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We consider the synthesis of distributed implementations for specifications in Prompt Linear Tempo-
ral Logic (PROMPT–LTL), which extends LTL by temporal operators equipped with parameters that
bound their scope. For single process synthesis it is well-established that such parametric extensions
do not increase worst-case complexities.

For synchronous systems, we show that, despite being more powerful, the distributed realizabil-
ity problem for PROMPT–LTL is not harder than its LTL counterpart. For asynchronous systems we
have to consider an assume-guarantee synthesis problem, aswe have to express scheduling assump-
tions. As asynchronous distributed synthesis is already undecidable for LTL, we give a semi-decision
procedure for the PROMPT–LTL assume-guarantee synthesis problem based on bounded synthesis.

1 Introduction

Linear Temporal Logic [16] (LTL) is the most prominent specification language for reactive systems
and the basis for industrial languages like ForSpec [2] and PSL [5]. Its advantages include a com-
pact variable-free syntax and intuitive semantics as well as the exponential compilation property, which
explains its attractive algorithmic properties: every LTLformula can be translated into an equivalent
Büchi automaton of exponential size. This yields a polynomial space model checking algorithm and a
doubly-exponential time algorithm for solving two-playergames. Such games solve the monolithic LTL
synthesis problem: given a specification, construct a correct-by-design implementation.

However, LTL lacks the ability to express timing constraints. For example, the request-response
propertyG(req→ F resp) requires that every requestreq is eventually responded to by aresp. It is
satisfied even if the waiting times between requests and responses diverge, i.e., it is impossible to require
that requests are granted within a fixed, but arbitrary, amount of time. While it is possible to encode an
a-priori fixed bound for an eventually into LTL, this requires prior knowledge of the system’s granularity
and incurs a blow-up when translated to automata, and is thusconsidered impractical.

To overcome this shortcoming of LTL, Alur et al. introduced parametric LTL (PLTL) [1], which
extends LTL with parameterized operators of the formF≤x andG≤y, wherex andy are variables. The
formulaG(req→ F≤x resp) expresses that every request is answered within an arbitrary, but fixed, num-
ber of stepsα(x). Here,α is a variable valuation, a mapping of variables to natural numbers. Typically,
one is interested in whether a PLTL formula is satisfied with respect to some variable valuation, e.g.,
model checking a transition systemS against a PLTL specificationϕ amounts to determining whether
there is anα such that every trace ofS satisfiesϕ with respect toα . Alur et al. showed that the PLTL
model checking problem is PSPACE-complete. Due to monotonicity of the parameterized operators, one
can assume that all variablesy in parameterized always operatorsG≤y are mapped to zero, as variable
valuations are quantified existentially in the problem statements. Dually, again due to monotonicity,
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one can assume that all variablesx in parameterized eventually operatorsF≤x are mapped to the same
value, namely the maximum of the bounds. Thus, in many cases the parameterized always operators and
different variables for parameterized eventually operators are not necessary.

Motivated by this, Kupferman et al. introduced PROMPT–LTL [12], which can be seen as the frag-
ment of PLTL without the parameterized always operator and with a single boundk for the parameterized
eventually operators. They proved that PROMPT–LTL model checking is PSPACE-complete and solv-
ing PROMPT–LTL games is 2EXPTIME -complete, i.e., not harder than LTL games. While the results
of Alur et al. rely on involved pumping arguments, the results of Kupferman et al. are all based on the
so-called alternating color technique, which basically allows to reduce PROMPT–LTL to LTL. Further-
more, the result on PROMPT–LTL games was extended to PLTL games [20], again using the alternating
color technique. These results show that adding parametersto LTL does not increase the asymptotic com-
plexity of the model checking and the game-solving problem,which is still true for even more expressive
logics [6,21].

The synthesis problems mentioned above assume a setting of complete information, i.e., every part
of the system has a complete view on the system as a whole. However, this setting is highly unrealistic
in virtually any system. Distributed synthesis on the otherhand, is the problem of synthesizing multiple
components with incomplete information. Since there are specifications that are not implementable, one
differentiates synthesis from the corresponding decisionproblem, i.e., therealizability problem of a for-
mal specification. We focus on the latter, but note that from the methods presented here, implementations
are efficiently extractable from a proof of realizability.

The realizability problem for distributed systems dates back to work of Pnueli and Rosner in the
early nineties [17]. They showed that the realizability problem for LTL becomes undecidable already
for the simple architecture of two processes with pairwise different inputs. In subsequent work, it was
shown that certain classes of architectures, like pipelines and rings, can still be synthesized automati-
cally [13,15]. Later, a complete characterization of the architectures for which the realizability problem
is decidable was given by Finkbeiner and Schewe by theinformation forkcriterion [7]. Intuitively, an
architecture contains an information fork, if there is an information flow from the environment to two
different processes where the information to one process ishidden from the other and vice versa. The
distributed realizability problem is decidable for all architectures without information fork. Beyond de-
cidability results, semi-algorithms like bounded synthesis [8] give an architecture-independent synthesis
method that is particularly well-suited for finding small-sized implementations.

Our Contributions. As mentioned above, one can add parameters to LTL for free: the complexity
of the model checking problem and of solving infinite games does not increase. This raises the ques-
tion whether this observation also holds for the distributed realizability of parametric temporal logics.
For synchronous systems, we can answer this question affirmatively. For every class of architectures
with decidable LTL realizability, the PROMPT–LTL realizability problem is decidable, too. To show
this, we apply the alternating color technique [12] to reduce the distributed realizability problem of
PROMPT–LTL to the one of LTL: one can again add parameterizedoperators to LTL for free.

For asynchronous systems, the environment is typically assumed to take over the responsibility for
the scheduling decision [19]. Consequently, the resultingschedules may be unrealistic, e.g., one process
may not be scheduled at all. Whilefairnessassumptions such as “every process is scheduled infinitely
often” solve this problem for LTL specifications, they are insufficient for PROMPT–LTL: a fair sched-
uler can still delay process activations arbitrarily long and thereby prevent the system from satisfying its
PROMPT–LTL specification for any boundk. Bounded fairscheduling, where every process is guar-
anteed to be scheduled in bounded intervals, overcomes thisproblem. Since bounded fairness can be
expressed in PROMPT–LTL, the realizability problem in asynchronous architectures can be formulated
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more generally as an assume-guarantee realizability problem that consists of two PROMPT–LTL specifi-
cations. We give a semi-decision procedure for this problembased on a new method for checking empti-
ness of two-colored Büchi graphs [12] and an extension of bounded synthesis [8]. As asynchronous LTL
realizability for architectures with more than one processis undecidable [19], the same result holds for
PROMPT–LTL realizability. Decidability in the one processcase, which holds for LTL [19], is left open.

All these results also hold for PLTL and even stronger logics[6, 21] to which the alternating color
technique is still applicable.

Related Work. There is a rich literature regarding the synthesis of distributed systems from global
ω-regular specifications [4,7,13,15,17,18]. We are not aware of work that is concerned with the realiz-
ability of parameterized logics in this setting. For local specifications, i.e., specifications that only relate
the inputs and outputs of single processes, the realizability problem becomes decidable for a larger class
of architectures [14]. An extension of these results to context-free languages was given by Fridman and
Puchala [9]. The realizability problem for asynchronous systems and LTL specifications is undecidable
for architectures with more than one process to be synthesized [19]. Later, Gastin et al. showed decid-
ability of a restricted specification language and certain types of architectures, i.e., well-connected [11]
and acyclic [10] ones. Bounded synthesis [8] provides a flexible synthesis framework that can be used
for synthesizing implementations for both the asynchronous and synchronous setting.

2 Prompt LTL

Throughout this work, we fix a set AP of atomic propositions. The formulas of PROMPT–LTL are given
by the grammar

ϕ ::= a | ¬a | ϕ ∧ϕ | ϕ ∨ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | FP ϕ ,

wherea ∈ AP is an atomic proposition,¬,∧,∨ are the usual boolean operators, andX,U,R are LTL
operators next, until, and release. We use the derived operators tt := a∨¬a and ff := a∧¬a for some
fixeda∈ AP, andFϕ := ttU ϕ andGϕ := ff R ϕ as usual. Furthermore, we useϕ →ψ as shorthand for
¬ϕ ∨ψ , if the antecedentϕ is a (negated) atomic proposition (where we identify¬¬a with a). We define
the size ofϕ to be the number of subfomulas ofϕ . The satisfaction relation for PROMPT–LTL is defined
between anω-word w= w0w1w2 · · · ∈

(

2AP
)ω

, a positionn of w, a boundk for the prompt-eventually
operators, and a PROMPT–LTL formula. For the LTL operators,it is defined as usual (and oblivious to
k) and for the prompt-eventually we have

• (w,n,k) � FPϕ if, and only if, there exists aj in the range 0≤ j ≤ k such that(w,n+ j,k) � ϕ .

For the sake of brevity, we write(w,k) � ϕ instead of(w,0,k) � ϕ and say thatw is a model ofϕ with
respect tok. Note that(w,n,k) � ϕ implies(w,n,k′) � ϕ for everyk′ ≥ k, i.e., satisfaction with respect to
k is an upwards-closed property.

The Alternating Color Technique. In this subsection, we recall the alternating color technique, which
Kupferman et al. introduced to solve model checking, assume-guarantee model checking, and the realiz-
ability problem for PROMPT–LTL specifications [12].

Let r /∈ AP be a fixed fresh proposition. Anω-wordw′ ∈
(

2AP∪{r}
)ω

is anr-coloring ofw∈
(

2AP
)ω

if w′
n∩AP= wn, i.e.,wn andw′

n coincide on all propositions in AP. The additional proposition r can be
thought of as the color ofw′

n: we say that thecolor changesat positionn, if n= 0 or if the truth values
of r in w′

n−1 and inw′
n are not equal. In this situation, we say thatn is achange point. An r-block is a

maximal infixw′
m· · ·w

′
n of w′ such that the color changes atmandn+1, but not in between.
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Let k≥ 1: we say thatw′ is k-spacedif the color changes infinitely often and eachr-block has length
at leastk; we say thatw′ is k-bounded, if eachr-block has length at mostk. Note thatk-boundedness
implies that the color changes infinitely often.

Given a PROMPT–LTL formulaϕ , let relr(ϕ) denote the formula obtained by inductively replacing
every subformulaFPψ by

(r → (r U (¬r U relr(ψ))))∧ (¬r → (¬r U (r U relr(ψ)))) ,

which is only linearly larger thanϕ and requires every prompt eventually to be satisfied within at most
one color change (not counting the position whereψ holds). Furthermore, the formulaaltr = GF r ∧
GF¬r is satisfied if the colors change infinitely often. Finally, we define the LTL formulacr(ϕ) =
relr(ϕ)∧altr . Kupferman et al. showed thatϕ andcr(ϕ) are in some sense equivalent onω-words which
are bounded and spaced.

Lemma 1 (Lemma 2.1 of [12]). Letϕ be aPROMPT–LTL formula, and let w∈
(

2AP
)ω

.

1. If (w,k) � ϕ , then w′ � cr(ϕ) for every k-spaced r-coloring w′ of w.

2. If w′ is a k-bounded r-coloring of w with w′ � cr(ϕ), then(w,2k) � ϕ .

Whenever possible, we drop the subscriptr for the sake of readability, ifr is clear from context.
However, when we consider asynchronous systems in Section 4, we need to relativize two formulas with
different colors, which necessitates the introduction of the subscripts.

3 Synchronous Distributed Synthesis

PROMPT–LTL specifications can give guarantees that LTL cannot, for example by asserting not only
that requests to a system are answeredeventually, but also that there is anupper boundon the reaction
time. This is especially important in distributed systems,since such timing constraints become more
difficult to implement because of information flows between the various parts of the system.

Consider for example a distributed computation system, where a central master getsimportantand
unimportanttasks, and can forward tasks to a number of clients. A client can either enqueue the task,
which means that it will be processedeventually, or clear the client-side queue and process the task
immediately. The latter operation is very costly (we have toremember the open tasks as they still need to
be completed), but guarantees an upper bound on the completion time. While in LTL we can only specify
that all incoming tasks are processed eventually, in PROMPT–LTL we can specify that the answer time
to important tasks is bounded by the formulaG(important-task→ FPfinished-task).1

We continue by formalizing the distributed realizability problem. LetX andY be finite and pairwise
disjoint sets of variables. Avaluationof X is a subset ofX; thus, the set of all valuations ofX is 2X . For
w= w0w1w2 · · · ∈ (2X)ω andw′ = w′

0w′
1w′

2 · · · ∈ (2Y)ω , let w∪w′ = (w0∪w′
0)(w1∪w′

1)(w2∪w′
2) · · · ∈

(2X∪Y)ω .

Strategies. A strategy f: (2X)∗ → 2Y maps a history of valuations ofX to a valuation ofY. A 2Y-
labeled 2X-transition systemS is a tuple〈S,s0,∆, l〉 whereS is a finite set of states,s0 ∈ S is the
designated initial state,∆ : S× 2X → S is the transition function, andl : S→ 2Y is the state-labeling.

1A similar constraint could be simulated in LTL by writing that on every important incoming task, the worker queues are
cleared. This, however, removes implementation freedom and requires the developer to determine how to implement the feature,
instead of letting the synthesis algorithm decide.
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We generalize the transition function to sequences over 2X by defining∆∗ : (2X)∗ → S recursively as
∆∗(ε) = s0 and∆∗(w0 · · ·wn−1wn) = ∆(∆∗(w0 · · ·wn−1),wn) for w0 · · ·wn−1wn ∈ (2X)+. A transition sys-
temS generatesthe strategyf if f (w) = l(∆∗(w)) for everyw∈ (2X)∗. A strategyf is calledfinite-state
if there exists a transition system that generatesf .

Let X′ andY′ be finite and disjoint sets whereX′ is additionally disjoint fromY andY′ is additionally
pairwise disjoint fromX andY. Further, letf : (2X)∗ → 2Y and f ′ : (2X)∗ → 2Y′

be two strategies with
the same domain but pairwise different co-domain 2Y and 2Y

′
. Theproduct f× f ′ : (2X)∗ → 2Y∪Y′

of f
and f ′ is defined as( f × f ′)(w) = f (w)∪ f ′(w) for everyw∈ (2X)∗. The 2X-projection of a sequence
w0 · · ·wn ∈ (2X∪X′

)∗ is proj2X(w0 · · ·wn) = (w0∩X) · · ·(wn∩X) ∈ (2X)∗. The 2X
′
-widening of a strategy

f : (2X)∗ → 2Y is defined as wide2X′ ( f ) : (2X∪X′
)∗ → 2Y with wide2X′ ( f )(w) = f (proj2X (w)) for w ∈

(2X∪X′
)∗. For strategiesf : (2X)∗ → 2Y and f ′ : (2X′

)∗ → 2Y′
, thedistributed product f⊗ f ′ : (2X∪X′

)∗ →
2Y∪Y′

is defined as the product wide2X′\X( f )×wide2X\X′ ( f ′).
The behavior of a strategyf : (2X)∗ → 2Y is characterized by an infinite tree that branches by the

valuations ofX and whose nodesw ∈ (2X)∗ are labeled with the strategic choicef (w). For an infi-
nite wordw = w0w1w2 · · · ∈ (2X)ω , the corresponding labeled path is defined as( f (ε)∪w0)( f (w0)∪
w1)( f (w0w1)∪w2) · · · ∈ (2X∪Y)ω . We lift the set containment operator∈ to the containment of a labeled
pathw = w0w1w2 · · · ∈ (2X∪Y)ω in a strategy tree induced byf : (2X)∗ → 2Y, i.e., w ∈ f if, and only
if, f (ε) = w0∩Y and f ((w0∩X) · · · (wi ∩X)) = wi+1∩Y for all i ≥ 0. We define the satisfaction of a
PROMPT–LTL formulaϕ (over propositionsX∪Y) on strategyf with respect to the boundk, written
( f ,k) � ϕ for short, as(w,k) � ϕ for all pathsw∈ f .

Distributed Systems. We characterize a distributed system as a set of processes with a fixed communi-
cation topology, called anarchitecturein the following. Recall that AP is the set of atomic propositions
used to build formulas. AnarchitectureA is a tuple〈P, penv,{Ip}p∈P,{Op}p∈P〉, whereP is the finite set
of processes andpenv∈ P is the distinct environment process. We denote byP− = P\{penv} the set of
system processes.

Given a processp ∈ P, the inputs and outputs of this process areIp ⊆ AP andOp ⊆ AP, respec-
tively, where we assumeIpenv = /0. We use the notationIP′ andOP′ for someP′ ⊆ P for

⋃

p∈P′ Ip and
⋃

p∈P′ Op, respectively. While processes may share the same inputs (in case of broadcasting), the outputs
of processes must be pairwise disjoint, i.e., for allp 6= p′ ∈ P it holds thatOp∩Op′ = /0.

An implementationof a processp∈P− is a strategyfp : (2Ip)∗ → 2Op mapping finite input sequences
to a valuation of the output variables.

penv

p1

p2

c

d

a

b

(a)

penv p1 p2
a b c

(b)

Figure 1: Example architectures

Example 1. Figure 1 shows example architecturesA1 andA2, where

A1 = 〈{penv, p1, p2}, penv,{penv→ /0, p1 →{a}, p2 →{b}},{penv→{a,b}, p1 →{c}, p2 →{d}}〉, and

A2 = 〈{penv, p1, p2}, penv,{penv→ /0, p1 →{a}, p2 →{b}},{penv→{a}, p1 →{b}, p2 →{c}}〉 .
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The architectureA1 in Fig. 1(a) contains two system processes,p1 andp2, and the environment process
penv. The processesp1 and p2 receive the inputsa, respectivelyb, from the environment and outputc
andd, respectively. Hence, the environment can provide processp1 with information that is hidden from
p2 and vice versa. In contrast, architectureA2, depicted in Fig. 1(b), is a pipeline architecture where
information from the environment can only propagate through the pipeline processesp1 andp2.

Distributed Realizability. Let A = 〈P, penv,{Ip}p∈P,{Op}p∈P〉 be an architecture. Thedistributed
realizability problem forA is to decide, given a PROMPT–LTL formulaϕ , whether there exist a boundk
and a finite-state implementationfp for every processp∈P−, such that the distributed product

⊗

p∈P− fp

satisfiesϕ with respect tok, i.e., (
⊗

p∈P− fp,k) � ϕ . In this case, we say thatϕ is realizable inA . The
distributed realizability problem for LTL is a special case, as LTL is a fragment of PROMPT–LTL.

Let r /∈AP be the fresh proposition introduced for the alternating color technique to relativize formu-
las and letA = 〈P, penv,{Ip}p∈P,{Op}p∈P〉 be an architecture as above. We define the architectureA r as
〈P∪{pr}, penv,{Ip}p∈P∪{Ir},{Op}p∈P∪{Or}〉, whereIr = /0 andOr = {r}. Intuitively, this describes
an architecture where one additional processpr is responsible for providing sequences in(2{r})ω , i.e.,
a coloring byr. We show thatϕ in A andcr(ϕ) in A r are equi-realizable by applying the alternating
color technique. As the processes are synchronized, the proof is similar to the one for the single-process
case by Kupferman et al. [12].

Theorem 1. A PROMPT–LTL formulaϕ is realizable inA if, and only if, cr(ϕ) is realizable inA r .

Proof. Let A = 〈P, penv,{Ip}p∈P,{Op}p∈P〉 be an architecture andϕ be a PROMPT–LTL formula.
Assume that the PROMPT–LTL formulaϕ is realizable inA . Then, there exist finite-state strategies

fp for p∈ P− and a boundk satisfying the PROMPT–LTL distributed realizability problem 〈A ,ϕ〉. For
everyw∈

⊗

p∈P− fp, it holds that(w,k) � ϕ . By Lemma 1.1 it holds that everyk-spacedr-coloring w′

of w satisfiescr(ϕ). Let fr : (2/0)∗ → 2{r} be a (finite-state) strategy that produces thek-spaced sequence
( /0k{r}k)ω . Then, the process implementations{ fp}p∈P− together with fr are a solution to the LTL
distributed realizability problem〈A r ,cr(ϕ)〉.

Now, assume that the LTL formulacr(ϕ) is realizable in the architectureA r . Thus, there exist
finite-state strategiesfp for p ∈ P− and a finite-state strategyfr for processpr . Note that the strat-
egy fr : (2/0)∗ → 2{r} has a unique outputwr ∈ (2{r})ω , as it has no inputs. We claim thatwr is k-bounded,
wherek is the number of states of the transition systemS = 〈S,s0,∆, l〉 generatingfr . To see this, note
that fr has no inputs, i.e., every state ofS has a unique successor in∆, and the unique run ofS on /0ω

ends up in a loop which is traversed ad infinitum. As the outputwr has infinitely many change points,
the loop contains at least one states labeled byl(s) = /0 and at last one states′ with l(s′) = {r}. Thus,
the maximal length of a block ofwr is bounded by the length of the loop, which in turn is bounded by
the size ofS .

Hence, for everyw∈
⊗

p∈P− fp, the wordwr ∪w is ak-boundedr-coloring ofw with wr ∪w� relr(ϕ).
By Lemma 1.2, for all suchw it holds that(w,2k) � ϕ . Hence,{ fp}p∈P− together with the bound 2k is a
solution to the PROMPT–LTL distributed realizability problem.

To conclude, we show that the newly introduced processpr preserves theinformation forkcrite-
rion [7]. Formally, consider tuples〈P′,V ′, p, p′〉, whereP′ is a subset of the processes,V ′ is a subset of
the variables disjoint fromIp ∪ Ip′ , and p, p′ ∈ P− \P′ are two different processes. Such a tuple is an
information fork inA if P′ together with the edges that are labeled with at least one variable fromV ′

forms a sub-graph ofA rooted in the environment and there exist two nodesq,q′ ∈ P′ that have edges
to p, p′, respectively, such thatO{q,p} * Ip′ andO{q′,p′} * Ip. For example, the architecture in Fig. 1(a)
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contains the information fork({penv}, /0, p1, p2), while the pipeline architecture depicted in Fig. 1(b) does
not contain an information fork.

Lemma 2. A r contains an information fork if, and only if,A contains an information fork.

Proof. The if direction follows immediately by construction: if〈P′,V ′, p, p′〉 is an information fork in
A then it is an information fork inA r as well. Hence, assume〈P′,V ′, p, p′〉 is an information fork in
A r . It holds that neitherpr = p nor pr = p′ sincepr has no incoming edges. AsIpr = /0, pr cannot be in
a sub-graph that is rooted in the environment, hence,pr /∈ P′ andr /∈V ′. It follows that〈P′,V ′, p, p′〉 is
an information fork inA .

Thus, we can use well-known results for the decidability of distributed realizability for LTL and
weakly ordered architectures [7], i.e., those without an information fork.

Corollary 1. Let A be an architecture. ThePROMPT–LTL distributed realizability problem forA is
decidable if, and only if,A is weakly ordered.

Furthermore, we can directly apply semi-algorithms for thedistributed realizability problem, such as
bounded synthesis [8], to effectively construct small-sized solutions.

4 Asynchronous Distributed Synthesis

The asynchronous system model is a generalization of the synchronous model discussed in the last sec-
tion. In an asynchronous system, not all processes are scheduled at the same time. We model the
scheduler as part of the environment, i.e., at any given timethe environment additionally signals whether
a process is enabled. The resulting distributed realizability problem is already undecidable for LTL
specifications and systems with more than one process [19].

We have to adapt the definition of the PROMPT–LTL realizability problem for the asynchronous
setting. Using the definition from Section 3, the system can never satisfy a PROMPT–LTL formula if the
scheduler is part of the environment, since it may delay scheduling indefinitely. Moreover, even if the
scheduler is assumed to be fair, it can still build increasing delay blocks between process activation times,
such that it is impossible for the system to guarantee any bound k ∈ N. Hence, we employ the concept
of bounded fairschedulers and allow the system valuations to depend on the scheduler bound. More
generally, this is a typical instance of an assume-guarantee specification: under the assumption that the
scheduler is bounded fair, the system satisfies its specification. In the following, we formally introduce
the distributed realizability problem for asynchronous systems and assume-guarantee specifications.

To model scheduling, we introduce an additional set Sched= {schedp | p∈ P−} of atomic proposi-
tions. The valuation ofschedp indicates whether system processp is currently scheduled or not. Given
a (synchronous) architectureA = 〈P, penv,{Ip}p∈P,{Op}p∈P〉, we define the asynchronous architecture
A ∗ as the architecture with the environment outputO∗

penv
= Openv∪Sched. Furthermore, we extend the

input Ip of a process by its scheduling variableschedp, i.e., I∗p = Ip∪{schedp} for every p∈ P−. The
environment can decide in every step which processes to schedule. When a process is not scheduled,
its state—and thereby its outputs—do not change [8]. Formally, letfp for p∈ P− be a finite-state im-
plementation for a processp andSp = 〈S,s0,∆, l〉 a transition system that generatesfp. For every path
w= w0w1w2 · · · ∈ (2I∗p)ω it holds that ifschedp /∈ wi for somei ∈ N, then∆∗(w[i]) = ∆∗(w[i+1]), where
w[i] denotes the prefixw0w1 · · ·wi of w.

A PROMPT–LTL assume-guarantee specification〈ϕ ,ψ〉 consists of a pair of PROMPT–LTL for-
mulas. The asynchronous assume-guarantee realizability problem asks, given an asynchronous archi-
tectureA ∗ and〈ϕ ,ψ〉 as above, whether there exists a finite-state implementation fp for every process
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p ∈ P− such that for every boundk there is a boundl such that for everyw∈
⊗

p∈P− fp, we have that
(w,k) � ϕ implies(w, l) � ψ . In this case, we say that

⊗

p∈P− fp satisfies〈ϕ ,ψ〉.
Consider the bounded fairness specification discussed above, which is expressed by the formulaϕ =

∧

p∈P− GFPschedp, i.e., for every point in time, everyp is scheduled within a bounded number of steps.
That is, we useϕ as an assumption on the environment which implies that the guaranteeψ only has to
be satisfied ifϕ holds. Consider for example the asynchronous architecturecorresponding to Fig. 1(a)
and the PROMPT–LTL specificationψ = G(FPc∧FP¬c∧FPd∧FP¬d). Even when we assume a fair
scheduler, i.e.,ϕ = GFschedp1 ∧GFschedp2, the environment can prevent one process from satisfying
the specification for any boundl . This problem is fixed by assuming the scheduler to be boundedfair,
i.e., ϕ = GFPschedp1 ∧GFPschedp2. Then, there exist realizing implementations for processes p1 and
p2 (that alternate between enabling and disabling the output), and the bound on the guarantee isl = 2·k
for every boundk.

Unlike LTL, where the assume-guarantee problem〈ϕ ,ψ〉 can be reduced to the LTL realizability
problem for the implicationϕ →ψ , this is not possible in PROMPT–LTL due to the quantifier alternation
on the bounds. Indeed, it is still open whether the PROMPT–LTL assume-guarantee realizability problem
in the single-process case is decidable. We show that even ifthe problem turns out to be decidable, an
implementation that realizes the specification may need in general infinite memory.

Lemma 3. There exists an assume-guaranteePROMPT–LTL specification that can be realized with an
infinite-state strategy, but not with a finite-state strategy.

Proof. Consider the assume-guarantee specification〈ϕ ,ψ〉 with ϕ = GFPo∨FG¬o andψ = ff and a
single process architecture withI = /0 andO = {o}. As the guaranteeψ is false, the implementation
has to falsify the assumptionϕ for every boundk on the prompt-eventually operator to realize〈ϕ ,ψ〉.
To falsify ϕ with respect tok, the implementation has to produce a sequencew ∈ (2{o})ω whereo is
repeatedly true and where /0k is an infix ofw. Thus, the size of the implementation depends onk and an
implementation that falsifiesϕ for everyk must have infinite memory.

Since the LTL realizability problem is undecidable and implementations for PROMPT–LTL assume-
guarantee specifications may need infinite memory, the PROMPT–LTL assume-guarantee realizability
problem for asynchronous architectures may be at best solvable by a semi-decision procedure. We
present such a semi-algorithm for the asynchronous distributed realizability problem for assume-guarantee
PROMPT–LTL specifications based on bounded synthesis [8]. In bounded synthesis, a transition system
of a fixed size is “guessed” and model checked by a constraint solver. Model checking for PROMPT–LTL
can be solved by checking pumpable non-emptiness of coloredBüchi graphs [12]. However, the pumpa-
bility condition cannot directly be expressed in the bounded synthesis constraint system. Hence, in
Section 4.1, we give an alternative solution to the non-emptiness of colored Büchi graphs by a reduction
to Büchi graphs that have access to the state space of the transition system. We use this result to build
the semi-algorithm that is presented in Section 4.2.

4.1 Nonemptiness of Colored B̈uchi Graphs

In the case of LTL specifications, the nonemptiness problem for Büchi graphs gives a classical solution to
the model checking problem for a given systemS . Let ϕ be the LTL formula thatS should satisfy. In a
preprocessing step, the negation ofϕ is translated to a nondeterministic Büchi word automatonN¬ϕ [3].
Thenϕ is violated byS if, and only if, the Büchi graphG representing the product ofS andN¬ϕ
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is nonempty. An accepting pathπ in G witnesses a computation ofS that violatesϕ . Colored B̈uchi
graphsare an extension to those graphs in the context of model checking PROMPT–LTL [12].

A colored Büchi graph of degree two is a tupleG= 〈{r, r ′},V,E,v0,L,B〉 wherer andr ′ are propo-
sitions, V is a set of vertices,E ⊆ V ×V is a set of edges,v0 ∈ V is the designated initial vertex,
L : V → 2{r,r ′} describes the color of a vertex, andB = {B1,B2} is a generalized Büchi condition of
index two, i.e.,B1,B2 ⊆V. A Büchi graph is a special case where we omit the labeling function and are
interested in finding an accepting path. A pathπ = v0v1v2 · · · ∈Vω is pumpable, if we can pump all its
r ′-blocks without pumping itsr-blocks. Formally, a path is pumpable if for all adjacentr ′-change pointsi
andi′, there are positionsj, j ′, and j ′′ such thati ≤ j < j ′ < j ′′ < i′, v j = v j ′′ andr ∈ L(v j) if, and only if,
r /∈ L(v j ′). A pathπ is accepting, if it visits bothB1 andB2 infinitely often. Thepumpable nonemptiness
problem forG is to decide whetherG has a pumpable accepting path. It is NLOGSPACE-complete and
solvable in linear time [12].

We give an alternative solution to this problem based on a reduction to the nonemptiness problem of
Büchi graphs. To this end, we construct a non-deterministic safety automatonNpump that characterizes
the pumpability condition. Note that an infinite word is accepted by a safety automaton if, and only if,
there exists an infinite run on this word.

Lemma 4. Let G= 〈{r, r ′},V,E,v0,L,B〉 be a colored B̈uchi graph of degree two. There exists a Büchi
graph G′ with O(|G′|) = O(|G|2) such that G has a pumpable accepting path if, and only if, G′ has an
accepting path.

Proof. We define a non-deterministic safety automatonNpump= 〈V ×2{r,r ′},S,s0,δ ,S〉 over the alphabet
V ×2{r,r ′} that checks the pumpability condition. The product ofG andNpump (defined later) represents
the Büchi graphG′ where every accepting path is pumpable.

The languageL ⊆ (V × 2{r,r ′})ω of pumpable paths (with respect to a fixed set of verticesV) is
an ω-regular language that can be recognized by a small non-deterministic safety automaton. This
automatonNpump operates in 3 phases between every pair of adjacentr ′-change points: first, it non-
deterministically remembers a vertexv and the corresponding truth value ofr. Then, it checks that this
value changes and thereafter it remains to show that the vertex v repeats before the nextr ′-change point.
Thus, the state spaceSof Npump is

{s0}∪
{

sv,x | v∈V,x∈ 2{r,r ′}
}

∪
{

s′v,y | v∈V,y∈ 2{r,r ′}
}

∪
{

s′′z | z∈ 2{r ′}
}

and the initial state iss0. The state space corresponds to the 3 phases: In the statessv,x a vertexv and
a truth value ofr are remembered, before states′v,y the value ofr changes, ands′′z is the state after the

vertex repetition. The transition functionδ : (S× (V ×2{r,r ′}))→ 2S is defined as follows:

• δ (s0,(v,x)) = {sv,x}

• δ (sv,x,(v′,x′)) ∋











sv,x if x={r ′} x′

sv′,x′ if x={r ′} x′

s′v,x′ if x={r ′} x′ andx 6={r} x′

• δ (s′v,y,(v′,x)) ∋

{

s′v,y if x={r ′} y andv′ 6= v

s′′y∩{r ′} if x={r ′} y andv= v

• δ (s′′z ,(v,x)) ∋

{

s′′z if x={r ′} z

sv,x if x 6={r ′} y
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whereA=C B is defined as(A∩C) = (B∩C). The size ofNpump is in O(|V|). Figure 2 gives a visual-
ization of this automaton.

s0

sv,{r,r ′}

sv,{r ′}

sv,{r}

sv, /0

s′v,{r ′}

s′v,{r,r ′}

s′v, /0

s′v,{r}

s′′{r ′}

s′′/0

¬r

r

¬r

r

r ′

¬r ′

¬r ′

¬r ′

r ′

r ′

Figure 2: Schematic visualization of the automatonNpump from the proof of Lemma 4. The 3 phases are
clearly visible: In the red statessv,x (solid rectangles) the values(v,x) are non-deterministically stored
and those states can only be left if there is a change in the value of r. The subsequent blue statess′v,y
(dashed rectangles) can only be left in case of a vertex repetition leading to the green states′′z (dotted
circles) that waits for the nextr ′ change point.

Remark 1. Note that in the context of this proof, it would be enough to remember a vertexv without
the valuation of{r, r ′} as the vertex determines the valuation by the labeling function L : v→ 2{r,r ′} of G.
However, we will later useNpump in a more general setting (cf. Section 4.2).

We define the productG′ of the colored Büchi graphG = 〈{r, r ′},V,E,v0,L,B〉 and the automa-
tonNpump as the Büchi graph(V ×S,E′,(v0,s0),B

′), where

((v,s),(v′,s′)) ∈ E′ ⇔ (v,v′) ∈ E∧s′ ∈ δ (s,(v,L(v)))

and whereB′ = (B′
1,B

′
2) is given byB′

i = {(v,s) | v∈ Bi ands∈ S} for i ∈ {1,2}. The size ofG′ is in
O(|G|2). It remains to show thatG has a pumpable accepting path if, and only if,G′ has an accepting
path.

Consider a pumpable accepting pathπ in G. We show that there is a corresponding accepting path
π ′ in G′. Let i and i′ be adjacentr ′-change points. Then there are positionsj, j ′, and j ′′ such that
i ≤ j < j ′ < j ′′ < i′, v j = v j ′′ and r ∈ L(v j) if, and only if, r /∈ L(v j ′). By construction, at position
i, automatonNpump is some state from the set{s0,s′′/0,s

′′
{r ′}}. We follow the automaton and remember

vertexv and the truth value ofr at position j ≥ i (some statesv,x). Next, we take the transition tos′v,y
where the truth value ofr changes (at positionj ′). Lastly, we check that there is a vertex repetition (at
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position j ′′) and go to states′′z . At the nextr ′-change pointi′, the argument repeats. This path is accepting,
as the original one is accepting.

Now, consider an accepting pathπ in G′. We show that there is a pumpable accepting path inG. Let
π ′ be the projection of every position ofπ to the first component. By construction,π ′ is an accepting
path inG. Let πiπi+1 · · ·πi′ be anr ′-block of π. As π has a run on automatonNpump, we know that there
exists a state repetition betweeni andi′ where the truth value ofr changes in between. Hence, the path
π ′ is pumpable.

4.2 A Semi-Algorithm for Assume-Guarantee Realizability

As the assume-guarantee realizability problem for asynchronous architectures is undecidable and infinite-
state strategies are required in general, we give a semi-decision procedure for the problem, as an exten-
sion of the bounded synthesis approach [8]. Based on an LTL specificationϕ , an architectureA , and
a size boundb, bounded synthesis separately considers the problems of finding a global transition sys-
tem that satisfies the given specification, and of dividing the transition system into local components
according to the given architecture. To this end, two sets ofconstraints are generated: an encoding of
the satisfaction ofϕ by a global transition systemS of size b, and an encoding of the architectural
constraints that divides this global system into local components. If the conjunction of both sets of con-
straints is satisfiable, then a model of the constraints represents a distributed system that satisfiesϕ in
A . Since the architectural constraints we consider are the same as in standard bounded synthesis, we
only have to modify the constraints encoding the existence of a global transition system that satisfies the
given specification.

In the following, we use the techniques developed in the lastsubsection to generalize the encod-
ing of the specification from a single LTL formulaϕ to an assume-guarantee specification〈ϕ ,ψ〉 in
PROMPT–LTL. Given an assume-guarantee specification〈ϕ ,ψ〉, we first solve the problem of model-
checking assume-guarantee specifications by building a universal co-Büchi tree automatonUT that ac-
cepts a transition systemS if, and only if, S satisfies〈ϕ ,ψ〉. FromUT and a given boundb, we then
build a constraint system that is satisfiable if, and only if,an implementationS of 〈ϕ ,ψ〉 with sizeb ex-
ists. Finally, the encoding of architectural constraints can be adopted without changes from the original
approach to obtain a conjunction of constraints that is satisfiable if, and only if, there is a system of size
b that satisfies〈ϕ ,ψ〉 in A .

Encoding 〈ϕ ,ψ〉 into Büchi automata. Let A ∗ = 〈P, penv,{I∗p}p∈P,{O∗
p}p∈P〉 be an asynchronous ar-

chitecture and letI = O∗
penv

andO=
⋃

p∈P− O∗
p be the set of inputs, respectively outputs, of the composi-

tion of the system processes. First, we construct the non-deterministic Büchi automatonNcr′ (ψ)∧cr(ϕ) =

〈2I∪O∪{r,r ′},Q,q0,δ ,B〉, wherecr ′(ψ) = altr ′ ∧¬relr ′(ψ) whose language contains exactly those paths
that satisfycr ′(ψ)∧cr(ϕ) [3].

Lemma 5 (cf. Theorem 6.2 of [12]). Let S be a2O-labeled2I -transition system. ThenS does not
satisfy〈ψ ,ϕ〉 if, and only if, the product ofS andNcr′ (ψ)∧cr(ϕ) is pumpable non-empty.

To check the existence of pumpable error paths, we use the non-deterministic automatonNpump=
〈V ×2{r,r ′},S,s0,δ ′,S〉 from the proof of Lemma 4. Here, we letV = X ×Q, whereX is a set withb
elements, representing the state space of the desired solution S , andQ is the state space of the automa-
ton Ncr′ (ψ)∧cr(ϕ) defined above. That is, we use asV the state spaceX×Q of the colored Büchi graph
that is used to model check an implementationS against a specification〈ψ ,ϕ〉.
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The product ofNcr′ (ψ)∧cr(ϕ) andNpump is an automatonN that operates on the inputsI , outputs
O, propositions{r, r ′}, and the state spaceX of the implementation, and accepts all those paths that are
pumpable and violate the assume-guarantee specification (cf. Lemma 4).

N is defined as
〈2I∪O∪{r,r ′}×X,Q×S,(q0,s0),δ ∗,B∗〉,

whereδ ∗ : Q×S×2I∪O∪{r,r ′}×{x} → 2Q×S is defined as

δ ∗((q,s),(σ ,x)) =
{

(q′,s′) | q′ ∈ δ (q,σ) ∧ s′ ∈ δ ′(s,{q,x}∪ (σ ∩{r, r ′}))
}

,

andB∗ is the Büchi condition{(q,s) | q∈ B,s∈ S}.
We complementN , resulting in a universal co-Büchi automatonU that accepts a given sequence

w∈ (2I∪{r,r ′})ω of inputs and the behavior of an implementationS onw iff the execution ofS onwsatis-
fies〈ψ ,ϕ〉. Finally, we construct a universal co-Büchi tree automaton UT = (2O×X,2I∪{r,r ′},Q,q0,δ , B)
by spanning a copy ofU for every direction in 2I∪{r,r ′}. Then, an implementationS is accepted byUT

if, and only if, S satisfies〈ϕ ,ψ〉 (for all possible input sequences). Thus,UT solves the problem of
model-checking assume-guarantee specifications.

Encoding the automaton into constraints. Now, we use a slightly modified bounded synthesis algo-
rithm [8] to encodeUT into a set of constraints in a first-order theory with uninterpreted functions and
a total order, such that the constraints are satisfiable iff there exists an implementationS that satisfies
〈ϕ ,ψ〉. The main difference to the existing approach is that the specification automatonUT has access to
the states of the implementationS . This is not a problem, since the generated constraints explicitly refer
to the state space ofS anyway. The original proof of correctness can be used with minor modifications
to obtain the following corollary.

Corollary 2. Given an assume-guarantee specification〈ϕ ,ψ〉 and a bound b, there is a constraint system
(in a decidable first-order theory) that is satisfiable if, and only if, there exist an implementationS of
size b such thatS satisfies〈ϕ ,ψ〉.

Encoding of architectural constraints. As mentioned above, the encoding of architectural constraints
can be adopted without changes, and it can in particular alsocontain additional bounds on the state space
of every single component the conjunction of both sets of constraints then asks for the existence of a
distributed implementationS =

⊗

p∈P− fp of sizeb that satisfies〈ϕ ,ψ〉, possibly with additional bounds
bp for everyp∈ P− on the size of the components. Thus, we obtain:

Theorem 2. Given an assume-guarantee specification〈ϕ ,ψ〉, an asynchronous architectureA ∗, and a
family of bounds bp for every p∈ P−, there is a constraint system (in a decidable first-order theory) that
is satisfiable if, and only if, there exist implementations fp of size bp for every p∈P− such that

⊗

p∈P− fp

satisfies〈ϕ ,ψ〉 in A ∗.

By exhaustively traversing the space of bounds(bp)p∈P− and by solving the resulting constraint
system as in the previous theorem, we obtain a semi-algorithm for the asynchronous assume-guarantee
realizability problem for PROMPT–LTL. Furthermore, this also solves the synthesis problem, as imple-
mentations are efficiently obtained from a satisfying assignment of the constraint system.

Corollary 3. LetA be an asynchronous architecture. ThePROMPT–LTL distributed assume-guarantee
realizability problem forA is semi-decidable.
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5 Conclusion

In this paper, we have initiated the investigation of distributed synthesis for parameterized specifications,
in particular for PROMPT–LTL. This logic subsumes LTL, but additionally allows to express bounded
satisfaction of system properties, instead of only eventual satisfaction. To the best of our knowledge, this
is the first treatment of PROMPT–LTL specifications in distributed synthesis.

We have shown that for the case of synchronous distributed systems, we can reduce the PROMPT–LTL
synthesis problem to an LTL synthesis problem. Thus, the complexity of PROMPT–LTL synthesis corre-
sponds to the complexity of LTL synthesis, and the PROMPT–LTL realizability problem is decidable if,
and only if, the LTL realizability problem is decidable. Forthe case of asynchronous distributed systems
with multiple components, the PROMPT–LTL realizability problem is undecidable, again correspond-
ing to the result for LTL. For this case, we give a semi-decision procedure based on a novel method
for checking emptiness of two-colored Büchi graphs. All these results also hold for PLTL and the even
stronger logics from [6, 21], as they have the exponential compilation property and as the alternating
coloring technique is applicable to these logics as well.

Among the problems that remain open is realizability of PROMPT–LTL specifications in asyn-
chronous distributed systems with a single component. Thisproblem can be reduced to the (single-
process) assume-guarantee realizability problem for PROMPT–LTL, which was left open in [12].
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