Altogether, the values in a non-dickson sequence are bounded by

b(|G|, k) · (b(|G|, k) + 1)
2

after an initial prefix of length b(|G|, k). Thus, there cannot be more than

b(|G|, k) + |G| ·
(
b(|G|, k) · (b(|G|, k) + 1)

2

)2k

steps without a pair of dickson prefixes, which gives

b(m,k + 1) := b(m,k) +m ·
(
b(m,k) · (b(m,k) + 1)

2

)2k

.

The exponent 2k is due to the fact that the vectors contain two value for each subset
D′ ∈ Up(Pj′), i.e., tj′,D′(w) and sj′,D′(w).
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Now, we state the last technical Lemma which sums up all properties of the im-
provement scheme we need. Afterwards, we conclude the first step by putting the pieces
together.

Lemma 4.19. Let j ∈ [k], l ∈ [cj ], and e(l) = (j,D). Then

(i) (update∗j,l,n)n∈N converges to the identity function.

(ii) limn→∞ σj,l,n exists.

(iii) If σj,l−1 uniformly bounds the totalized waiting time for D′ ∈ Up(Pj′) for some j′,
then so does σj,l.

(iv) vP (σj,l) ≤ vP (σj,l−1).

(v) σj,l uniformly bounds the waiting time for D to

bj,D := f−1
j (bP (G)) + (|Dj\D| + 1) · b

⎛
⎝|G|,

k∑
j=1

|Up(Pj)|
⎞
⎠ .

Proof. (i) We proceed by induction: we have update∗j,l,n(s0) = s0 for all n. Now, assume
update∗j,l,n(w) = w for all n ≥ nw. If tj,D(ws) ≤ f−1

j (bP (G)), then updatej,l,n(w, s) = ws

and therefore also update∗j,l,n(ws) = ws for all n ≥ nw.
Thus, let tj(ws) > f−1

j (bP (G)) and let Tn be T
σj,l,n−1

G,s0
�ws restricted to the maxi-

mal paths that continuously contain D in their set of open requests. By definition,
update∗j,l,n(ws) is a vertex of Tn. Since every path in Tn is a path in Tn−1 from which
some loops might be deleted the size of the Tn is decreasing. Finally, if Tn = Tn+1, then
we have Tn′ = Tn for all n′ ≥ n. Thus, there is an index nws ≥ nw such that the Tn

are equal for all n ≥ nws. From that index on we have updatej,l,n(w, s) = ws and thus
update∗j,l,n(ws) = ws.

(ii) By (i), we have

σj,l,n(ρ0 . . . ρi)

=nextj,l,n(ρi,update∗j,n(ρ0 . . . ρi))

=nextj,l,n(ρi, ρ0 . . . ρi)

=σj,l,n−1(ρ0 . . . ρi)

for all finite plays ρ0 . . . ρi and all sufficiently large n. Thus, (σj,l,n)n∈N converges.

For the next two claims we need to introduce some additional but familiar notation.
For an explanation we refer to Figure 3.3. For 1 ≤ m ≤ n define update∗j,l,[m,n] by
update∗j,l,[m,m](w) = update∗j,l,m(w) and

update∗j,l,[m,n+1](w) = update∗j,l,[m,n](update∗j,l,n+1(w)).
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Applying Lemma 4.15 inductively, we can show that update∗j,l,[m,n](w) is a finite play
consistent with σj,l,m−1 for every play w consistent with σj,l,n. Analogously, applying
Lemma 4.16 inductively, we get t(w) ≤ t(update∗j,l,[m,n](w)) for all w consistent with σn.

We have shown in the proof of Lemma 4.19 (i) that for every finite play x according
to σj,l there is an nx such that update∗j,l,n(x) = x for all n ≥ nx. We define update∗j,l,ω by
updatej,l,ω(x) = update∗j,l,[1,nx](x). By the remarks above, we know that update∗j,l,ω(x)
is consistent with σj,l−1 and t(x) ≤ t(update∗j,l,ω(x)) for every play x consistent with σj,l.

(iii) We have tj′,D′(x) ≤ B for all finite plays x consistent with σj,l−1. Now, let x be
a play consistent with σj,l. Then, update∗j,l,ω(x) is a prefix of a play according to σj,l−1.
Hence, tj′,D′(x) ≤ tj′,D′(update∗j,l,ω(x)) ≤ B. Thus, σj,l uniformly bounds the totalized
waiting time for D′.

(iv) For a play ρ = ρ0ρ1ρ2 . . ., let update∗j,l,ω(ρ) = limn→∞ update∗j,l,ω(ρ0 . . . ρn). The
limit update∗j,l,ω(ρ) is a play consistent with σj,l−1 for every play ρ consistent with σj,l.
We show vP (ρ) ≤ vP (update∗j,ω(ρ)) for all ρ consistent with σj,l, which implies the claim.
To this end, we define

S = {x′ � update∗j,l,ω(ρ) | ¬∃x � ρ : update∗j,l,ω(x) = x′}.

S contains exactly the vertices of the loops skipped by Player 0 throughout the improve-
ment steps. Let x′ ∈ S; then, tj(x′) > f−1

j (bP (G)) holds, as every improvement step only
deletes loops of update∗j,l,ω(ρ) after a waiting time of at least f−1

j (bP (G)) steps. Thus,
p(x′) > bP (G) ≥ vP (σ) and

lim sup
n→∞

1
n

n−1∑
i=0

p(update∗j,l(ρ0 . . . ρi)) ≤ vP (update∗j,l(ρ)) (4.1)

since the average decreases if the summation omits the summands for the prefixes in S.
Now, let x � ρ: We have t(x) ≤ t(update∗j,l,ω(x)) and therefore p(x) ≤ p(update∗j,l,ω(x)).
Thus,

1
n

n−1∑
i=0

p(ρ0 . . . ρi) ≤ 1
n

n−1∑
i=0

p(update∗j,l(ρ0 . . . ρi)).

The latter term converges to a value less than or equal to vP (update∗j,l(ρ)), by (4.1).
Thus, we conclude vP (ρ) ≤ vP (update∗j,l(ρ)).

(v) The last claim is proven by induction over l. There are at most |Dj\D| intervals
in between the elements of Dj that were embedded already. By induction hypothesis,
we can assume that the claim holds for all those intervals, i.e., for all D′ ∈ Up(Pj) such
that |D′| > |D|, since e−1(j,D′) < e−1(j,D). Now, assume there is a play w consistent
with σj,l such that (D, t) ∈ Openj(w) for some t > bj,D and let w = xy such that
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|y| = d(|G|,∑k
j=1 |Up(Pj)|) + 1. From the induction hypothesis and the fact that the

waiting times for all D′ that could precede D are already bounded, we can conclude that

(D, f−1
j (bP (G)) + (|D\Dj |) · b(|G|,

k∑
j=1

|Up(Pj)|) + 1 + |y′|) ∈ Openj(xy
′)

for all y′ 	 y. The situation is depicted in Figure 4.7: the length of the first two intervals
I is bounded by induction hypothesis. Thus, if the waiting time is longer than bj,D, then
the last interval is longer than b(|G|,∑k

j=1(|Up(Pj)|)).

ρ

q d1 d2 d3

I︷ ︸︸ ︷ I︷ ︸︸ ︷ I′︷ ︸︸ ︷

Figure 4.7: The inductive step for Lemma 4.19 (v): the intervals I are short by induc-
tion hypothesis. Thus, I ′ is long

Finally, there exists N such that update∗j,l,N(xy′) = xy′ for all y′ 	 y. Thus, y is
non-dickson save D, which contradicts the definition of d.

Now, we can wrap things up by stating the final lemma of the first part, which gives
us the desired bound on the waiting times of an optimal strategy.

Lemma 4.20. For every winning strategy σ0 for G for Player 0 of value vP (σ0) ≤ bP (G),
there is a winning strategy σk that bounds the totalized waiting time for all j ∈ [k] and
all D ∈ Up(Pj) to bj,D·(bj,D+1)

2 . Furthermore, vP (σk) ≤ vP (σ0).

Proof. By induction over l. From Lemma 4.19 (iii) and (v) and Remark 4.11 we con-
clude that σk bounds the totalized waiting time for all j ∈ [k] and all D ∈ Up(Pj)
to bj,D ·(bj,D+1)

2 . Analogously, vP (σk) ≤ vP (σ0) ≤ bP (G) by induction hypothesis, by
Lemma 4.19 (iv), and by the assumption on σ0. Thus, σk is a winning strategy by
Lemma 4.10 (ii).

This concludes the first step. We have proved that the search for an optimal strategy
can be restricted to a finite domain. In the second step, we construct a Mean-Payoff
Game whose plays are the plays of G annotated with their totalized waiting times.
Lemma 4.20 allows us to bound the totalized waiting time for D ∈ Up(Pj) to bj,D ·(bj,D+1)

2 ,
and thereby also the size of the expanded arena. Then, we find an optimal strategy for
the Poset Game by determining the optimal strategy in a Mean-Payoff Game.
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4.3.2 Reducing Poset Games to Mean-Payoff Games

This subsection is devoted to the second step of the proof of Theorem 4.13, the reduction
to Mean-Payoff Games. In the expanded arena, we need to keep track of the totalized
waiting time tj,D. To be able to compute tj,D(ws) from tj,D(w) locally we need to know
sj,D(w) as well. The bound on tj,D(w) obtained in the first part of the proof also bounds
sj,D(w). Thus, let Fj be the set of functions

f : Up(Pj) → N such that f(D) ≤ bj,D · (bj,D + 1)
2

for all D ∈ Up(Pj). Every Fj is obviously finite.
Remember that Newj(s) returns Dj if s is a request for condition j, and ∅ otherwise.

Furthermore, Embj(D, s) is the set of elements in D that could not be embedded to the
vertex s. Formally,

Newj(s) =

{
Dj if qj ∈ lG(s)
∅ otherwise

and

Embj(D, s) = {d ∈ D | ∃d′ ∈ D : d′ �j d and lj(d′) /∈ lG(s)}.

We define the memory structure M = (M, init,update) where

• M =
∏k

j=1(Fj × Fj) ∪ {m↑},

• init(s) = (time1, size1, . . . , timek, sizek) where

timej(D) = sizej(D) =

{
1 if Embj(Newj(s), s) = D

0 otherwise

for all D ∈ Up(Pj), and

• The update function is given by update(m↑, s) = m↑ for all vertices s. Otherwise,
if m = (time1, size1, . . . , timek, sizek) ∈M define time′j and size′j by

time′j(D) = |Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj):
Embj(D′,s)=D

(timej(D′) + sizej(D′))

and

size′j(D) = |Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj ):
Embj(D′,s)=D

sizej(D′)
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for all D ∈ Up(Pj). If time′j /∈ Fj for some j, i.e., there exists D ∈ Up(Pj)

such that time′j(D) > bj,D ·(bj,D+1)
2 , then we define update(m, s) = m↑, otherwise

update(m, s) = (time′1, size′1, . . . , time′k, size′k).

Since it is Player 1’s goal to minimize the limit superior of the average edge weights in a
Mean-Payoff Game we have to switch the Player’s positions, i.e., we define V ′

0 = V1×M ,
V ′

1 = V0 ×M and G′ = (V ×M,V ′
0 , V

′
1 , Eupdate). Let

d =
k∑

j=1

fj(
bj,D · (bj,D + 1)

2
+ 1)

where fj is the penalty function for condition j. To complete the definition of the
game we need to define the weight function l: We define l((s,m), (s′,m↑)) = d for all
(s,m) ∈ V ×M and

l((s, (time1, size1, . . . , timek, sizek)), (s′, (time′1, size′1, . . . , time′k, size′k)))

=
k∑

j=1

fj

⎛
⎝ ∑

D∈Up(Pj )

timej(D)

⎞
⎠

where fj is again the penalty function. Now, let G′ = (G′, (s0, init(s0)), d, l) be the
Mean-Payoff Game in the expanded arena.

The following lemma shows that the values for a play G and the expanded plays in
G′ are equal.

Lemma 4.21. Let w be a finite play of G.

(i) Let update(w) = (time1, size1, . . . , timek, sizek). Then, timej(D) = tj,D(w) and
sizej(D) = sj,D(w).

(ii) If update(w) = m↑, then there exists a prefix w′ of w and a D ∈ Up(Pj) such that
tj,D(w′) > bj,D ·(bj,D+1)

2 .

(iii) Let ρ be a play in G such that the totalized waiting times for all j ∈ [k] and all
D ∈ Up(Pj) are uniformly bounded by bj,D ·(bj,D+1)

2 , and let ρ′ be the expanded play
in G′. Then, vP (ρ) = v1(ρ′).

(iv) Let ρ′ be a play in G′ that does not visit a vertex with memory state m↑, and let ρ
be the projected play in G. Then, v1(ρ′) = vP (ρ).

Proof. (i) By induction over w: for the base case w = s notice that tj,D(s) ∈ {0, 1}. We
have

tj,D(s) = 1 ⇔ (D, 1) ∈ Openj(s)

⇔ D = Embj(Newj(s), s) ⇔ timej(D) = 1,
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and

tj,D(s) = 0 ⇔ (D, 1) /∈ Openj(s)

⇔ D �= Embj(Newj(s), s) ⇔ timej(D) = 0.

Also, sj,D(s) ∈ {0, 1} and

sj,D(w) = 1 ⇔ Openj(s) ∩ {D} × N = {(D, 1)}
⇔ tj,D = 1 ⇔ timej(D) = 1 ⇔ sizej(D) = 1,

and

sj,D(w) = 0 ⇔ Openj(s) ∩ {D} × N = ∅
⇔ tj,D = 0 ⇔ timej(D) = 0 ⇔ sizej(D) = 0.

For the induction step, let update∗(w) = (time1, size1, . . . , timek, sizek) and similarly
update∗(ws) = (time′1, size′1, . . . , time′k, size′k). By induction hypothesis, we can assume
timej(D) = tj,D(w) and sizej(D) = sj,D(w). We have

tj,D(ws)

=
∑

(D,t)∈Openj(ws)

t

=|Embj(Newj(s), s) ∩ {D}| +
∑

(D′,t′)∈Openj(w):

Embj(D
′,s)=D

(t′ + 1)

=|Embj(Newj(s), s) ∩ {D}| +
∑

(D′,t′)∈Up(Pj ):
Embj(D′,s)=D

(tj,D′(w) + sj,D′(w))

=|Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj):
Embj(D′,s)=D

(timej(D′) + sizej(D′))

=time′j(D),

and

sj,D(ws)

=|{t | (D, t) ∈ Openj(ws)}|
=|{Embj(Newj(s), s) ∩ {D}}| +

∑
D′∈Up(Pj ):

Emb(D′,s)=D

|{t′ | (D′, t′) ∈ Openj(w)}|
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=|{Embj(Newj(s), s) ∩ {D}}| +
∑

D′∈Up(Pj):
Emb(D′,s)=D

sj,D′(w)

=|Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj ):
Embj(D

′,s)=D

sizej(D′)

=size′j(D).

(ii) Let w′ be the longest prefix of w such that update∗(w′) �= m↑ and s the next
vertex of w after w′. Furthermore, let update∗(w′) = (time1, size1, . . . , timek, sizek).
Thus, timej(D) = tj,D(w) by (i). We define time′j and size′j by

time′j(D) = |Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj):
Embj(D′,s)=D

(timej(D′) + sizej(D′))

and

size′j(D) = |Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj):
Embj(D

′,s)=D

sizej(D′),

respectively. Analogous to the proof in (i), we can show that time′j(D) = tj,D(ws) and

size′j(D) = sj,D(ws). Assume tj,D(w′) ≤ bj,D·(bj,D+1)
2 for all D ∈ Up(Pj) and all j ∈ [k].

Then, update((time1, size1, . . . , timek, sizek), s) = update∗(w′s) �= m↑ which contradicts
our assumption on w′. Thus, tj,D(w′) > bj,D ·(bj,D+1)

2 for some D ∈ Up(Pj) and some j.
(iii) and (iv) are easy implications of (i) and (ii).

Now, we are able to prove Theorem 4.13.

Proof. We begin by relating strategies and values for Player 0 for G and Player 1 in G′.
Let σ be a strategy for Player 0 for G that uniformly bounds the totalized waiting

times for all conditions D ∈ Up(Pj) to bj,D·(bj,D+1)
2 . We define the strategy τ ′ for

Player 1 in G′ by τ ′((ρ0,m0) . . . (ρn,mn)) = σ(ρ0 . . . ρn). We claim τ ′ guarantees vP (σ)
for Player 1 in G′. Assume it does not. Then, Player 0 has a strategy σ′ for G′ such
that v1(ρ(s0, σ′, τ ′)) > vP (σ). The projected play ρ of ρ(s0, σ′, τ ′) is consistent with σ by
construction of τ ′. Thus, vP (σ) ≥ vP (ρ) = v1(ρ(s0, σ′, τ ′)) > vP (σ) by Lemma 4.21 (iii),
which yields the desired contradiction.

Conversely, let τ ′ be a strategy for Player 1 in G′ that guarantees a loss d′ < d.
Thus, no play consistent with τ ′ visits a vertex with memory state m↑. Let σ be the
strategy for Player 0 for G induced by τ ′ via G ≤M G′. We claim vP (σ) ≤ d′. Assume
Player 1 has a strategy τ for G such that vP (ρ(s0, σ, τ)) > d′. The expanded play ρ′ of
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ρ(s0, σ, τ) is consistent with τ ′ by Lemma 2.8. Thus, d′ ≥ v1(ρ′) = vP (ρ(s0, σ, τ)) > d′

by Lemma 4.21 (iv), which again amounts to a contradiction.
Now, we can begin with the actual proof: since Player 0 wins G, Corollary 4.12 and

Lemma 4.20 guarantee that she also has a winning strategy σ that uniformly bounds
the waiting times for all D ∈ Up(Pj) to bj,D·(bj,D+1)

2 . Let τ ′ be the induced strategy for
Player 1 in G′. Every play consistent with τ ′ does not reach a vertex with memory state
m↑. Thus, this strategy guarantees a loss less than d. Hence, vM (G′) < d.

Let τopt be a positional strategy guaranteeing vM (G′) for Player 1 in G′. We show
that the strategy σopt induced by G ≤M G′ and τopt is an optimal winning strategy for
Player 0 for G. This suffices since σopt is finite-state with memory M and effectively
computable by Theorem 2.20.

By the remarks above, we have vP (σopt) = vM (G′). To conclude the proof we assume
that σopt is not optimal, i.e., Player 0 has a strategy σ for G such that vP (σ) < vP (σopt).
By Lemma 4.20, we can assume without loss of generality that σ uniformly bounds the
totalized waiting times for all D ∈ Up(Pj) to bj,D ·(bj,D+1)

2 . Then, the strategy τ ′ for
Player 1 in G′ induced by σ guarantees vP (σ) < vP (σopt) = vM (G′). This amounts to a
contradiction, since τopt is optimal for G′.

Corollary 4.22. The value vP (σ) of an optimal strategy σ is effectively computable.

Proof. Construct G′ and compute vM (G′). If vM (G′) = d, then Player 0 loses G and
v(σ) = ∞ for every strategy σ. Otherwise, the value of an optimal strategy for the
Poset Games coincides with vM (G′).

Every Request-Response Game is a Poset Game where every domain is a singleton.
Formally, given a Request-Response Game G = (G, s0, (Qj , Pj)j=1,...,k) construct the
Poset Game G′ = (G, s0, (qj ,Pj)j=1,...,k) where Pj = ({pj}, {(pj , pj)}, lj) and lj(pj) = pj.
The labeling lG of the arena G is defined by lG(s) = {qj | s ∈ Qj} ∪ {pj | s ∈ Pj}. The
games G and G′ are obviously equivalent.

Hence, both frameworks for defining time-optimal strategies are applicable to G.
Either use the framework for Request-Response Games or construct G′ first, and then
use the framework for Poset Games. We have already seen that the waiting times for
Request-Response Games are defined by a single clock for every condition that is started
by request and stopped by the first response. All subsequent requests of a condition
that occur while the clock is still running are ignored. Waiting times for Poset Games
have to be defined differently since the embeddings for different requests may overlap
(see Figure 4.3). Thus, for every request of a condition a new clock is started and is
not stopped until the corresponding poset is embedded. Thus, in a Poset Game G′

constructed from a Request-Response Game, requests occurring while another request
is open, are not ignored. Therefore, the value of a play or a strategy for Player 0,
respectively, is smaller in the Request-Response Game setting than in the Poset Game
setting, if the values are defined with respect to the same penalty functions.
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Lemma 4.23. Let ρ be a play and σ a strategy for Player 0.

(i) vR(ρ) ≤ vP (ρ).

(ii) vR(σ) ≤ vP (σ).

Proof. (i) We prove ({pj}, tj(ρ0 . . . ρn)) ∈ Openj(ρ0 . . . ρn), if tj(ρ0 . . . ρn) > 0, which
implies the claim. Here, tj is the waiting time function for the Request-Response Game.
Let tj(ρ0 . . . ρn) = 1. Then, ρn ∈ Qj\Pj by definition of tj. Therefore, qj ∈ lG(s)
but pj /∈ lG(s), by definition of lG. Hence, it holds ({pj}, 1) ∈ Openj(ρ0). Now, let
tj(ρ0 . . . ρn+1) = t + 1 > 1. Then, tj(ρ0 . . . ρn) = t and we can apply the induction
hypothesis and obtain ({pj}, t) ∈ Openj(ρ0 . . . ρn). Furthermore, since the waiting time
is not reset to zero at ρn+1, it holds pj /∈ lG(ρn+1). Thus, Embj({pj}, ρn+1) = {pj}
which implies ({pj}, t + 1) ∈ Openj(ρ0 . . . ρnρn+1).

(ii) We have

vR(σ) = sup
τ∈Γ1

vR(ρ(s0, σ, τ)) ≤ sup
τ∈Γ1

vP (ρ(s0, σ, τ)) = vP (σ),

where the inequality is due to (i).



Chapter 5

Solitary PLTL Games

Temporal Logics reason about propositions that change over the course of time. Consider
an atomic proposition p. The formula Fp is satisfied, if p is true some time in the
future. The formula Gp is satisfied, if p is continuously true from now on. If the
time is assumed to be discrete, i.e., the domain of the time steps is discrete, then Xp
is satisfied, if p holds after the next time step. If the time is continuous, then X is
disregarded. Derived from Tense Logic [46], Temporal Logic was at first applied to
program verification by Pnueli [44]. There, the time domain is given by the executions
of a system under consideration, thus it is discrete (typically N). Two paradigms of
Temporal Logic can be identified by their treatment of time. The semantics of Linear
Temporal Logic [44], (see Section 2.3), are defined with respect to a single time line. In
the context of verification, this means that an LTL formula is evaluated with respect
to a single execution. The system satisfies the formula, if every execution is a model
of the formula. Branching Time Logics like CTL [9] and CTL∗ [16] on the other hand,
are defined with respect to several time lines. They allow to express requirements like
if a request is encountered, then there is the possibility that this request is responded.
However, there might be another execution that does not respond this request. Thus,
branching time can be utilized to model unpredictability of the system. The differences
between the two paradigms are discussed in [36]. Both flavors of Temporal Logic are
today widely used in Formal Verification of closed systems by Model-Checking Tools.
We focus on LTL, as we employ formulae as winning conditions to determine the winner
of a play.

Typical properties expressible in LTL are liveness properties Fp, specifying something
good will happen, and safety properties Gp, specifying that nothing bad ever happens.
Nesting the operators, one can express the Büchi condition, i.e., infinitely often p by
GFp, for example. Also, Request-Response, Parity and Muller winning conditions are
expressible in LTL.

The main advantages of LTL are the variable-free syntax and intuitive semantics,
which make it suitable for practical applications. However, there is also a drawback.
The semantics of Fp do only require p to be satisfied some time in the future, without
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specifying a bound. This behavior is undesirable in applications, where the user is
generally interested in prompt satisfaction. Also, the semantics of Gp, which require p
to be true from now on ad infinitum might be to strong, while it would suffice that p
holds as long as possible. It is easy to see that there are no such bounds intrinsic to
the semantics of LTL (unlike for CTL, where the number of states of the graph provides
such a bound [9]), i.e., if Fp is satisfied, then there is also a bound B such that p is true
within the next B steps. Consider the formula ϕ = FGp and the graph G in Figure 5.1.
Every path of G is a model of ϕ, but there is no bound b such that Gp is satisfied within
the next b steps on all paths.

p ∅ p

Figure 5.1: A graph without a fixed bound for FGp

One way to overcome this is to subscript the temporal operators by bounds and a
direction, i.e., F≤5 and F>5 for example. Several so called real-time or quantitative logics
have been introduced with this capability. For example, Metric Temporal Logic [2] or
Real-Time CTL [19]. However, they require the user to know the bounds in advance,
which is typically not feasible. Also, if a system satisfies a parameterized formula,
there is no information on how tight the bounds are. Even more importantly, adding
parameterized operators does not increase the expressivity of LTL, as F≤2p is equivalent
to the formula p ∨ Xp ∨ XXp.

To relieve the user from determining the bounds and to allow the search for optimal
bounds, the constants can be replaced by variables. Then, F≤xp is true, if p is true
within the next x steps, where x is a free variable. Satisfaction is then defined with
respect to a variable valuation. Thus, given a specification and a system, one can ask
whether there is a valuation such that the specification holds, or even determine an
optimal valuation. This extension of LTL, called Parametric Linear Temporal Logic,
was introduced by Alur et. al. [1].

In this chapter, we use Parametric Linear Temporal Logic to specify winning condi-
tions for infinite games. This is an extension of LTL Games with parameterized winning
conditions that allows a clear specification of time-optimal strategies. Player 0’s goal
is to minimize the waiting time x for formulae F≤xψ and G>xψ and to maximize the
bound y for formulae G≤yψ and F>y. A PLTL Game G consists of an arena and a
winning condition ϕ. The winner of a game is determined with respect to a valuation
α. Player 0 wins a play of G, if the play is a model of ϕ with respect to α. Accordingly,
Player 0 wins G with respect to α, if she has a strategy such that every play consistent
with this strategy is won by her. This induces a set W0

G consisting of the good valuations
for Player 0. Thus, the questions of emptiness, finiteness and universality arise. Also,
one can search for optimal strategies for Player 0.
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This chapter is structured as follows. We introduce PLTL in Section 5.1 and present
some simple results from [1] which encompass the typical treatment of a new logic. After
defining syntax and semantics, we consider dualities of the temporal operators and show
that the set of parameterized temporal operators can be restricted to F≤x and G≤y

without losing any expressive power. The formulae built from the classical temporal
operators and F≤x form the fragment PLTLF while the fragment PLTLG is defined
analogously. Most of the remainder of this chapter is concerned with these unipolar
fragments, which have good decidability properties while the questions for the full logic
are mostly open [1]. However, there is evidence that the full logic is too strong. We
reiterate the findings at the end of Section 5.1. As Model-Checking is a special case of
synthesis, we restrict our attention to these fragments when defining PLTL Games in
Section 5.2. The main part of this section is devoted to two technical lemmata that are
the key to the main theorems about PLTL Games. For unipolar solitary games, it is
decidable whether Player i wins a PLTL Game with respect to some, all or only finitely
many valuations. Furthermore, for these games optimal valuations are computable. For
solitary PLTLG Games, a proof from [1] can be adapted to our cause easily and another
theorem (without proof) from that paper can be adapted to solitary PLTLF Games.
Our technical lemma for PLTLF games establishes a similar result (with slightly higher
bounds). We close this chapter by considering alternative semantics for PLTL Games
in Section 5.3. Instead of requiring that the winning condition holds on all plays with
respect to a fixed valuation, it requires that there is a valuation for every play, such
that the winning condition holds with respect to that valuation on that particular play.
Thus, the valuation is not uniform for all plays, but there might be different valuations
for different plays. We analyze these semantics and draw comparisons to the standard
semantics introduced in Section 5.2.

5.1 Parametric Linear Temporal Logic

Parametric Linear Temporal Logic extends Linear Temporal Logic with temporal oper-
ators that can be subscripted by variables. We begin this section by defining the syntax
and semantics of PLTL and by discussing some elementary properties before we close it
by stating the results.

Let P be a set of atomic propositions and Y and X be two disjoint sets of vari-
ables. Parametric Linear Temporal Logic, PLTL for short, extends the syntax of Linear
Temporal Logic introduced in Section 2.3 by a parameterized version of every temporal
operator (but X, which has no reasonable parameterized version). A parameter is either
a variable or a non-negative integer, a constant parameter. We explain the need for two
disjoint sets of variables later in this section. We define the set PLTL of Parametric
Linear Temporal Logic formulae inductively by

• p,¬p ∈ PLTL if p ∈ P ,

• ϕ ∧ ψ,ϕ ∨ ψ ∈ PLTL if ϕ,ψ ∈ PLTL,
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• Xϕ,Fϕ,Gϕ,ϕUψ,ϕRψ ∈ PLTL if ϕ,ψ ∈ PLTL,

• F≤xϕ,G≤yϕ,ϕU≤xψ,ϕR≤yψ ∈ PLTL if ϕ,ψ ∈ PLTL, x ∈ X ∪ N, y ∈ Y ∪ N, and

• F>yϕ,G>xϕ,ϕU>yψ,ϕR>xψ ∈ PLTL if ϕ,ψ ∈ PLTL, x ∈ X ∪ N, y ∈ Y ∪ N.

There are several complexity measures of a formula ϕ that are used later on. The set of
variables of ϕ, var(ϕ), and the set of constants of ϕ, con(ϕ), are defined in the obvious
way. Furthermore, let

• nϕ be the number of distinct subformulae of ϕ,

• kϕ be the number of temporal operators of ϕ parameterized by a variable, and

• cϕ be the product of all non-zero constants that parameterize operators in ϕ.

To define the semantics of PLTL, we need to know the values of the variables: a
valuation is a mapping α : X ∪ Y → N. By convention, we compare valuations compo-
nentwise, i.e., α ≤ β iff α(z) ≤ β(z) for all z ∈ X ∪ Y. Thus, ≤ is a partial order on
the set of all valuations, and we can speak of upwards-closed and downwards-closed sets
of valuations. Oftentimes, when dealing with a fixed formula ϕ, we implicitly assume
that a valuation is a mapping α : var(ϕ) → N, if it is opportune. The following facts are
useful throughout this chapter.

Remark 5.1. Let α0 be the valuation that maps every variable to zero.

(i) A downwards-closed set of valuations is non-empty iff it contains α0.

(ii) An upwards-closed set of valuations is universal iff it contains α0.

(iii) An upwards-closed set of valuations is infinite iff it is non-empty.

To deal with temporal operators parameterized by constants more conveniently, we
extend the domain of α to X ∪Y∪N and define α(c) = c for all c ∈ N. Let ρ = ρ0ρ1ρ2 . . .
be a path of a labeled graph (V,E, l). Satisfaction of a formula ϕ instantiated by α at
position n of ρ, written (ρ, n, α) |= ϕ, is defined inductively by

• (ρ, n, α) |= p iff p ∈ l(ρn),

• (ρ, n, α) |= ¬p iff p /∈ l(ρn),

• (ρ, n, α) |= ϕ ∧ ψ iff (ρ, n, α) |= ϕ and (ρ, n, α) |= ψ

• (ρ, n, α) |= ϕ ∨ ψ iff (ρ, n, α) |= ϕ or (ρ, n, α) |= ψ,

• (ρ, n, α) |= Xϕ iff (ρ, n + 1, α) |= ϕ,

• (ρ, n, α) |= Fϕ iff there exists k ≥ 0 such that (ρ, n + k, α) |= ϕ,

• (ρ, n, α) |= Gϕ iff for all ≥ 0: (ρ, n + k, α) |= ϕ,

• (ρ, n, α) |= ϕUψ iff there exists k ≥ 0 such that (ρ, n+ k, α) |= ψ and for all l such
that 0 ≤ l < k: (ρ, n+ l, α) |= ψ,

• (ρ, n, α) |= ϕRψ iff for all k ≥ 0: either (ρ, n+ k, α) |= ψ or there exists l < k such
that (ρ, n + l, α) |= ϕ,
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• (ρ, n, α) |= F≤xϕ iff there exists k ≤ α(x) such that (ρ, n+ k, α) |= ϕ,

• (ρ, n, α) |= G≤yϕ iff for all k ≤ α(y): (ρ, n+ k, α) |= ϕ,

• (ρ, n, α) |= ϕU≤xψ iff there exists k ≤ α(x) such that (ρ, n+ k, α) |= ψ and for all
l such that 0 ≤ l < k: (ρ, n + l, α) |= ψ,

• (ρ, n, α) |= ϕR≤yψ iff for all k ≤ α(y): either (ρ, n+k, α) |= ψ or there exists l < k
such that (ρ, n+ l, α) |= ϕ,

• (ρ, n, α) |= F>yϕ iff there exists k > α(y) such that (ρ, n + k, α) |= ϕ,

• (ρ, n, α) |= G>xϕ iff for all k > α(x): (ρ, n + k, α) |= ϕ,

• (ρ, n, α) |= ϕU>yψ iff there exists k > α(y) such that (ρ, n+ k, α) |= ψ and for all
l such that 0 ≤ l < k: (ρ, n + l, α) |= ψ, and

• (ρ, n, α) |= ϕR>xψ iff for all k > α(x): either (ρ, n + k, α) |= ψ or there exists
l < k such that (ρ, n + l, α) |= ϕ.

Finally, ρ is a model of ϕ instantiated by α, (ρ, α) |= ϕ iff (ρ, 0, α) |= ϕ.
A valuation α makes ϕ satisfiable, if there exists a labeled path ρ of some labeled

graph such that (ρ, α) |= ϕ. Analogously, α makes ϕ valid, if (ρ, α) |= ϕ for all paths
ρ of all labeled graphs. This defines the sets S(ϕ) and V (ϕ) containing the valuations
that make ϕ satisfiable respectively valid.

Let G be a fixed labeled graph. We say that α makes ϕ satisfiable in G if there exists
a path ρ of G such that (ρ, 0, α) |= ϕ, and that α makes ϕ valid in G if (ρ, 0, α) |= ϕ for
every path ρ of G. This defines the sets S(G,ϕ) and V (G,ϕ) containing the valuations
that make ϕ satisfiable respectively valid in G. Problems regarding S(ϕ) can obviously
be reduced to the same problems for S(G,ϕ), where G is a graph whose paths coincide
with all labeled paths for the propositions occurring in ϕ. The same observation can be
made for the validity sets V (ϕ) and V (G,ϕ).

Remark 5.2. Although, we do only allow negation of atomic propositions, PLTL is
closed under negation as witnessed by the dualities for LTL and the following dualities
of the parameterized operators.

¬F≤xϕ ≡ G≤y¬ϕ
¬F>xϕ ≡ G>y¬ϕ

¬(ϕU≤xψ) ≡ (¬ϕ)R≤y(¬ψ)

¬(ϕU>xψ) ≡ (¬ϕ)R>y(¬ψ)

Thus, every negation can be pushed to the atomic formulae p and ¬p. Removing double
negations then gives an equivalent formula in negation normal form, as it is required by
the syntax of PLTL.

We abuse our notation slightly and write ¬ϕ for the PLTL formula obtained by this
procedure.
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Remark 5.3. Let ϕ be a PLTL formula and G a labeled graph. Then,

(i) S(ϕ) = V (¬ϕ), and

(ii) S(G,ϕ) = V (G,¬ϕ).

As with classical LTL, many temporal operators are just syntactic sugar, as they
can be defined in terms of a small set of basic operators. We state some straightfor-
ward equivalences and dualities that allow us to supersede all but two parameterized
operators [1].

Fϕ ≡ ttUϕ

Gϕ ≡ ffRϕ

ϕU≤xψ ≡ (ϕUψ) ∧ F≤xψ

ϕR≤yψ ≡ (ϕRψ) ∨ G≤yψ

F>yϕ ≡ G≤yFXϕ

G>xϕ ≡ F≤xGXϕ

ϕU>yψ ≡ G≤y(ϕ ∧X(ϕUψ))
ϕR>xψ ≡ F≤x(ϕ ∨X(ϕRψ))

This allows us to restrict our attention to the parameterized operators F≤x and G≤y

along with the unparameterized operators X, U, and R while still retaining closure
under negation, since F≤x and G≤y are dual. Also, replacing the operators leads only
to a linear increase of the formula’s complexity. The number of distinct subformulae
nϕ grows by a constant number in every rewriting step. The number of subformulae
parameterized with variables kϕ and the product of the non-zero constants cϕ remain
unchanged. Also, the variables used in the original formula and in the rewritten formula
are the same. The length measured in symbols might grow exponentially, though.

The parameterized operators are obviously monotone, either upwards as F≤y or
downwards as G≤y, for example. Consider a parameterized eventuality: if it is satisfied
in no more than k steps, then it also satisfied in no more than k+1 steps. Dually, consider
a parameterized always: if a formula holds for the next k steps, then it also holds for
the next k − 1 steps. The same observations can be made for all other parameterized
operators, also.

Remark 5.4 ([1]). Let α, β be valuations such that α(x) < β(x) and α(y) > β(y) for
some x ∈ X ∪ N and y ∈ Y ∪ N. Then,

(ρ, n, α) |= F≤xϕ implies (ρ, n, β) |= F≤xϕ,

(ρ, n, α) |= G≤yϕ implies (ρ, n, β) |= G≤yϕ,

(ρ, n, α) |= ϕU≤xψ implies (ρ, n, β) |= ϕU≤xψ,

(ρ, n, α) |= ϕR≤yψ implies (ρ, n, β) |= ϕR≤yψ,
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(ρ, n, α) |= F>yϕ implies (ρ, n, β) |= F>yϕ,

(ρ, n, α) |= G>xϕ implies (ρ, n, β) |= G>xϕ,

(ρ, n, α) |= ϕU>yψ implies (ρ, n, β) |= ϕU>yψ, and

(ρ, n, α) |= ϕR>xψ implies (ρ, n, β) |= ϕR>xψ.

Therefore, the operators parameterized with x ∈ X are called upwards-monotone,
while the operators parameterized with y ∈ Y are called downwards-monotone. The
sets S(ϕ), V (ϕ) and their analogons for labeled graphs are upwards-closed respec-
tively downwards-closed, if ϕ contains only upwards-monotone respectively downwards-
monotone operators. This can be shown by an easy induction over the construction
of ϕ, applying Remark 5.4 for every parameterized operator. Since we can express
all upwards-monotone operators with F≤x and all downwards-monotone operators with
G≤y, these fragments can be defined by allowing only one of the two parameterized
operators: the fragment PLTLF consists of all formulae build from atomic propositions
and their negations by the boolean connectives, the standard temporal operators, tem-
poral operators parameterized by constants c ∈ N and F≤x for x ∈ X . Analogously, the
fragment PLTLG consists of all formulae build from the atomic propositions and their
negations by the boolean connectives, the standard temporal operators, temporal oper-
ators parameterized by constants c ∈ N and G≤y for y ∈ Y. Since the monotonicity of a
parameterized operator can be seen as its polarity, we call formulae in those fragments
unipolar . As F≤x and G≤y are dual, the fragments are dual as well.

Remark 5.5. If ϕ ∈ PLTLF, then ¬ϕ ∈ PLTLG and if ϕ ∈ PLTLG, then ¬ϕ ∈ PLTLF.

For a formula ϕ and a valuation α, let α(ϕ) be the formula obtained by replacing
every variable z ∈ X ∪ Y by α(z). The resulting formula is a PLTL formula without
variables, i.e., every parameterized operator is parameterized by a constant.

Lemma 5.6 ([1]). For every valuation α and every PLTL formula ϕ, there is an LTL
formula ϕ′ such that for all ρ and all n

(ρ, n, α) |= ϕ⇔ (ρ, n, α) |= α(ϕ) ⇔ (ρ, n) |= ϕ′.

Proof. The first equivalence is trivial. For the second, define ψn∧ and ψn∨ by ψ0∧ = ψ0∨ = ψ

and ψj+1
∧ = ψ ∧ Xψj

∧ respectively ψj+1
∨ = ψ ∨ Xψj

∨. Then, the following equivalences
hold.

(ρ, n, α) |= F≤kψ iff (ρ, n) |= ψk
∨

(ρ, n, α) |= G≤kψ iff (ρ, n) |= ψk
∧

Thus, we can inductively replace every subformula F≤kψ or G≤kψ of α(ϕ) by an LTL
formula. This suffices by the above remarks.
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In the following we use α(ϕ) also to denote the LTL formula ϕ′ equivalent to the
PLTL formula α(ϕ), if it is clear from the context which formula we mean. The size of
the LTL formula α(ϕ) is linear in nϕ +

∑
z∈var(ϕ) α(z)+

∑
c∈con(ϕ) c, which is exponential

in the size of α, if we use a binary encoding for α(z). Lemma 5.6 allows us to reduce
satisfiability and validity of PLTL formulae with respect to a fixed valuation α to the
corresponding problems for LTL formulae.

We close this section by presenting the results of [1].

Theorem 5.7 ([1]). Let ϕ be a unipolar PLTL formula and G a labeled graph. The
emptiness, universality, and finiteness problem for S(ϕ) and S(G,ϕ) are decidable.

The results for PLTLG formulae are proven, and for PLTLF formulae a proof idea is
presented. We will adapt these proofs to games in Section 5.2. From these results, one
can also easily derive the solution to several natural optimization problems.

Theorem 5.8 ([1]). Let G a labeled graph.

(i) Let ϕ be a PLTLG formula.

• maxα∈S(ϕ) maxy∈var(ϕ) α(y),

• maxα∈S(ϕ) min y ∈ var(ϕ)α(y),

• maxα∈S(G,ϕ) maxy∈var(ϕ) α(y), and

• maxα∈S(G,ϕ) min y ∈ var(ϕ)α(y)

are computable.

(ii) Let ϕ be a PLTLF formula.

• minα∈S(ϕ) miny∈var(ϕ) α(y),

• minα∈S(ϕ) max y ∈ var(ϕ)α(y),

• minα∈S(G,ϕ) miny∈var(ϕ) α(y), and

• minα∈S(G,ϕ) max y ∈ var(ϕ)α(y)

are computable.

The situation for full PLTL is more complicated. While emptiness and universality
for S(ϕ) are still decidable, the question whether S(ϕ) contains a valuation α such that
α(x) = α(y) is undecidable. This can be seen easily by considering an even stronger
logic. If we allow temporal operators subscripted with = x (with the obvious semantics),
then the logic can encode terminating runs of a Turing Machine. Then, all interesting
questions, like the emptiness of S(ϕ), become undecidable. Also, this explains the need
for two disjoint sets of variables, one for the downwards-monotone operators and one for
the upwards-monotone operators. If we allow z to parameterize both types of operators,
then equality subscripts can be encoded easily.
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5.2 PLTL Games

In this section, we will define games with winning conditions in PLTL, focusing on
unipolar formulae, again. After discussing some simple observations about these games,
we will prove two technical lemmata, on which the main theorems of this section rely.

A (initialized) PLTL Game G = (G, s, ϕ) consists of an arena G, an initial vertex s of
the arena and a winning condition ϕ ∈ PLTL. Additionally, we say that G is a PLTLF

Game if ϕ ∈ PLTLF, and similarly, that G is a PLTLG Game if ϕ ∈ PLTLG. We call
these games unipolar .

The definition of a PLTL Game does not fit properly into the framework for games
we defined in Section 2.4, since ϕ alone does not define a set of winning plays. Paired
with a valuation α, we define ρ ∈ Win ⇔ (ρ, α) |= ϕ. We say Player i wins G with
respect to α if she has a winning strategy with respect to α, i.e., every play consistent
with σ is a model of the winning condition with respect to α. Since ϕ for a fixed α is
equivalent to an LTL formula, a game for a fixed α is nothing more than an LTL game
(albeit the PLTL formula is presumably shorter than the equivalent LTL formula). On
the positive side, this means that a PLTL Game for a fixed α can be solved using the
techniques for LTL Games and finite-state determinacy carries over. On the negative
side, this means that a PLTL game for a fixed valuation is not particularly interesting.
Therefore, we are not interested in a single valuation but in the set of valuations such
that Player 0 has a winning strategy for the game with these valuations. Since we deal
with a fixed game, we can assume that valuations are only defined for the variables
appearing in ϕ. Formally, we define the set of valuations that let Player i win G,

Wi
G = {α | Player i wins (G, s, α(ϕ))}.

As we have seen above, the membership problem α ∈ Wi
G can be solved by determining

the winner of the LTL game (G, s, α(ϕ)). So, we turn our attention to the questions
of emptiness, universality, and finiteness of the set Wi

G. Since games are tightly related
to satisfiability and validity of their winning conditions, we also focus on the unipolar
fragments, which turned out to have nice decidability properties. Also, the strategy
problem is no longer a decision problem, but more of an optimization problem: what is
the optimal valuation α, such that Player i can win G with respect to α. The optimality
of a valuation depends on the winning condition ϕ. A natural approach is to minimize
α(x) for the variables x of parameterized eventualities F≤x, and to maximize α(y) for
the variables y of parameterized always’ G≤y. Since there might be a trade-off between
maximizing some values and minimizing the others, we again retreat to unipolar games,
as there is a natural preference order for valuations in these cases.

Example 5.9. We have seen in Chapter 3 that the Request-Response winning condi-
tion can be expressed by an LTL formulae. The eventualities can be parameterized by
variables to find optimal global bounds on the waiting times. Given a Request-Response
Game G = (G, s, (Qj , Pj)j=1,...,k) we label G by l(s) = {qj | s ∈ Qj} ∪ {pj | s ∈ Pj} and
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define the PLTLF Game G′ = (G, s, ϕ) where

ϕ :=
k∧

j=1

G
(
qj → F≤xjpj

)
.

Alternatively, the eventualities can be parameterized by a single variable, thereby en-
forcing the same bound for all conditions.

Lemma 5.10. Let G be a Request-Response Game and G′ the corresponding PLTLF

Game. Player 0 wins G iff W0
G′ �= ∅. Furthermore, if α ∈ W0

G′, then there exists a
winning strategy σ for Player 0 that bounds the waiting time for condition j to α(xj).

Proof. If Player 0 wins G, then she also has a finite-state winning strategy σ of size
k2k+1, by Theorem 3.1, that bounds the waiting times to |G| · k by Corollary 3.6. Let
α(xj) = |G| · k for all xj. Then, σ is a winning strategy for G with respect to α. Thus,
α ∈ W0

G. The other direction and the second statement are obvious.

In an LTL Game with winning condition ϕ, Player 0’s goal is to move the token such
that every play is a model of ϕ. If she cannot fulfill this, i.e., she has no winning strategy,
then Player 1 has a winning strategy for this game. So, he can move the token in a way
that every play is a model of ¬ϕ. If we swap the roles of the two players, then Player 0
has a winning strategy for the game with winning condition ¬ϕ. This duality is useful
throughout this chapter. Formally, for an arena G = (V, V0, V1, E), let G = (V, V1, V0, E)
be the dual arena, where the two players swap their positions. Obviously, the dual arena
of G is G. Also, a strategy for one of the players in G is a strategy for the other player in
G. Given a PLTL Game G = (G, s0, ϕ), the dual game is G = (G, s0,¬ϕ). Remark 5.5
implies that the dual game of a PLTLG Game is a PLTLF Game and vice versa.

Lemma 5.11. Let α be a valuation and G a PLTL Game. Player i wins G with respect
to α iff Player 1 − i wins G with respect to α.

Proof. Player 0 wins (G, s0, α(ϕ)) iff she has a strategy σ such that every play consistent
with σ is a model of α(ϕ). Thus, the same strategy σ is a strategy for Player 1 in G such
that all plays consistent with σ are models of α(ϕ). Hence, Player 1 wins (G, s0,¬ϕ).
The reasoning for Player 1 is analogous due to determinacy of LTL Games. For the
other direction of the statement, use ¬¬ϕ = ϕ and G = G.

The sets Wi
G enjoy two types of dualities, which we rely on in the following. The

first one is due to determinacy of LTL Games, by Theorem 2.18.

Lemma 5.12. Let G be a PLTL Game. Then

(i) W0
G is the complement of W1

G.

(ii) Wi
G = W1−i

G .
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The monotonicity of the parameterized operators gives rise to the first results.

Lemma 5.13. Let GG be a PLTLG Game and GF be a PLTLF Game.

(i) The sets W0
GG

and W1
GF

are downwards-closed.

(ii) The sets W0
GF

and W1
GG

are upwards-closed.

Proof. We do the proofs for W0
GG

and W0
GF

. For the other sets, apply Lemma 5.12 (ii)
and Remark 5.5. Let ϕG and ϕF be the winning conditions of GG respectively GF.

(i) Let α ∈ W0
GG

and α ≥ β. Then, Player 0 has a winning strategy σ for GG

with respect to α, i.e., (ρ, α) |= ϕG for every play ρ consistent with σ. Then, an easy
induction over the structure of ϕG with repeated applications of Remark 5.4 for every
parameterized always yields (ρ, β) |= ϕG. Thus, σ is also a winning strategy for GG with
respect to β.

(ii) The proof goes along the lines of (i): if Player 0 has a winning strategy σ for GF

with respect to α, then every play consistent with σ is a model of the winning condition
with respect to α. Applying Remark 5.4, one can easily show that every such play is
also a model with respect to β, which finishes the proof.

Combining these closure properties with Remark 5.1 yields the first decision proce-
dures.

Corollary 5.14. Let GG be a PLTLG Game and GF be a PLTLF Game, and α0 the
valuation that maps every variable to zero.

(i) The emptiness of W0
GG

and W1
GF

is decidable by determining the winner of GG

respectively GF with respect to α0.

(ii) The universality of W0
GF

and W1
GG

is decidable by determining the winner of GF

respectively GG with respect to α0.

The finiteness problem for a PLTLF Game coincides with the emptiness problem by
exploiting upwards-closure of W0

GF
.

Remark 5.15. Let GF = (G, s, ϕ) be a PLTLF Game. Then, W0
GF

is infinite iff it is
non-empty.

The finiteness problem for a PLTLG Game G = (G, s, ϕ) can be reduced to the
universality problem for a (simpler) PLTLG game. We assume that ϕ has at least one
temporal operator parameterized with a variable, since the problem is trivial, otherwise.
The set W0

G is infinite iff there is a variable y ∈ var(ϕ) such that y is mapped to
infinitely many values by the valuations in W0

G. By downwards-closure we can assume
that all other variables are mapped to zero. Furthermore, if y is mapped to infinitely
many values, then it is mapped to all possible values, again by downwards-closure. To
combine this, we define ϕy to be the formula obtained from ϕ by replacing every variable
z �= y by 0 and Gy = (G, s, ϕy).
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Lemma 5.16. Let G = (G, s, ϕ) be a PLTLG Game and Gy defined as above. W0
G is

infinite, iff W0
Gy

is universal for some variable y ∈ var(ϕ).

Proof. Let W0
G be infinite. Then, there is a variable y ∈ var(ϕ) such that y is mapped

to infinitely many different values by the valuations in W0
G . Without loss of generality,

we can assume that every variable z �= y is mapped to zero by each one of the infinitely
many valuations, due to downwards-closure. Restrictions of these valuations are also
contained in W0

Gy
. Thus, W0

Gy
is infinite as well. Since there is only a single variable in

ϕy, W0
G ⊆ N. Every infinite, downwards-closed subset of N is equal to N. Thus, W0

Gy
is

universal.
Conversely, every α ∈ W0

Gy
can be expanded to a valuation α′ for G by mapping

z �= y to zero, which is contained in W0
G . Thus, W0

G is infinite, if W0
Gy

is universal.

So, to decide whether W0
GG

is infinite can be done by solving kϕ many universality
problems. Note also that ϕy has only one variable; hence, kϕy = 1, which decreases
the size of the bound in Corollary 5.22, which proves the decidability of the universality
problem for solitary PLTLG Games.

Before we turn our attention to solitary games, we state two Lemmata that apply the
results obtained for solitary games to the satisfiability and validity problem for PLTL
and to non-solitary games.

Remark 5.17. Let ϕ be a PLTL formula and G = (V,E, l) a labeled graph. Define
the solitary arenas G0 = (G,V, ∅, E) and G1 = (G, ∅, V,E) and the solitary games
G0 = (G0, s, ϕ) and G1 = (G1, s, ϕ). Then, S(G,ϕ) = W0

G0
and V (G,ϕ) = W0

G1
.

So, the work of [1] can be embedded into our game-theoretic framework and our
results are applicable.

Lemma 5.18. Let G = (G, s, ϕ) be a PLTL Game with arena G = (V, V0, V1, E). Define
the solitary arenas G0 = (V, V, ∅, E) and G1 = (V, ∅, V,E) and the solitary games PLTL
G0 = (G0, s, ϕ) and G1 = (G1, s, ϕ) for Player 0 respectively 1. Then, W0

G1
⊆ W0

G ⊆ W0
G0

and W1
G1

⊇ W1
G ⊇ W1

G0
.

Proof. Let α ∈ W0
G1

. Since G1 is solitary for Player 1, we have (ρ, α) |= ϕ for every play
ρ of G1. Now, let σ be a strategy for Player 0 in G. Every play consistent with σ in G

is a play in G1, and therefore also a model of ϕ with respect to α. Thus, α ∈ W0
G.

Let α ∈ W0
G and σ be a winning strategy for Player 0 for G with respect to α. We

expand σ for the arena G0 by picking an arbitrary successor s′ for every s ∈ V1 (in G)
and define σ(ws) = s′. Every play that is consistent with σ in G0 is consistent with σ

in G. Thus, every play consistent with σ is a model of ϕ with respect to α. Hence, σ is
a winning strategy for Player 0 in G0 with respect to α. Thus, α ∈ W0

G0
.

The second claim follows from the first one and Lemma 5.12 (i).
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In the next section, we show that emptiness, universality, and finiteness of Wi
G are

decidable, if G is unipolar and solitary. Combining this with Lemma 5.18, we obtain
some necessary and some sufficient conditions for the emptiness and universality of W i

G
for unipolar two-player PLTL Games.

Also, we have seen in Corollary 5.14 that the emptiness of W0
G and the universality

of W1
G for a PLTLG game and the emptiness of W1

G and the universality of W0
G for a

PLTLF game are decidable. This gives even stronger conditions.

5.2.1 Solitary Unipolar PLTL Games

In the following subsection, we deal with the emptiness, universality, and finiteness of
the sets Wi

G for solitary unipolar PLTL Games. There are several combinations of the
Player i′, in whose arena the game is played, the Player i, in whose set Wi

G we are
interested in, the type of winning condition, either PLTLG or PLTLF, and the problem,
one of the three mentioned above. Here, Lemma 5.12 comes in handy, since we can solve
a great deal of combinations by the various dualities of the sets Wi

G . We have already
seen in Corollary 5.14 that the closure properties of Wi

G (for unipolar games) imply a
simple solution to some of the problems. For the other cases, it suffices to consider
solitary games for Player 0: we show that the W0

G for PLTLG Games are also upwards-
closed above a certain bound, in addition to being downwards-closed. Dually, the W0

G
for PLTLF Games are downwards-closed above a certain bound, in addition to being
upwards-closed. Building on these additional closure properties, it can be shown that
there is a single valuation that determines the universality of W0

G for a PLTLG game
respectively the emptiness of W0

G for a PLTLF game.
In a solitary game for Player 0, a strategy determines a unique play that is consistent

with that strategy. Similarly, every play determines a unique strategy for Player 0.
Thus, we can reason about plays instead of strategies. For PLTLG Games we show that
if Player 0 wins with respect to a large fixed α, then she also wins for all β that are
even larger. Thus, W0

G is also upwards-closed above a certain bound that depends only
on the game. Let G≤yψ be a subformula of ϕ. The key idea is that if α(y) is large,
then ψ holds for a long period of time after every position where G≤yψ holds. We find
a loop in that period that can be repeated, thereby prolonging the time that ψ holds.
However, we have to make sure that the truth of other subformulae does not change.
Lemma 5.19 proves that we can always find such a loop, if α is just big enough. The
reasoning for PLTLF Games is dual: we show that W0

G is downwards-closed above a
bound. Let F≤xψ be a subformula of ϕ. Instead of repeating loops, we delete loops,
thereby shortening the waiting time till ψ holds, for every position where F≤xψ holds.
We show that the valuations corresponding to those bounds determine the universality
respectively the emptiness of W0

G .

We begin by stating the two technical lemmata, one for PLTLG Games, and the
other for PLTLF Games, each followed by a corollary solving the universality respectively
emptiness problem. Then we state the main theorems of this chapter. The first one wraps
up the discussion about the emptiness, universality, and finiteness problem for solitary
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unipolar PLTL Games while the second shows that the solutions to various optimization
problems regarding the sets Wi

G for solitary unipolar games can be computed effectively.
In the following, n ∈ N is called a position of an infinite play ρ = ρ0ρ1ρ2 . . ., and

is used to denote ρn as well. An interval is a subset {n, n + 1, . . . , n + l} of N, and its
length is l+ 1. Often, we identify infixes ρn . . . ρn+l of ρ with the interval induced by its
positions.

A technical Lemma for solitary PLTLG Games

Let GG be a solitary PLTLF Game. To deal with the universality problem for W0
GG

we
show that there exists a valuation α that depends only on GG such that α ∈ W0

GG
iff

W0
GG

is universal. This is also the key to the solution of the finiteness problem. We show
α ∈ W0

GG
implies β ∈ W0

GG
for all β ≥ α. Thus, if α ∈ W0

GG
, then W0

GG
is also upwards-

closed above α. Combining the two types of closure shows that W0
GG

is universal, iff
α ∈ W0

GG
. So, α determines the universality of W0

GG
.

It remains to show that such a valuation α exists. Since GG is a solitary game for
Player 0, a strategy σ determines a single play ρ(s0, σ) that is consistent with σ. If α(y)
is large, then every position of ρ(s0, σ), where a subformula G≤yψ holds, is followed by
a long interval in which ψ holds at every position. If this interval is not as long as β(y),
then we find a loop in that interval, which Player 0 can repeat while maintaining the
satisfaction of the winning condition with respect to β now. We begin the proof by some
simplifications, then construct the new strategy, which is just a single play, and prove
the correctness of the construction. This proof is an adaption of a proof from [1].

Lemma 5.19. Let GG = (G, s0, ϕ) be a solitary PLTLG Game for Player 0, and α and
β valuations such that β(y) ≥ α(y) ≥ 2|G|cϕkϕ2nϕ for all parameters y ∈ var(ϕ). Then,
α ∈ W0

GG
implies β ∈ W0

GG
.

Proof. If ϕ does not contain a temporal operator parameterized by a variable, then the
claim is trivially true. So, in the following we can assume that there is at least one
variable in ϕ.

Since G is a solitary game for Player 0, it suffices to prove the following: if there exists
a play ρ of G such that (ρ, α) |= ϕ, then there exists a play ρ′ of G such that (ρ′, β) |= ϕ.
Without loss of generality we can assume that every variable y occurs at most once in
ϕ. If not, rename the other occurrence to some fresh variable y′ and expand α and β by
α(y′) = α(y) and β(y′) = β(y). Now, given a variable z of ϕ, define αz(z) = α(z) + 1
and αz(y) = α(y) for all y �= z. The valuation β can be obtained from α by a sequence
of αz. Thus, we can reformulate our statement again: if there exists a play ρ of G such
that (ρ, α) |= ϕ, then there exists a play ρ′ of G such that (ρ′, αz) |= ϕ.

Suppose G≤zψz is the subformula indexed with z. The crucial case is a position n

of ρ where G≤zψz holds, but ψz holds only at the next α(z) positions, but not α(z) + 1
positions. Our goal is to repeat a loop of ρ such that ψz holds for more than α(z) positions
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in the resulting play. However, we have to ensure that all other subformulae are satisfied
by the new play. Therefore, we only repeat loops such that the same subformulae of ϕ
hold at the first respectively last position of the loop and the subformulae G≤yψy do not
change their truth value throughout the loop. The temporal operators parameterized
with constants have to be treated special, to make sure that the bound is not violated
by repeating the loop. Therefore, we have to add additional formulae to the set of
subformulae: for a PLTLG formula ϕG define the closure of ϕ cl(ϕG) inductively by

• cl(p) = {p}, and cl(¬p) = {¬p},

• cl(γ ∧ δ) = {γ ∧ δ} ∪ cl(γ) ∪ cl(δ),

• cl(γ ∨ δ) = {γ1 ∨ δ} ∪ cl(γ) ∪ cl(δ),

• cl(Xγ) = {Xγ} ∪ cl(γ),

• cl(γUδ) = {γUδ} ∪ cl(γ) ∪ cl(δ),

• cl(γRδ) = {γRδ} ∪ cl(γ) ∪ cl(δ),

• cl(F≤cγ) = {F≤d | d ∈ [c]} ∪ cl(γ),

• cl(G≤cγ) = {G≤d | d ∈ [c]} ∪ cl(γ), and

• cl(G≤yγ) = {G≤yγ} ∪ cl(γ),

A subset C ⊆ cl(ϕG) is called monotone, if F≤dγ ∈ C implies F≤d′γ ∈ C for all d < d′

and G≤dγ ∈ C implies G≤d′γ ∈ C for all d′ < d. This reflects the monotonicity of the
parameterized operators. The number of monotone subsets of cl(ϕ) can be bounded by
cϕ2nϕ . For a position n of ρ let

πn = {ψ ∈ cl(ϕ) | (ρ, n, α) |= ψ}.

Every πn is monotone.
For y ∈ var(ϕ) let G≤yψy the unique subformula parameterized by y. A position n

of ρ is y-critical, if G≤yψy ∈ πn, but G≤yψy /∈ πn+1. Then, πn+k contains ψy for all
k ≤ α(z), but ψy /∈ πn+α(z)+1. The interval {n+1, . . . , n+α(z)} is an y-critical interval.
Some simple facts about y-critical intervals I: we have G≤yψy /∈ πn for all n ∈ I. Also, if
G≤yψy ∈ πn, then it holds also for all positions n+ k until the beginning of an y-critical
interval is reached.

So, if α(z) is large enough, we find two positions in every z-critical interval such that
their vertices and the set of satisfied subformulae are equal. The next lemma deals with
the operators parameterized with variables.

Lemma 5.20. Every z-critical interval I contains a subinterval J of length |G|cϕ2nϕ +1
such that for every y ∈ Y, either G≤yψy holds at all positions in J or G≤yψy holds at
no position in J .
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Proof. Since α(z) ≥ 2|G|cϕkϕ2nϕ = : d, we know that the length of I is at least d. Let
I ′ denote the initial interval of I of length d. By the facts from above, the truth value
of a formula G≤yψy can change at most twice in I ′. If G≤yψy ∈ πn, but G≤yψy /∈ πn+1,
then n + 1 is the beginning of an y-critical interval, which is at least as long as I ′ and
does not contain a position where G≤yψy holds. Since there are kϕ − 1 variables y �= z

in ϕ such that their parameterized subformula could change its truth value, there are
at most 2(kϕ − 1) changes in I ′, which split I ′ in at most 2kϕ − 1 subintervals without
changes, of which one’s length is at least d

2kϕ−1 ≥ |G|cϕ2nϕ + 1.

πn is a monotone subset of cl(ϕ), and there are at most cϕ2nϕ monotone subsets.
Thus, we can find two positions nb < ne in every z-critical interval such that

• πnb
= πne ,

• the vertices ρnb
and ρne are equal,

• for all variables y ∈ var(ϕ) either G≤yψy ∈ πk for all nb ≤ k ≤ ne or G≤yψy /∈ πk

for all nb ≤ k ≤ ne.

The last statement is satisfied by the subinterval J as in Lemma 5.20 and the first two
statements by a simple counting argument, which applies to J as well.

ρnb+1 . . . ρne forms a non-trivial loop in G, the same subformulae of ϕ hold at the
beginning of the loop respectively at the end of the loop, and the subformulae para-
meterized by variables do not change their truth values in the loop. So, such a loop is
repeated in every critical interval to prolong the truth of ψy. For a z-critical interval
I of ρ let nI

b and nI
e be the smallest positions of I that satisfy the conditions above.

We denote ρnI
b+1 . . . ρ

I
ne

by ∆(I). Now we are able to define the new play ρ′: for every
z-critical interval I of ρ, we repeat ∆(I) once. We call the first occurrence of ∆(I) the
master and the second one the copy.

To conclude the proof, we have to verify that ρ′ has the desired properties. It is a
play of G, since we repeat only loops of the original play. It remains to prove that the
construction does eliminate all z-critical intervals and preserves the truth of the other
subformulae.

Repeating the ∆(I) induces a mapping f : N → N from the positions of ρ′ to the
positions of ρ, mapping a position of ρ′ to its original position in ρ. This is shown in
Figure 5.2.

Lemma 5.21. Let ψ ∈ cl(ϕ). If (ρ, f(n), α) |= ψ, then (ρ′, n, αz) |= ψ

Proof. We have f(n + 1) = f(n) + 1 unless n is the last vertex of a segment that is
repeated beginning at vertex n+ 1 in ρ′. In this situation, f(n+ 1) = f(n)− k for some
k > 1 (the length of the segment being repeated) and πf(n) = πf(n)−k−1. We proceed by
induction over the construction of ψ.
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ρ

ρ′

f

∆(I)︷ ︸︸ ︷
z-critical interval I︷ ︸︸ ︷

︸ ︷︷ ︸
master

︸ ︷︷ ︸
copy

nI
b

nI
b+1 nI

e

Figure 5.2: The construction of ρ′ from ρ. The dashed interval I is z-critical

• The base case, atomic propositions and their negations, is immediate since the
vertices at position f(n) in ρ and n in ρ′ are equal by construction.

• Conjunctions and disjunctions are inductively true, since they are defined locally.

• ψ = Xϑ: (ρ, f(n), α) |= Xϑ, thus (ρ, f(n) + 1, β) |= ϑ. If f(n+ 1) = f(n) + 1, then
(ρ′, n+ 1, αz) |= ϑ by induction hypothesis, and therefore (ρ′, n, αz)X |= ϑ.

If f(n+ 1) = f(n) − k for some k > 1, then f(n) is the last position of a segment
∆(I) that is repeated in ρ′ beginning at position n+ 1. By, construction, we have
πf(n)−k−1 = πf(n), thus (ρ, f(n) − k − 1, α) |= Xϑ and (ρ, f(n) − k, α) |= ϑ. By
f(n+ 1) = f(n) − k and induction hypothesis (ρ, n+ 1, αz) |= Xϑ.

• ψ = γUϑ: (ρ, f(n), α) |= γUϑ. Then, there exists a smallest k ≥ 0 such that
(ρ, f(n) + k, α) |= ϑ and (ρ, f(n) + l, α) |= γ for all l such that 0 ≤ l < k.

If f(n) is not in some segment ∆(I) that is repeated, then there might be some
segments in between the positions f(n) + 1 and f(n) + k (inclusive) that are
repeated, but γ holds at all those positions, so repeating segments does no harm:
there is a k′ ≥ k such that f(n+ k′) = f(n) + k such that (ρ, f(n + l), α) |= γ for
all l such that 0 ≤ l ≤ k′. Thus, by induction hypothesis (ρ′, n + k′, αz) |= ϑ and
(ρ′, n+ l, αz) |= γ for all l such that 0 ≤ l ≤ k′. Hence, (ρ′, n, αz) |= γUϑ.

Now assume that f(n) is in some segment that is repeated, but f(n) + k is in the
same segment. Then, f(n+l) = f(n)+l for all l such that 0 ≤ l ≤ k by construction
of f . Thus, by induction hypothesis (ρ′, n + k, αz) |= ϑ and (ρ′, n + l, αz) |= γ for
all l such that 0 ≤ l < k and again (ρ′, n, αz) |= γUϑ.

For the last case, assume f(n) is in some ∆(I) that is repeated and f(n) + k is
not in that segment. The case where n is in the copy of ∆(I) in ρ′ is analogous to
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the first case. Thus, let n be in the master of ∆(I). Note that there is no position
f(n) + k for some k ≥ 0 in ∆(I) such that ϑ holds at f(n) + k since k is minimal.
Hence, γUϑ ∈ πf(n)+r holds at the last position of ∆(I). Then, γUϑ holds at
the last position before ∆(I) begins. Thus, it also holds at the first position of ∆,
since γ does not hold at the last position before ∆(I). Now, either there is a prefix
of ∆ such that this prefix is a (finite) model of γUϑ or γ holds at all positions of
∆(I). In both cases, we have an k′ ≥ 0 such that ϑ holds at position f(n + k′)
and γ holds at all positions l′ such that 0 ≥ l′ < l. Again, by induction hypothesis
(ρ′, n, αz) |= γUϑ.

• ψ = γRϑ: (ρ, f(n), α) |= γRϑ, thus for every k either (ρ, n + k, α) |= ϑ or there
exists an l < k and (ρ, n+ l, α) |= γ,

First, if there exists a (without loss of generality minimal) position f(n) + k, for
some k ≥ 0, such that (ρ, f(n) + k, α) |= γ, then (ρ, f(n) + l, α) |= ϑ for all l such
that 0 ≤ l ≤ k. With arguments analogous to the ones for the previous case, we can
show that there is a k′ ≥ k such that f(n+ k′) = f(n) + k and (ρ, f(n) + l, α) |= ϑ

for all l such that 0 ≤ l ≤ k′. Thus, by induction hypothesis (ρ′, n, αz) |= γRϑ.

If there is no position f(n) + k, for some k ≥ 0, such that (ρ, f(n) + k, α) |= γ,
then (ρ, f(n) + l, α) |= ϑ for all l ≥ 0. If n is not in the master of some ∆(I), we
immediately conclude (ρ, f(n+ l), α) |= ϑ for all l ≥ 0, and by induction hypothesis
(ρ′, n+ l, αz) |= ϑ for all l ≥ 0, which implies (ρ′, n, αz) |= γRϑ.

If n is in a master, then we use the fact that γRϑ holds at the last position of
∆(I) and therefore also at the last position before ∆(I) begins. Since γ does not
hold at that position, γRϑ also holds at the first position of ∆(I). Thus, there is
either a prefix of of ∆ such that γ holds at the last position and ϑ at all positions
of the prefix or ϑ holds at all positions of ∆(I).

In the first case, let k > 0 be maximal with (ρ, f(n)− k, α) |= γ such that f(n)− k
is still in ∆(I). There is a k′ such that f(n+k′) = f(n)−k and (ρ, f(n+ l), α) |= ϑ

for all l such that 0 ≤ l ≤ k′. Thus, by induction hypothesis (ρ′, n, αz) |= γRϑ.

In the second case, we can directly conclude (ρ, f(n+ l), α) |= ϑ for all l ≥ 0. Then,
as above, (ρ′, n, αz) |= γRϑ

• ψ = G≤cϑ for c ∈ N: let (ρ, f(n), α) |= G≤cϑ. We show (ρ, f(n+ l), α) |= G≤c−lϑ

for all l ≤ c by induction. Then, (ρ, f(n+ l), α) |= ϑ and (ρ′, n+ l, αz) |= ϑ for all
l ≤ c, by induction hypothesis, which means (ρ′, n, αz) |= G≤cϑ.

The base case l = 0 is clear by the choice of f(n). Now, consider l > 0. If
f(n+ l) = f(n+ l− 1) + 1, then (ρ, f(n+ l− 1), α) |= G≤c−(l−1)ϑ directly implies
(ρ, f(n+l), α) |= G≤c−lϑ. If f(n+l) = f(n+l−1)−k for some k > 0, i.e., f(n+l−1)
is the last position of a segment that is repeated beginning at the next position,
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we have πf(n+l−1) = πf(n+l−1)−k−1. Thus, (ρ, f(n+ l−1)−k−1, α) |= G≤c−(l−1)ϑ

and therefore (ρ, f(n+ l − 1) − k, α) |= G≤c−l)ϑ.

• ψ = F≤cϑ for c ∈ N: let (ρ, f(n), α) |= F≤cϑ. Analogously to the previous
case, we show that for all l ≤ c either (ρ, f(n + l′), α) |= ϑ for some l′ ≤ l or
(ρ, f(n+ l), α) |= F≤c−lϑ. Then, there is some k ≤ c such that (ρ, f(n+k), α) |= ϑ,
thus, by induction hypothesis (ρ′, n+ k, αz) |= ϑ and also (ρ′, n, αz) |= F≤cϑ.

The base case l = 0 is again clear. Thus, let l > 0 and (ρ, f(n+ l′), α) �|= ϑ for all
l′ ≤ l. If f(n+ l) = f(n+ l−1)+1, then we can conclude (ρ, f(n+ l), α) |= F≤c−lϑ

from (ρ, f(n + l − 1), α) |= F≤c−(l−1)ϑ and (ρ, f(n+ l), α) �|= ϑ.

If f(n+ l) = f(n+ l−1)−k for some k > 0, then again πf(n+l−1) = πf(n+l−1)−k−1.
Thus, (ρ, f(n + l − 1) − k − 1, α) |= F≤c−(l−1)ϑ and (ρ, f(n + l − 1) − k, α) �|= ϑ,
therefore we conclude (ρ, f(n+ l − 1) − k, α) |= F≤c−l)ϑ.

• ψ = F≤yϑ for y ∈ Y: the choice of the repeated segment guarantees that the truth
value of a formula F≤yψy stays the same throughout the segment that is repeated
and also coincides with the truth value of the last position before the loop. We
distinguish two cases.

Let y �= z and (ρ, f(n), α) |= G≤yϑ, i.e., (ρ, f(n) + l, α) |= ϑ for all l ≤ α(y). If
n is in the master of some segment ∆(I), we know that ϑ holds at all positions
of this segment, since the truth value of G≤yϑ does not change throughout ∆(I).
Also, repeating a segment ∆(I) in between f(n) and f(n) + α(y) does no harm,
since ϑ holds at all positions of the segment. Thus, for every l ≤ α(y) we have
(ρ, f(n + l), α) |= ϑ and (ρ′, n + l, αz) |= ϑ by induction hypothesis. Therefore,
(ρ′, n+ l, αz) |= F≤yϑ.

Now consider y = z and let (ρ, f(n), α) |= G≤zϑ, i.e., (ρ, f(n) + l, α) |= ϑ for all
l ≤ α(z). If f(n) is not z-critical, then (ρ, f(n)+α(z)+1, α) |= ϑ. In this case, there
are no segments repeated in between f(n) and f(n) +α(z) and f(n+ l) = f(n) + l

holds for all l ≤ α(z) + 1. Thus, by induction hypothesis we get (ρ, n+ l, αz) |= ϑ

for all l ≤ αz(z) and (ρ, n, αz) |= G≤zϑ. If f(n) is z-critical, then f(n) is the
beginning of a z-critical interval, of which a non-empty subinterval is repeated.
Thus, we again obtain (ρ, f(n + l), α) |= ϑ for all l ≤ α(z) + 1 and by induction
hypothesis (ρ′, n+ l, αz) |= ϑ for all l ≤ αz(z); hence, (ρ, n, αz) |= G≤zϑ.

To finish the proof of Lemma 5.19, we apply Lemma 5.21 to ϕ and n = 0. Since
f(0) = 0 and (ρ, 0, α) |= ϕ by assumption, we obtain (ρ′, 0, αz) |= ϕ. This suffices as
discussed above.

Corollary 5.22. Let GG = (G, s, ϕ) be a PLTLG Game, and α(y) = 2|G|cϕkϕ2nϕ for
all y ∈ var(ϕ). Then, W0

GG
is universal iff α ∈ W0

GG
.
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Proof. One direction is trivial. Thus, let α ∈ W0
GG

and β be some valuation. If
β ≤ α, then β ∈ W0

GG
by downwards-closure of W0

GG
, and if β ≥ α, then β ∈ W0

GG

by Lemma 5.19. If β is incomparable to α, then let k = max{β(y) | y ∈ var(ϕ)} and
βk(y) = k for all y ∈ var(ϕ). We have βk ≥ α, which implies βk ∈ W0

GG
by Lemma 5.19.

The downwards-closure of W0
GG

and βk ≥ β finishes the proof.

A technical Lemma for solitary PLTLF Games

Let GF be a solitary PLTLF Game. To deal with the emptiness problem for W0
GF

we
show that there exists a valuation β that depends only on GF such that β ∈ W0

GF
iff

W0
GF

is non-empty. This result also implies the solution of the universality and finiteness
problem for W1

GG
by Lemma 5.12. To this end, we show that W0

GF
is also downwards-

closed above β. By combining both closure properties we show that β does determine
the emptiness of W0

GF
. To prove the downwards-closure, we proceed dually to the proof

of Lemma 5.19. Since G is a solitary game, we have to reason about a single play only,
which we manipulate. If ψ holds on that play within the next β(x) steps of a position,
but not within α(x) steps, then we delete a loop in that interval to get the position where
ψ holds closer. Again, we have to take care of the other subformulae, especially making
sure that we do not delete loops that contain the only position where a subformula holds.
If we delete the only position where p holds, then the subformula Fp will no longer hold
before the loop. Again, we begin by simplifying the statement to one that speaks about
a single play and a single variable that is decreased. Then, we construct the new play
and proof the correctness. A statement similar to the following appears in [1], but no
proof is given.

Lemma 5.23. Let G = (G, s, ϕ) be a solitary PLTLF Game for Player 1, α and β

valuations such that β(x) ≥ α(x) ≥ (2cϕ2nϕ + 1) · (|G|cϕ2nϕ + 1) for all parameters
x ∈ var(ϕ). Then β ∈ W0

G implies α ∈ W0
G.

Proof. If ϕ does not contain a temporal operator parameterized by a variable, then the
claim is trivially true. So, in the following we can assume that there is at least one
variable in ϕ.

G is a solitary game; hence, it suffices to prove the following: if there exists a play
ρ of G such that (ρ, α) |= ϕ, then there exists a play ρ′ of G such that (ρ′, β) |= ϕ.
We can assume that every variable x occurs at most once in ϕ. If not, we rename one
occurrence and expand the valuations accordingly. Now, given a variable z of ϕ, define
β(z) = β(z) − 1 and βz(x) = β(x) for all x �= z. The valuation α can be obtained from
β by a sequence of βz. Thus, we can reformulate our statement again: if there exists a
play ρ of G such that (ρ, β) |= ϕ, then there exists a play ρ′ of G such that (ρ′, βz) |= ϕ.
Suppose G≤zψz is the subformula indexed with z. The crucial case is a position n of
ρ where F≤zψz holds, but ψz only holds at position n + α(z), but not at any earlier
position. Our goal is to delete a loop of ρ such that ψz holds in less than α(z) positions
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in the resulting play. Again, we have to ensure that all other subformulae are satisfied
by the new play. But it does not suffice to delete loops where the same subformulae of
ϕ hold at the first respectively last position of the loop, since we might delete a position
that satisfies a certain subformula ψ. Now assume Fψ is another subformula. Then, Fψ
holds at the beginning of the loop and we would guarantee that there is a later position
in ρ that satisfies ψ, but there is no guarantee that this position is not deleted, again.
Thus, we would keep promising the satisfaction of ψ without ever actually delivering.
So, we have to adapt our construction to rule out such a situation. Therefore, we delete
only loops for which we can guarantee that every formula, that holds in the deleted loop,
also holds at a position that is not deleted. For the parameterized operators, we have
to ensure that those alternative positions are close-by.

For a PLTLF formula ϕF define the closure cl(ϕF) inductively by

• cl(p) = {p}, and cl(¬p) = {¬p},

• cl(γ ∧ δ) = {γ ∧ δ} ∪ cl(γ) ∪ cl(δ),

• cl(γ ∨ δ) = {γ1 ∨ δ} ∪ cl(γ) ∪ cl(δ),

• cl(Xγ) = {Xγ} ∪ cl(γ),

• cl(γUδ) = {γUδ} ∪ cl(γ) ∪ cl(δ),

• cl(γRδ) = {γRδ} ∪ cl(γ) ∪ cl(δ),

• cl(F≤cγ) = {F≤d | d ∈ [c]} ∪ cl(γ),

• cl(G≤cγ) = {G≤d | d ∈ [c]} ∪ cl(γ), and

• cl(F≤xγ) = {F≤xγ} ∪ cl(γ),

A set C ⊆ cl(ϕG) is called monotone if F≤dγ ∈ C implies F≤d′γ ∈ C for all d < d′ and
G≤dγ ∈ C implies G≤d′γ ∈ C for all d′ < d. The number of monotone subsets of cl(ϕ)
can be bounded by cϕ2nϕ . For a position n of ρ let

πn = {ψ ∈ cl(ϕ) | (ρ, n, β) |= ψ}.

Every πn is monotone. Furthermore, a finite union of monotone subsets of cl(ϕ) is
monotone.

For x ∈ var(ϕ) let G≤xψx be the unique subformula parameterized by x. A position
n of ρ is x-critical, if F≤xψx ∈ πn, but ψx /∈ πn+k for all 0 ≤ k ≤ β(z) − 1. The interval
{n, . . . , n+ β(z) − 1} is an x-critical interval.

As there are at most cϕ2nϕ monotone subsets of cl(ϕ), every interval of length
(|G|cϕ2nϕ + 1) of ρ contains two positions n1 and n2 such that ρn1 = ρn2 and πn1 = πn2.
For every z-critical interval I we decompose its initial interval of length (2cϕ2nϕ + 1) ·
(|G|cϕ2nϕ + 1), into k := (2cϕ2nϕ + 1) · (|G|cϕ2nϕ + 1) intervals I1, . . . , Ik of length
(|G|cϕ2nϕ + 1) and define Πj =

⋃
i∈Ij

πi for all j ∈ [k]. Every Πj is monotone, so by
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the pigeon-hole principle there is at least one monotone C ⊆ cl(ϕ) such that there exist
j1 < j2 < j3 with Πj1 = Πj2 = Πj3.

To sum up, we can find two positions nb < ne in every z-critical segment I such that

• πnb
= πne ,

• the vertices ρnb
and ρne are equal, and

• for every ψ ∈ cl(ϕ) such that (ρ, n, β) |= ψ for some nb ≤ n ≤ ne, there are two
positions k1 and k2 of I such that

◦ k1 < nb and ne < k2,

◦ k2 − k1 ≤ (2cϕ2nϕ + 1) · (|G|cϕ2nϕ + 1), and

◦ (ρ, k1, β) |= ψ and (ρ, k2, β) |= ψ.

Thus, ρnb+1 . . . ρne forms a non-trivial loop in G, the same subformulae of ϕ hold at
the beginning of the loop respectively at the end of the loop and every subformula that
holds at some position of the loop also holds at some other position of the interval not
too far away.

For a z-critical segment I of ρ let nI
b and nI

e be the smallest positions of I that satisfy
the conditions above. We denote ρnI

b+1 . . . ρ
I
ne

by ∆(I). Now we are able to define the
new play ρ′: for every z-critical interval I of ρ, we delete ∆(I). To conclude the proof,
we have to verify that ρ′ has the desired properties. It is a play of G, since we delete
only loops of the original play. It remains to prove that the construction did eliminate
all z-critical intervals and preserve the truth of the other subformulae. The deletion of
the ∆(I) induces a mapping f : N → N from the positions of ρ′ to the positions of ρ,
mapping a position of ρ′ to its original position in ρ. This is shown in Figure 5.3.

ρ

ρ′

f

︸ ︷︷ ︸
∆(I)

z-critical interval I︷ ︸︸ ︷
nI

b
nI

b+1 nI
e

Figure 5.3: The construction of ρ′ from ρ. The dashed interval I is z-critical
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Lemma 5.24. Let ψ ∈ cl(ϕ). If (ρ, f(n), β) |= ψ, then (ρ′, n, βz) |= ψ

Proof. Notice that f(n+1) = f(n)+1 unless f(n) is the last vertex before a deleted loop
beginning at position f(n) + 1. In this situation, f(n+ 1) = f(n) + k+ 1 for some k > 0
(the length of the loop being deleted) and πf(n) = πf(n)+k. We proceed by induction
over the construction of ψ.

• The base case, atomic propositions and their negations, is immediate since the
vertices at position f(n) in ρ and n in ρ′ are equal by construction.

• Conjunctions and disjunctions are inductively true, since they are defined locally.

• ψ = Xϑ: (ρ, f(n), β) |= Xϑ, thus (ρ, f(n) + 1, β) |= ϑ. If f(n+ 1) = f(n) + 1, then
(ρ′, n+ 1, βz) |= ϑ by induction hypothesis, and therefore (ρ′, n, βz) |= Xϑ.

If f(n+ 1) = f(n) + k + 1 for some k > 0, then f(n) + 1 is the first position of a
deleted interval ∆(I) of length k and f(n + 1) = f(n) + k + 1. By, construction,
we have πf(n) = πf(n)+k, thus (ρ, f(n) + k, β) |= Xϑ and (ρ, f(n) + k + 1, β) |= ϑ.
By f(n+ 1) = f(n) + k + 1 and induction hypothesis (ρ, n + 1, βz) |= Xϑ.

• ψ = γUϑ: (ρ, f(n), β) |= γUϑ, thus there exists a smallest k ≥ 0 such that
(ρ, f(n) + k, β) |= ϑ and (ρ, f(n) + l, β) |= γ for all l such that 0 ≤ l < k.

If f(n)+k is not in some deleted interval, then f(n)+k = f(n+k′) for some k′ ≤ k.
By induction hypothesis, we conclude (ρ′, n + k′, βz) |= ϑ and (ρ′, n + l′, βz) |= γ

for all l′ such that 0 ≤ l < k′. Thus, (ρ′, n, βz) |= γUϑ.

Now assume that the position f(n) + k is in some deleted interval ∆(I). Since
(ρ, f(n) + k, β) |= ϑ, the choice of ∆(I) guarantees the existence of a position
k′ > k in I\∆(I) such that (ρ, f(n) + k′, β) |= ϑ. Furthermore, γUϑ holds at the
beginning of ∆(I), thus also at the end. Thus, γ also holds at every position from
f(n) to f(n) + k′− 1, with perhaps the exception of some deleted positions. Thus,
(ρ′, n, βz) |= γUϑ by induction hypothesis.

• ψ = γRϑ: (ρ, f(n), β) |= γRϑ, thus for every k either (ρ, n + k, β) |= ϑ or there
exists l such that l < k and (ρ, n + l, β) |= γ,

First, assume there is a k ≥ 0 such that (ρ, f(n) + k, β) |= γ. Let k be minimal
with this property. Then, (ρ, f(n) + l, β) |= ϑ for all l such that 0 ≤ l ≤ k. With
arguments analogous to the ones for the previous case, we can show that there is
a k′ ≥ k that is not deleted, such that f(n) + k′) |= ϑ and (ρ, f(n) + l, β) |= ϑ for
all l that are not deleted and such that 0 ≤ l ≤ k′. Thus, by induction hypothesis
(ρ′, n, βz) |= γRϑ.

If there is no position f(n)+k, for some k ≥ 0, such that (ρ, f(n)+k, β) |= γ, then
(ρ, f(n) + l, β) |= ϑ for all l ≥ 0. Now, we immediately conclude (ρ′, n+ l, βz) |= ϑ

for all l ≥ 0 by induction hypothesis, which implies (ρ′, n, βz) |= γRϑ.
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• ψ = G≤cϑ for c ∈ N: let (ρ, f(n), β) |= G≤cϑ. We show (ρ, f(n+ l), β) |= G≤c−lϑ

for all l ≤ c by induction. Then, especially (ρ, f(n + l), β) |= ϑ and thus by
induction hypothesis (ρ′, n+ l, βz) |= ϑ for all l ≤ c. Then, (ρ′, n, βz) |= G≤cϑ.

The base case l = 0 is clear by the choice of f(n). Now, consider l > 0. If
f(n+ l) = f(n+ l− 1) + 1, then (ρ, f(n+ l− 1), β) |= G≤c−(l−1)ϑ directly implies
(ρ, f(n+ l), β) |= G≤c−lϑ.

If f(n + l) = f(n + l − 1) + k + 1 for some k > 0, i.e., f(n + l − 1) is the
last position before a deleted loop, we have πf(n+l−1) = πf(n+l−1)+k. Therefore,
(ρ, f(n + l − 1) + k, β) |= G≤c−(l−1)ϑ and (ρ, f(n + l − 1) + k + 1, β) |= G≤c−l)ϑ,
i.e., (ρ, f(n+ l), β) |= G≤c−l)ϑ.

• ψ = F≤cϑ for c ∈ N: let (ρ, f(n), β) |= F≤cϑ. Analogously to the previous
case, we show that for all l ≤ c either (ρ, f(n + l′), β) |= ϑ for some l′ ≤ l or
(ρ, f(n+ l), β) |= F≤c−lϑ. Then, there is some k ≤ c such that (ρ, f(n+k), β) |= ϑ,
thus, by induction hypothesis (ρ′, n + k, βz) |= ϑ and also (ρ′, n, βz) |= F≤cϑ.

The base case l = 0 is again clear. Thus, let l > 0 and (ρ, f(n+ l′), β) �|= ϑ for all
l′ ≤ l. If f(n+ l) = f(n+ l−1)+1, then we can conclude (ρ, f(n+ l), β) |= F≤c−lϑ

from (ρ, f(n+ l − 1), β) |= F≤c−(l−1)ϑ and (ρ, f(n+ l), β) �|= ϑ.

If f(n+ l) = f(n+ l−1)+k+1 for some k > 0, then again πf(n+l−1) = πf(n+l−1)+k.
Thus, (ρ, f(n+ l−1) +k, β) |= F≤c−(l−1) and (ρ, f(n+ l−1) +k, β) �|= ϑ, therefore
we conclude (ρ, f(n+ l − 1) + k + 1, β) |= F≤c−l), i.e., (ρ, f(n+ l), β) |= F≤c−l).

• ψ = F≤xψx for x ∈ var(ϕ): let (ρ, f(n)+k, β) |= F≤xψx, thus (ρ, f(n)+k, β) |= ψx

for some k ≤ β(x).

First, let x �= z. Notice that f(n) cannot be in a deleted interval by definition of
f and that deleting positions in between f(n) and f(n) + k does no harm. In this
case, there exists a k′ ≤ k such that f(n+ k′) = f(n) + k and (ρ′, n+ k′, βz) |= ψx

by induction hypothesis, and therefore also (ρ′, n, βz) |= F≤xψx.

Now assume that the position f(n)+k is in some deleted interval ∆(I). The choice
of ∆(I) guarantees the existence of two positions k1 and k2 of I\∆(I) such that

k1 < k < k2, k2 − k1 ≤ (2cϕ2nϕ + 1) · (|G|cϕ2nϕ + 1) ≤ β(x),

and ψx holds at k1 and k2. There is a l ∈ {k1, k2} such that f(n) ≤ l ≤ f(n)+β(x):
if k1 < f(n), then

k2 = k1 + (k2 − k1) < f(n) + (k2 − k1) ≤ f(n) + β(x).
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Conversely, if k2 > f(n) + β(x), then k2 − β(x) > f(n) and

k1 = k2 − (k2 − k1) ≥ k2 − β(x) > f(n).

Since the positions are not deleted, there is a k′ ≤ β(x) such that f(n+k′) = f(n)+l
and we conclude (ρ′, n, βz) |= F≤xψx.

Now consider x = z and let (ρ, f(n), β) |= F≤zϑ, i.e., (ρ, f(n) + k, β) |= ϑ for some
k ≤ β(z). If f(n) is not z-critical, then k < β(z), i.e., k ≤ β(z) − 1 = βz(z).
Since there are no intervals deleted in between f(n) and f(n) + β(z), we have
f(n + l) = f(n) + l for all l ≤ β(z). Thus, by induction hypothesis we get
(ρ, n+ k, βz) |= ϑ and therefore (ρ, n, βz) |= F≤zϑ.

If f(n) is z-critical, i.e., k = β(z), then f(n) is the beginning of a z-critical interval,
of which a non-empty subinterval is deleted. Thus, f(n+k−1) ≤ f(n) +k and we
obtain (ρ, f(n+ l), β) |= ψz for some l ≤ k−1 = βz(z) and by induction hypothesis
(ρ′, n+ l, βz) |= ψz; hence, (ρ, n, βz) |= F≤zψz.

To finish the proof of Lemma 5.23, we apply Lemma 5.24 to ϕ and n = 0. Since
f(0) = 0 and (ρ, 0, β) |= ϕ by assumption, we obtain (ρ′, 0, β) |= ϕ. This suffices as
discussed above.

Corollary 5.25. Let GF = (G, s, ϕ) be a PLTLF Game, and α(x) = (2cϕ2nϕ + 1) ·
(|G|cϕ2nϕ + 1) for all y ∈ var(ϕ). Then, W0

GF
is non-empty iff α ∈ W0

GF
.

Proof. One direction is trivial. Thus, let β ∈ W0
GF

. If α ≥ β, then α ∈ W0
GF

by upwards-
closure of W0

GF
, and if α ≤ β, then α ∈ W0

GF
by Lemma 5.23. If β is incomparable to

α, then let k = max{β(x) | x ∈ var(ϕ)} and βk(x) = k for all x ∈ var(ϕ). We have
βk ≥ β, which implies βk ∈ W0

GG
by upwards-closure. Since α ≤ β holds, Lemma 5.23 is

applicable and we obtain α ∈ W0
GF

.

After doing the technical work, we can now reap the fruits of our labor and state the
main theorems of this chapter.

Theorem 5.26. Let G be a solitary unipolar PLTL Game. The emptiness, universality,
and finiteness problem for Wi

G are decidable.

Proof. Let G = (G, s, ϕ) be a solitary PLTL game for Player i′. There are several
cases to consider, determined by the identity of the players i and i′ (who need not be
equal), the type of the winning condition and the problem under consideration. We
reduce as many cases as possible to cases already solved, applying the dualities stated
in Lemma 5.12. Remember that α0 is the valuation that maps every variable to zero.
Also, the membership problem for Wi

G is decidable by solving a single LTL Game with
winning condition α(ϕ).
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(i) Let G be solitary for Player 0 and ϕ ∈ PLTLG.

• By Corollary 5.14 (i), W0
G is non-empty iff it contains α0.

• For the universality problem of W0
G see Corollary 5.22.

(ii) Let G be solitary for Player 0 and ϕ ∈ PLTLF.

• For the emptiness problem of W0
G see Corollary 5.25.

• By Corollary 5.14 (ii), W0
G is universal iff it contains α0.

(iii) Let G be solitary for Player 0 and ϕ an arbitrary unipolar formula. The emptiness
and universality problem for W1

G can be decided by considering the complements,
again: by Lemma 5.12 (i), W1

G is empty iff W0
G is universal, and W1

G is universal iff
W0

G is empty. These problems were shown to be decidable in (i) respectively (ii).

(iv) Let G be solitary for Player 1 and ϕ an arbitrary unipolar formula. The empti-
ness and universality problem for W1

G can be solved exploiting dualities. By
Lemma 5.12 (ii), W1

G = W0
G, where G is a solitary game for Player 0 with unipolar

winning condition. This is the setting of (i) respectively (ii)

(v) Let G be solitary for Player 1 and ϕ an arbitrary unipolar formula. The emptiness
and universality problem for W0

G can be decided by considering the complements:
by Lemma 5.12 (i), W0

G is empty iff W1
G is universal, and W0

G is universal iff W1
G is

empty. Each of the latter problems is decidable by (iv).

(vi) Now, just the finiteness problems remain. The solution is symmetric: let G be a
solitary game for Player 0 or 1.

• If G is a PLTLG Game, then let Gy for all y ∈ var(ϕ) be defined as for
Lemma 5.16. The Lemma states that W0

G is infinite iff W 0
Gy

is universal for
some y. Since Gy is still a solitary PLTLG game we can apply (i) respec-
tively (v).

• If G is a PLTLF Game, then W0
G is infinite iff it is non-empty, which was

shown to be decidable in (ii) respectively (v).

• For W1
G (and both types of winning conditions) we again consider the dual

game and obtain W1
G = W0

G . The finiteness problem for the latter set was
just discussed above.

As we have reasoned above, the strategy problem for PLTL Games is more of an
optimization problem than it is a decision problem. Foremost, a PLTL game is not even
a game in the strict sense, since a winning condition ϕ does not specify the winning
plays. Furthermore, for a fixed valuation, the game is equal to an LTL game, a well-
known class of games that have been studied extensively. The natural question is to
ask for an optimal strategy: given the winning condition F≤xp, what is the minimal
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value for x such that Player 0 still has a winning strategy for the instantiated game.
Analogously, for the winning condition G≤yp, what is the maximal value for y such that
Player 0 can guarantee a win. We restrict our attention to unipolar games, since in a
general winning condition, there are two opposing goals: minimizing the values of the
upwards-monotone operators and maximizing the values of the downwards-monotone
operators and it is unclear how to resolve this trade-off reasonably.

In the following we show how to find such optimal strategies for solitary unipolar
games. The key to the following theorem are again the closure properties of the sets W0

G.
Remember that we restrict the domain of α to the variables occurring in the winning
condition.

Theorem 5.27. Let G be a solitary unipolar PLTL Game. Then, the following opti-
mization problems can be solved effectively.

(i) If G is a PLTLG Game: determine maxα∈W0
G

maxy∈var(ϕ) α(y).

(ii) If G is a PLTLG Game: determine maxα∈W0
G

miny∈var(ϕ) α(y).

(iii) If G is a PLTLF Game: determine minα∈W0
G

minx∈var(ϕ) α(x).

(iv) If G is a PLTLF Game: determine minα∈W0
G

maxx∈var(ϕ) α(x).

Proof. Let G = (G, s, ϕ) be the game under consideration. If var(ϕ) = ∅, then the
problems are trivial, so we might as well assume var(ϕ) �= ∅. Also, we can assume
that W0

G is non-empty, which can be decided by Theorem 5.26. We begin by some
general simplifications that are applicable to several cases. These constructions work for
arbitrary arenas, not just solitary ones.

If ϕ ∈ PLTLG and y ∈ var(ϕ), let ϕy be the formula obtained by replacing every
variable z �= y by zero, and let Gy = (G, s, ϕy). The restriction of α ∈ W0

G to y is
contained in W0

Gy
, and for every α ∈ W0

Gy
, we can expand the domain of α by α(z) = 0

for all z �= y. Then, α ∈ W0
G . We obtain

max
α∈W0

G
max

y∈var(ϕ)
α(y) = max

y∈var(ϕ)
max

α∈W0
Gy

α(y). (5.1)

Thus, we have reduced the optimization problem to the same problem for a formula with
a single variable.

Again, for ϕ ∈ PLTLG, let ϕ′ be the formula obtained from ϕ by renaming every
variable to z, and let G′ = (G, s, ϕ′). For every α ∈ W0

G define the valuation α′ by
α′(z) = miny∈var(ϕ) α(y). Due to the downwards-closure of W0

G , we have α′ ∈ W0
G′ .

Conversely, for α′ ∈ W0
G′ , define α by α(y) = α′(z) for every y ∈ var(ϕ). Then, α ∈ W0

G.
Again, we obtain

max
α∈W0

G
min

y∈var(ϕ)
α(y) = max

α∈W0
G′
α(z). (5.2)
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So, this problem can be reduced to the same problem for a formula with a single variable.
A dual construction is possible for ϕ ∈ PLTLF: let ϕ′ be the formula obtained from

ϕ by renaming every variable to z, and let G′ = (G, s, ϕ′). Again, for α ∈ WG , we define
α′ by α′(z) = maxx∈var(ϕ). Due to upwards-closure, we have α′ ∈ W0

G′ . Conversely, for
α′ ∈ W0

G′ , we define α by α(x) = α′(z) for all x ∈ var(ϕ). Then, α ∈ W0
G . Then, we

obtain

min
α∈W0

G
max

x∈var(ϕ)
α(x) = min

α∈W0
G′
α(z), (5.3)

which gives a reduction to the problem for a formula with a single variable.
Note that a general construction similar to the one employing Gy for a PLTLF Game is

not possible, since there is no equivalent to fixing all but one variable to zero. Minimizing
the minimum value turns out to be the most involved case.

The actual proof consists of two steps. First we solve the optimization problems for
solitary games for Player 0. Solitary games for Player 1 can then be treated by an easy
reduction using the dualities of the sets Wi

G.

• Let G be a solitary game for Player 0.

(i) and (ii) By (5.1) and (5.2), it suffices to determine max0
WG α(y), where G is

a PLTLG Game whose winning condition ϕ has a single variable y. Modifying
Lemma 5.19 for a formula with a |var(ϕ)| = 1, we can restrict the maximum to

max
α∈W0

G
α(y) < |G|cϕ2nϕ + 1 or max

α∈W0
G
α(y) = ∞.

The second case can be tested by Corollary 5.22: We have maxα∈W0
Gy
α(y) = ∞ iff

W0
G is infinite, which is equivalent to W0

G being universal by downwards-closure. If
the maximum is not ∞, then we can do binary search in the interval [0, |G|cϕ2nϕ ],
which is correct by downwards-closure. Doing this, we need to determine the
winner of at most log2(2|G|cϕ2nϕ) LTL Games.

(iii) Let G = (G, s, ϕ) be a PLTLF Game, solitary for Player 0, such that W0
G is

non-empty, and let nG = (2cϕ2nϕ + 1) · (|G|cϕ2nϕ + 1). By Corollary 5.25, W0
G

contains α with α(x) = nG for all x ∈ var(ϕ). Thus,

min
α∈W0

G
min

x
α(x) ≤ nG .

To determine, whether the minimum is even smaller, the emptiness problem for all
W0

Gx,n
has to be solved for all x ∈ var(ϕ) and all n < nG , where Gx,n is obtained

from G by replacing the variable x of the winning condition ϕ by n. The smallest
n such that W0

Gx,n
is non-empty for some x, is equal to minα∈W0

GF

minx α(x). This
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n can be determined in two ways. Either by incrementing n beginning at zero
looping through all variables x ∈ var(ϕ). Alternatively, a binary search in the
interval [0, nG − 1] can be done for every variable x. In the second approach, the
upper bound can be adjusted, if a smaller upper bound was found; however, all
variables have to be considered, whereas in the first approach, the search can be
terminated, as soon as a non-empty set W0

Gx,n
is discovered.

(iv) Again, by (5.3), it suffices to consider a PLTLF Game G whose winning con-
dition has a single variable x. Lemma 5.23 bounds minα∈W0

G
α(x) from above by

nG = (2cϕx2nϕx + 1) · (|G|cϕx2nϕx + 1); hence, we can apply binary search, again.
This time, the winner of at most log2(nG) LTL Games have to be determined.

• Let G be a solitary game for Player 1.

(i) and (ii) By (5.1) and (5.2), it suffices to consider a game G whose winning
condition ϕ has a single variable y: we have

max
α∈W0

G
α(y) = min

α∈W1
G
α(y) − 1 = min

α∈W0
G
α(y) − 1 = min

α∈W0
G

min
y
α(y) − 1

by the closure properties of W0
G and W1

G and Lemma 5.12. Since G is solitary for
Player 0, we know how to minimize the minimum of the values, which also solves
our original problem.

(iii) This case is exceptional as it does not employ a reduction to a solitary game
for Player 0. Instead, we proceed as for a solitary game for Player 0: let α be the
valuation mapping every variable of ϕ to nG = 2|G|cϕkϕ2nϕ + 1. The complement
of W0

G , the set W1
G , is not universal by assumption. Thus, it cannot contain α by

Lemma 5.19 and Lemma 5.12 (ii). Hence, α ∈ W0
G . This gives an upper bound on

the value we are interested in. So, we can again check all W0
Gx,n

for non-emptiness,
where Gx,n is defined as in case (iii) above.

(iv) This time, due to (5.3), it suffices to consider a game G whose winning condition
has a single variable x. We have

min
α∈W0

G
α(z) = max

α∈W1
G
α(x) + 1 = max

α∈W0
G
α(x) + 1 = max

α∈W0
G

max
y
α(x) + 1,

by the closure properties of W0
G and W1

G and Lemma 5.12. The game G is again
solitary for Player 0.

Note that the missing problems, the ones with leading min for PLTLG conditions,
and the ones with leading max for PLTLF conditions are trivial, since these optima are
either undefined, if W0

G is empty, or they are 0 by downwards-closure respectively ∞
by upwards-closure. Also, the missing optimization problems for W1

G can be solved by
dualizing the games according to Lemma 5.12 (ii).
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Theorem 5.27 only holds for solitary games. However, combining it with Lemma 5.18,
one can obtain upper and lower bounds for the optimal strategies in a two-player game.
If Lemmata in spirit of Lemma 5.19 and 5.23 hold for unipolar two-player games, then
the optimization problems for these games are solvable as well.

Table 5.1 lists the complexity (in the number of LTL Games to solve) of the problems
discussed in this section. Solving an LTL Game is 2EXPTIME-complete for two-
player games and PSPACE-complete for solitary games in the size of the LTL winning
condition. This size is linear in nϕ and the sum of the α(z) and the sum of the constants
in ϕ. Many decision problems can be solved by determining the winner with respect to
α0, which eliminates the influence of α. In all other cases, the values α(z) are a product
of |G|, cϕ and 2nϕ . Hence, the resulting LTL winning condition might be exponential in
nϕ.

G ϕ Problem LTL Games to solve

arbitrary PLTLG W0
G empty? 1

solitary Pl. 0 PLTLG W0
G universal? 1

solitary Pl. 1 PLTLG W0
G universal? 1

solitary Pl. 0 PLTLG W0
G finite? kϕ

solitary Pl. 1 PLTLG W0
G finite? kϕ

solitary Pl. 0 PLTLG maxα∈W0
G

maxy∈var(ϕ) α(y) kϕ · log2(2|G|cϕ2nϕ)
solitary Pl. 1 PLTLG maxα∈W0

G
maxy∈var(ϕ) α(y) 2k2

ϕ · log2(2|G|cϕ2nϕ + 1)
solitary Pl. 0 PLTLG maxα∈W0

G
miny∈var(ϕ) α(y) log2(2|G|cϕ2nϕ)

solitary Pl. 1 PLTLG maxα∈W0
G

miny∈var(ϕ) α(y) 2 · log2(2|G|cϕ2nϕ + 1)

arbitrary PLTLF W0
G universal? 1

solitary Pl. 0 PLTLF W0
G empty? 1

solitary Pl. 1 PLTLF W0
G empty? 1

solitary Pl. 0 PLTLF W0
G finite? 1

solitary Pl. 1 PLTLF W0
G finite? 1

solitary Pl. 0 PLTLF minα∈W0
G

minx∈var(ϕ) α(x) 2kϕ · log2(2|G|cϕ2nϕ + 1)
solitary Pl. 1 PLTLF minα∈W0

G
minx∈var(ϕ) α(x) kϕ · (2|G|cϕkϕ2nϕ + 1)

solitary Pl. 0 PLTLF minα∈W0
G

maxx∈var(ϕ) α(x) log2(2|G|cϕ2nϕ + 1)
solitary Pl. 1 PLTLF minα∈W0

G
maxx∈var(ϕ) α(x) log2(2|G|cϕ2nϕ)

Table 5.1: Complexity of decision and optimization problems

The optimization results can be applied to solitary Request-Response Games, which
can be transformed into PLTLF Games as seen in Example 5.9.

Lemma 5.28. For a solitary Request-Response Game, optimal bounds on the waiting
times can be computed effectively.
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5.3 Non-uniform Semantics for PLTL Games

In this section, we consider alternative semantics for games with PLTL winning con-
ditions. Our notion of winning PLTL Games as introduced above employed a fixed,
uniform valuation α and required that every play is a model of the winning condition
with respect to α. Hence, once the valuation is fixed, a PLTL Game is in fact an LTL
Game, with all of its consequences, most importantly finite-state determinacy. So, both
players know the bounds in advance and can choose their moves based on that knowl-
edge. Player 0 has to enforce the fixed bounds on all plays consistent with her strategy
to win a PLTL game with respect to a fixed α. This is rather restrictive. An alternative
is to determine the winner of a play ρ non-uniformly: Player 0 wins ρ if there exists some
witness α such that ρ is a model of ϕ with respect to α. Then, different plays might
have different α that are witnesses for the win for Player 0. Also, these semantics are
no longer symmetric and tend to favor Player 0, since she has to play such that there is
some witness while Player 1 has to play against all valuations. Formally, a non-uniform
PLTL Game (G, s, ϕ) consists of an arena G, initial vertex s of G and winning condition
ϕ ∈ PLTL. Let ρ = ρ0ρ1ρ2 . . . be a play in G. Player 0 wins ρ iff there exists a valua-
tion α such that (ρ, 0, α) |= ϕ. This is not equivalent to replacing every parameterized
operator by its unparameterized version, since the non-uniform winning condition still
requires a fixed bound for every single play.

We begin by analyzing the new semantics.

Theorem 5.29. (G, s, ϕ) is determined.

Proof. For every ϕ ∈ PLTL and every α, the set

L(α(ϕ)) = {ρ | ρ is a path of G and (ρ, 0, α) |= ϕ}

is a ω-regular language, which is Borel. The set of winning plays for Player 0 in (G, s, ϕ)
is

⋃
α L(α(ϕ)), which is a countable union of Borel Sets and therefore a Borel Set. Thus,

(G, s, ϕ) is determined by Theorem 2.13.

The next question is whether the players can do better than that, i.e., whether they
always have finite-state winning strategies. Positional winning strategies do not suffice,
as they do not suffice to win LTL Games, which are subsumed by non-uniform PLTL
Games. It is easy to show that Player 1 can not hope for finite-state winning strategies.

Theorem 5.30. There is a non-uniform PLTL game G such that Player 1 has a winning
strategy for G, but not a finite-state winning strategy.

Proof. Player 0 has to play against all possible valuations α. This observation is the
key to defining G: consider G = (G, s0,FGp ∨GF≤y¬p) where G is given in Figure 5.4.
Note that G is a solitary game; hence, Player 1 wins if there is a path ρ such that
ρ |= α(¬ϕ) for all α. This is equivalent to ρ |= GF¬p∧FG>kp for all k. Thus, Player 1
has to move the token to s1 infinitely often, but has to keep it in s0 for more than k
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consecutive moves for every k: for the play ρ = s0s1s0s0s1s0s0s0s1s0s0s0s0 . . . we have
(ρ, 0, α) �|= FGp ∨ GF≤y¬p for all valuations α. Thus, Player 1 wins G1.

s0 s1
p

Figure 5.4: The arena G for Theorem 5.30

To complete the proof, assume that Player 1 has a finite-state strategy τ . Since G is a
solitary game, there is exactly one play ρ consistent with τ , which is ultimately periodic
by Remark 2.12, i.e., ρ = xyω for some finite play xy. However, every ultimately periodic
play is won by Player 0. Thus, Player 1 cannot have a finite-state winning strategy.

The question for Player 0 remains open. The first idea, to force her to measure the
length of some interval and require her to wait even longer at another vertex, but then
leaving it, cannot be specified by an PLTL formula, due to the use of distinct variables
for upwards-monotone and downwards-monotone operators.

Another important question deals with the relation of classical PLTL games and
non-uniform PLTL games. We begin by considering PLTL games and consider their
analogons with non-uniform semantics. If Player 0 has a winning strategy for G with
respect to a fixed α, i.e., W0

G �= ∅, then Player 0 wins G with non-uniform semantics as
well. If W0

G = ∅, then the situation is different.

Lemma 5.31. (i) There is a PLTL Game such that W0
G = ∅, but Player 0 wins G

with non-uniform semantics.

(ii) There is a PLTL Game such that W0
G = ∅ and Player 1 wins G with non-uniform

semantics.

Proof. (i) Consider the arena G in Figure 5.5 and the game (G, s0,F≤p ∨ G¬p). We
have W0

G = ∅, since Player 0 can keep the token in s0 for more than α(y) moves and
then move it to s1 for every α, thereby winning the play. On the other hand, for every
play ρ in G, there is a valuation α such that (ρ, 0, α) |= F≤p ∨ G¬p. Hence, Player 0
wins the game with non-uniform semantics.

s0 s1
p

Figure 5.5: The arena G for Lemma 5.31 (i)
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(ii) This is trivially true, just pick a game with variable-free winning condition that
Player 0 does not win.

One case of the other direction, from non-uniform semantics to classical semantics,
is easy, again. If Player 0 does not win G with non-uniform semantics, then there is no
α such that she wins G with respect to α. The other case would imply a solution to the
question of finite-state determinacy. Assume that the fact that Player 0 wins G with
non-uniform semantics implies W0

G �= ∅. Then Player 0 can use the finite-state winning
strategy σ for G with respect to some α ∈ W0

G to win G with non-uniform semantics as
well. This gives an alternative way of proving finite-state determinacy (for Player 0) of
non-uniform PLTL Games.

Lemma 5.32. If G is a win for Player 0 with non-uniform semantics implies W0
G �= ∅,

then Player 0 has a finite-state winning strategy for G with non-uniform semantics.

Note that results in spirit of Lemma 5.19 and 5.23 for unipolar two-player games
would imply that Player 0 has finite-state winning strategies for unipolar PLTL Games
with non-uniform semantics.





Chapter 6

Conclusion

In this work, we investigated the definition of time-optimal strategies based on natural
notions of waiting times for several winning conditions for infinite games on graphs.
This research is motivated by the fact that these waiting times typically correspond to
periods of waiting in the system modeled by the arena. This quality measure of a winning
strategy is defined semantically, as opposed to the memory size needed to implement the
strategy. Both are important in applications, but historically, attention was only paid
to the memory size. Only recently, strategies were evaluated in terms of the quality of
the plays it allows. While winning is still a binary notion, i.e., we considered zero-sum
games, there are winning plays for Player 0 that are less desirable than others.

The games considered here, Request-Response, Poset, and PLTL Games are char-
acterized by plays that might contain infinitely many (independent) periods of waiting;
hence, the waiting times have to be aggregated appropriately. For the former two winning
conditions, the limit of the accumulated waiting times is used to aggregate the waiting
times. This approach penalizes longer waiting times increasingly stronger, which is de-
sirable in applications. For games with PLTL winning conditions, we employed bounded
temporal operators. This amounts to imposing global bounds on the waiting times for
eventualities, for example.

For Request-Response Games and Poset Games we proved the existence of time-
optimal finite-state winning strategies. The proof technique employed is very flexible
and can be applied to other winning conditions as well, if they meet some requirements:
waiting times are triggered by a single request and can be computed locally for every step.
Also, if the waiting times are high, then the corresponding interval has to contain loops
that can be skipped. For solitary unipolar PLTL Games we proved that it is decidable,
whether a player wins a game with respect to some, infinitely many, or all valuations.
Furthermore, optimal strategies are computable for these games as well. For for two-
player unipolar games some of the decision problems are proven to be decidable and
necessary and sufficient conditions are given. Lastly, alternative semantics were defined
and compared to the standard semantics. Non-uniform PLTL games are determined,
but finite-state strategies do no longer suffice, unlike in PLTL Games.
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The investigation of time-optimal strategies is far from being finished. We did not
only obtain existence results for Request-Response and Poset Games. But the techniques
presented to synthesize winning strategies, based on reductions to Mean-Payoff Games,
do not allow a sensible implementation, since the memory requirements of the strategies
are very high. Also, for PLTL Games, most problems for two-player games are still
open. We will conclude this thesis by discussing the open problems just mentioned and
by giving some pointers to future research.

Open Questions and Further Research

As mentioned above, the size of the memory structure used to determine time-optimal
winning strategies in Request-Response and Poset Games prevents an implementation.
However, a careful analysis of the maximal length of non-dickson sequences of waiting
time vectors should improve the situation drastically. The following observation is key:
if there are |G| moves in which no open request is responded, then this infix contains a
loop that is deleted by the strategy improvement operators, as the waiting times increase
monotonically. Thus, there is at least one response of a condition in every such infix,
which bounds the possible values occurring in these vectors. Furthermore, the waiting
time vectors evolve synchronously if they are not reset to zero, which limits the length of
a non-dickson sequence. Hence, we believe that the waiting times can be bounded by a
smaller bound than b(n, k). If this bound can be lowered sufficiently, then the synthesis
algorithm could be implemented. To complement this, one should determine matching
lower bounds on the length of a non-dickson sequence of waiting time vectors.

Another interesting aspect is the trade-off between the size of a finite-state strategy
and its value. If there is some connection between the two magnitudes, then approxi-
mation algorithms might be applicable. These algorithms determine a strategy whose
value is only a constant factor higher than the optimal value, but whose memory require-
ments are lower. Finally, the usefulness of heuristic solutions to the problem of finding
time-optimal strategies should be researched.

The most pressing questions for unipolar PLTL Games are the open problems for
two-player games, namely, the emptiness, universality, and finiteness problem for W0

G
and the optimization problems. Counterparts of the technical lemmata proved for soli-
tary games are not directly clear, as there is no longer a single play that has to be
manipulated, but the restricted unraveling of the game with respect to a given winning
strategy for Player 0. A straightforward idea is to manipulate each play at a time.
But when repeating (or deleting) intervals of a single play, one has to pay attention to
(possibly infinitely many) other plays that share the prefix that is manipulated. The
critical intervals of these plays might overlap in a way that there is no safe interval in the
common prefix. This problem can be avoided by reasoning about runs of a deterministic
automaton accepting exactly the winning plays (with respect to the fixed valuation).
However, a run of the automaton cannot have a state repetition in a critical interval, as
it has to count the length of the interval. Also, retreating to non-deterministic or alter-
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nating automata does not help, since such an automaton might have to be in different
states, depending on the continuation of the play. Finally, reasoning with finite-state
strategies does not seem helpful, as the size of a strategy is always higher than the length
of a critical interval. Hence, there is no (memory) state repetition in a critical interval.
The bounds involved in the two technical lemmata do not coincide, which hints at an
influence of the size of V0 (respectively V1) on these bounds.

Another open problem is the exact complexity of solving the emptiness, universality,
and finiteness problem for W0

G , as well as the complexity of the optimization problems.
The results for LTL Games give lower bounds, and the translation of PLTL to LTL
(with respect to a fixed valuation), which increases the size of the formula linearly in
the values of the variables, gives upper bounds on the complexities.

Lastly, we want to mention an idea related to time-optimal strategies: Muller Games
do not have a clear definition of waiting times. Instead, McNaughton investigated the
following question [40]: can a referee decide the winner of an infinite play after a finite
play of a certain duration, depending on the winning condition and the arena? For
positionally determined games, a play can be stopped as soon as a vertex is visited for the
second time. McNaughton discusses a scoring function for finite plays and appropriate
choices for the duration of the play. However, no formal results are given, as he was
interested in devising games to be played by humans. But, as finite-state strategies
suffice to win Muller Games, the play can be stopped after a finite time. Then, the
referee can analyze the loops of the finite play. However, such a play will have several
loops and he has to determine the winner based on the right loops, i.e., a player might
not win a play, but is able to force some loops, that could mislead the referee.
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