
Distributed Synthesis for

Parameterized Temporal LogicsI

Swen Jacobs, Leander Tentrup, Martin Zimmermann

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany

Abstract

We consider the synthesis of distributed implementations for specifications in
parameterized temporal logics such as PROMPT–LTL, which extends LTL
by temporal operators equipped with parameters that bound their scope.
For single process synthesis, it is well-established that such parametric ex-
tensions do not increase worst-case complexities. For synchronous distributed
systems, we show that, despite being more powerful, the realizability problem
for PROMPT–LTL is not harder than its LTL counterpart. For asynchronous
systems, we have to express scheduling assumptions and therefore consider
an assume-guarantee synthesis problem. As asynchronous distributed syn-
thesis is already undecidable for LTL, we give a semi-decision procedure for
the PROMPT–LTL assume-guarantee synthesis problem based on bounded
synthesis. Finally, we show that our results extend to the stronger logics
PLTL and PLDL.

Keywords: distributed synthesis, distributed realizability, incomplete
information, parametric linear temporal logic, parametric linear dynamic
logic

ISupported by the projects ASDPS (JA 2357/2–1) and TriCS (ZI 1516/1–1) of the
German Research Foundation (DFG) and by the grant OSARES (No. 683300) of the
European Research Council (ERC).

Email addresses: jacobs@react.uni-saarland.de (Swen Jacobs),
tentrup@react.uni-saarland.de (Leander Tentrup),
zimmermann@react.uni-saarland.de (Martin Zimmermann)

Preprint submitted to Information and Computation February 26, 2018

1. Introduction

Linear Temporal Logic [1] (LTL) is the most prominent specification lan-
guage for reactive systems and the basis for industrial languages like For-
Spec [2] and PSL [3]. Its advantages include a compact variable-free syn-
tax and intuitive semantics as well as the exponential compilation property,
which explains its attractive algorithmic properties: every LTL formula can
be translated into an equivalent Büchi automaton of exponential size [4]. This
yields a polynomial space model checking algorithm and a doubly-exponential
time algorithm for solving two-player games. Such games solve the monolithic
LTL synthesis problem: given a specification, construct a correct-by-design
implementation.

However, LTL lacks the ability to express timing constraints. For ex-
ample, the request-response property G(req → F resp) requires that every
request req is eventually responded to by a resp. It is satisfied even if the
waiting times between requests and responses diverge, i.e., it is impossible
to require that requests are granted within a fixed, but arbitrary, amount of
time. While it is possible to encode an a-priori fixed bound for an eventually
into LTL, this requires prior knowledge of the system’s granularity and incurs
a blow-up when translated to automata, and is thus considered impractical.

To overcome this shortcoming of LTL, Alur et al. introduced parametric
LTL (PLTL) [5], which extends LTL with parameterized operators of the
form F≤x and G≤y, where x and y are variables. The formula G(req →
F≤x resp) expresses that every request is answered within an arbitrary, but
fixed, number of steps α(x). Here, α is a variable valuation, a mapping
of variables to natural numbers. Typically, one is interested in whether a
PLTL formula is satisfied with respect to some variable valuation, e.g., model
checking a transition system S against a PLTL specification ϕ amounts to
determining whether there is an α such that every trace of S satisfies ϕ with
respect to α. Alur et al. [5] showed that the PLTL model checking problem
is PSpace-complete. Due to monotonicity of the parameterized operators,
one can assume that all variables y in parameterized always operators G≤y
are mapped to zero, as variable valuations are quantified existentially in the
problem statements. Dually, again due to monotonicity, one can assume
that all variables x in parameterized eventually operators F≤x are mapped
to the same value, namely the maximum of the bounds. Thus, in many cases
the parameterized always operators and different variables for parameterized
eventually operators are not necessary.

2

Motivated by this, Kupferman et al. introduced PROMPT–LTL [6], which
can be seen as the fragment of PLTL without the parameterized always op-
erator and with a single bound k for the parameterized eventually operators.
They proved that PROMPT–LTL model checking is PSpace-complete and
solving PROMPT–LTL games is 2ExpTime-complete, i.e., not harder than
LTL games. While the results of Alur et al. rely on involved pumping argu-
ments, the results of Kupferman et al. are all based on the so-called alter-
nating color technique, which basically allows to reduce PROMPT–LTL to
LTL.

Intuitively, one introduces a new proposition that is thought of as coloring
traces of a system. Then, one replaces each parameterized eventually oper-
ator F≤x ϕ by an LTL formula requiring ϕ to hold within at most one color
change. If the distance between color changes is bounded from above, then
satisfaction of the rewritten formula implies the existence of a bound k for
the bounded eventually operators such that the original formula is satisfied
with respect to k. Dually, if the distance between color changes is bounded
from below, then the other implication holds: the original PROMPT–LTL
formula implies the rewritten LTL formula.

When applying this equivalence, one has to specify how the truth values
for the new atomic proposition coloring the traces are determined. In a
game setting (in particular in synthesis), the player who aims to satisfy the
PROMPT–LTL formula determines these truth values and is required to
change colors infinitely often. Then, a finite-state strategy automatically
ensures an upper bound on the distance between color changes.

Later, the result on PROMPT–LTL games was extended to PLTL games [7],
relying on the monotonicity properties explained above and an application of
the alternating color technique. These results show that adding parameters
to LTL does not increase the asymptotic complexity of the model checking
and the game-solving problem, which is still true for even more expressive log-
ics like Parametric Linear Dynamic Logic (PLDL) [8] and PLTL and PLDL
with costs [9]. The former logic is an extension of PLTL with the full ex-
pressiveness of the ω-regular languages. The latter logics are evaluated in
weighted systems and generalize PLTL and PLDL by bounding the param-
eterized operators in the accumulated weight instead of bounding them in
time.

The synthesis problems mentioned above assume a setting of complete
information, i.e., every part of the system has a complete view on the system
as a whole. However, this setting is unrealistic in distributed systems. Based

3

on this observation, distributed synthesis is defined as the problem of syn-
thesizing multiple components with incomplete information. Since there are
specifications that are not implementable, one differentiates synthesis from
the corresponding decision problem, i.e., the realizability problem of a formal
specification. We focus on the latter, but note that typically algorithms for
the realizability problem also solve the synthesis problem, as they rely on
constructing implementations to prove realizability. This also holds in our
work here.

The realizability problem for distributed systems dates back to work of
Pnueli and Rosner in the early nineties [10]. They showed that the realizabil-
ity problem for LTL becomes undecidable already for the simple architecture
of two processes with pairwise different inputs. In subsequent work, it was
shown that certain classes of architectures, like pipelines and rings, can still
be synthesized automatically [11, 12]. Later, a complete characterization of
the architectures for which the realizability problem is decidable was given
by Finkbeiner and Schewe by the information fork criterion [13]. Intuitively,
an architecture contains an information fork if there is an information flow
from the environment to two different processes where the information to one
process is hidden from the other and vice versa. The distributed realizability
problem is decidable exactly for those architectures without an information
fork. Beyond decidability results, semi-decision procedures like bounded syn-
thesis [14] give an architecture-independent synthesis method that is particu-
larly well-suited for finding small-sized implementations. Bounded synthesis
searches for finite-state implementations of a fixed size by encoding the prob-
lem as a constraint system in a decidable first-order theory. In case of a posi-
tive answer, the result is returned, otherwise the bound is increased. If there
is an upper bound on the size of a finite-state implementation, then bounded
synthesis is a complete decision procedure, as it can be stopped if the upper
bound is reached without a positive answer. If there is no such upper bound,
it is indeed a semi-decision procedure that finds an implementation if one
exists, but runs forever otherwise.

1.1. Our Contributions

As mentioned above, one can add parameters to LTL for free: the com-
plexity of the model checking problem and of solving infinite games does not
increase. This raises the question whether this is also true for distributed
realizability of parametric temporal logics. For synchronous systems, we can

4

answer this question affirmatively. For every class of architectures with decid-
able LTL realizability, the PROMPT–LTL realizability problem is decidable,
too. To show this, we apply the alternating color technique [6] to reduce the
distributed realizability problem of PROMPT–LTL to the one of LTL: one
can again add parameterized operators to LTL for free. To prove this result,
we add a new process whose only task it is to determine a coloring with the
fresh proposition. By ensuring that the new process does not introduce an
information fork we obtain decidability for the same class of architectures as
for LTL.

For asynchronous systems, the environment is typically assumed to take
over the responsibility for the scheduling decision [15]. Consequently, the re-
sulting schedules may be unrealistic, e.g., one process may not be scheduled at
all. While fairness assumptions such as “every process is scheduled infinitely
often” solve this problem for LTL specifications, they are insufficient for
PROMPT–LTL: a fair scheduler can still delay process activations arbitrar-
ily long and thereby prevent the system from satisfying its PROMPT–LTL
specification for any bound k. Bounded fair scheduling, where every process
is guaranteed to be scheduled in bounded intervals, overcomes this prob-
lem. Since bounded fairness can be expressed in PROMPT–LTL, the re-
alizability problem in asynchronous architectures can be formulated more
generally as an assume-guarantee realizability problem that consists of two
PROMPT–LTL specifications. Hence, we have to deal with two colorings
of the traces when applying the alternating color technique: One induces
bounds on the parameterized eventually operators in the assumption, the
other on the bounds on the parameterized eventually operators in the guar-
antee.

We give a semi-decision procedure for this problem based on a new
method for checking emptiness of two-colored Büchi graphs [6] and an ex-
tension of bounded synthesis [14]. As asynchronous LTL realizability for
architectures with more than one process is undecidable [15], the same result
holds for PROMPT–LTL realizability. Thus, the semi-decision procedure is
the best result one can hope for. Decidability in the one process case, which
holds for LTL [15], is left open for PROMPT–LTL.

Finally, we show that all these results also hold for PLTL and PLDL,
even stronger logics to which the alternating color technique and bounded
synthesis are still applicable.

This is a revised and extended version of a paper that appeared at
GandALF 2016 [16].

5

1.2. Related Work

There is a rich literature regarding the synthesis of distributed systems
from global ω-regular specifications [10, 11, 12, 13, 17, 18, 19, 20]. We are not
aware of work that is concerned with the realizability of parameterized logics
in this setting. For local specifications, i.e., specifications that only relate
the inputs and outputs of single processes, the realizability problem becomes
decidable for a larger class of architectures [21]. An extension of these re-
sults to context-free languages was given by Fridman and Puchala [22]. The
realizability problem for asynchronous systems and LTL specifications is un-
decidable for architectures with more than one process to be synthesized [15].
Later, Gastin et al. showed decidability of a restricted specification language
and certain types of architectures, i.e., well-connected [23] and acyclic [24]
ones. Bounded synthesis [14, 25] provides a flexible synthesis framework that
can be used in both the asynchronous and the synchronous setting, based on
a semi-decision procedure.

1.3. Structure

In Section 2, we introduce PROMPT–LTL and the alternating color
technique. In Section 3, we consider synchronous distributed synthesis for
PROMPT–LTL and the asynchronous case in Section 4. Then, in Section 5,
we consider both problems for the more expressive logics PLTL and PLDL.
We conclude in Section 6 with a discussion of future work.

2. PROMPT–LTL

Throughout this work, we fix a set AP of atomic propositions. The for-
mulas of PROMPT–LTL are given by the grammar

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ | ϕR ϕ | FP ϕ ,

where a ∈ AP is an atomic proposition, ¬,∧,∨ are the usual Boolean oper-
ators, and X,U,R are the LTL operators next, until, and release. We use
the derived operators tt := a ∨ ¬a and ff := a ∧ ¬a for some fixed a ∈ AP,
and Fϕ := tt U ϕ and Gϕ := ff R ϕ as usual. Furthermore, we use ϕ→ ψ
as a shorthand for ¬ϕ ∨ ψ if the antecedent ϕ is an FP-free formula (since
in that case we can transform ¬ϕ into negation normal form in the fragment
above). We define the size of ϕ to be the number of sub-fomulas of ϕ.

6

The satisfaction relation for PROMPT–LTL is defined between an ω-
word w = w0w1w2 · · · ∈

(
2AP
)ω

, a position n ∈ N, a bound k for the prompt-
eventually operators, and a PROMPT–LTL formula.

• (w, n, k) � a if, and only if, a ∈ wn.

• (w, n, k) � ¬a if, and only if, a /∈ wn.

• (w, n, k) � ϕ0 ∧ ϕ1 if, and only if, (w, n, k) � ϕ0 and (w, n, k) � ϕ1.

• (w, n, k) � ϕ0 ∨ ϕ1 if, and only if, (w, n, k) � ϕ0 or (w, n, k) � ϕ1.

• (w, n, k) � Xϕ if, and only if, (w, n+ 1, k) � ϕ.

• (w, n, k) � ϕ0 U ϕ1 if, and only if, there exists a j ≥ 0 such that
(w, n + j, k) � ϕ1 and (w, n + j′, k) � ϕ0 for every j′ in the range 0 ≤
j′ < j.

• (w, n, k) � ϕ0 R ϕ1 if, and only if, for all j ≥ 0: (w, n + j, k) � ϕ1 or
(w, n+ j′, k) � ϕ0 for some j′ in the range 0 ≤ j′ < j.

• (w, n, k) � FP ϕ if, and only if, there exists a j in the range 0 ≤ j ≤ k
such that (w, n+ j, k) � ϕ.

For the sake of brevity, we write (w, k) � ϕ instead of (w, 0, k) � ϕ and
say that w is a model of ϕ with respect to k. Note that (w, n, k) � ϕ implies
(w, n, k′) � ϕ for every k′ ≥ k, i.e., satisfaction with respect to k is an
upward-closed property.

The Alternating Color Technique. In this subsection, we recall the alter-
nating color technique, which Kupferman et al. introduced to solve model
checking, assume-guarantee model checking, and the realizability problem
for PROMPT–LTL specifications [6].

Let r /∈ AP be a fixed fresh proposition. An ω-word w′ ∈
(
2AP∪{r})ω is

an r-coloring of w ∈
(
2AP
)ω

if w′n ∩AP = wn, i.e., wn and w′n coincide on all
propositions in AP. The additional proposition r can be thought of as the
color of w′n: we say that the color changes at position n, if n = 0 or if the
truth values of r in w′n−1 and in w′n are not equal. In this situation, we say
that n is a change point. An r-block is a maximal infix w′m · · ·w′n of w′ such
that the color changes at m and n+ 1, but not in between.

7

Let k ≥ 1. We say that w′ is k-spaced if the color changes infinitely often
and each r-block has length at least k, and we say that w′ is k-bounded, if
each r-block has length at most k. Note that k-boundedness implies that the
color changes infinitely often.

Given a PROMPT–LTL formula ϕ, let rel r(ϕ) denote the formula ob-
tained by inductively replacing every sub-formula FP ψ by

(r→ (r U (¬r U rel r(ψ)))) ∧ (¬r→ (¬r U (r U rel r(ψ)))) ,

which is only linearly larger than ϕ and requires every prompt eventually to
be satisfied within at most one color change (not counting the position where
ψ holds). Furthermore, the formula altr = GF r ∧GF¬r is satisfied if the
colors change infinitely often. Finally, we define the LTL formula cr(ϕ) =
rel r(ϕ) ∧ altr. Kupferman et al. showed that ϕ and cr(ϕ) are in some sense
equivalent on ω-words which are bounded and spaced.

Lemma 1 (Lemma 2.1 of [6]). Let ϕ be a PROMPT–LTL formula, and let
w ∈

(
2AP
)ω

.

1. If (w, k) � ϕ, then w′ � cr(ϕ) for every k-spaced r-coloring w′ of w.

2. If w′ is a k-bounded r-coloring of w with w′ � cr(ϕ), then (w, 2k) � ϕ.

Whenever possible, we drop the subscript r for the sake of readability, if
r is clear from context. However, when we consider asynchronous systems
in Section 4, we need to relativize two formulas with different colors, which
necessitates the introduction of the subscripts.

3. Synchronous Distributed Synthesis

PROMPT–LTL specifications can give guarantees that LTL cannot, for
example by asserting not only that requests to a system are answered even-
tually, but also that there is an upper bound on the reaction time. This
is especially important in distributed systems, since such timing constraints
become more difficult to implement because of information flows between the
various parts of the system.

Consider, for example, a distributed computation system, where a cen-
tral server gets important and unimportant tasks, and can forward tasks to
a number of clients. A client can either enqueue the task, which means that
it will be processed eventually, or clear the client-side queue and process the

8

task immediately. The latter operation is very costly (we have to remem-
ber the open tasks as they still need to be completed), but guarantees an
upper bound on the completion time. While in LTL we can only specify
that all incoming tasks are processed eventually, in PROMPT–LTL we can
specify that the answer time to important tasks is bounded by the formula
G(important-task → FP finished -task).1

Let us now formalize the distributed realizability problem. Let X and Y
be finite and pairwise disjoint sets of variables. A valuation of X is a subset
of X; thus, the set of all valuations of X is 2X . For w = w0w1w2 · · · ∈ (2X)ω

and w′ = w′0w
′
1w
′
2 · · · ∈ (2Y)ω, let w∪w′ = (w0 ∪w′0)(w1 ∪w′1)(w2 ∪w′2) · · · ∈

(2X∪Y)ω.

Strategies. A strategy f : (2X)∗ → 2Y maps a history of valuations of X to a
valuation of Y . The behavior of a strategy f : (2X)∗ → 2Y is characterized
by an infinite tree that branches by the valuations of X and whose nodes
w ∈ (2X)∗ are labeled with the strategic choice f(w). For an infinite word
w = w0w1w2 · · · ∈ (2X)ω, the corresponding labeled path is defined as (f(ε)∪
w0)(f(w0) ∪ w1)(f(w0w1) ∪ w2) · · · ∈ (2X∪Y)ω. We lift the set containment
operator ∈ to the containment of a labeled path w = w0w1w2 · · · ∈ (2X∪Y)ω

in a strategy tree induced by f : (2X)∗ → 2Y , i.e., w ∈ f if, and only if,
f(ε) = w0 ∩ Y and f((w0 ∩X) · · · (wi ∩X)) = wi+1 ∩ Y for all i ≥ 0.

A 2Y -labeled 2X-transition system S is a tuple 〈S, s0,∆, l〉 where S is a
finite set of states, s0 ∈ S is the designated initial state, ∆: S × 2X → S is
the transition function, and l : S → 2Y is the state-labeling. We generalize
the transition function to sequences over 2X by defining ∆∗ : (2X)∗ → S
recursively as ∆∗(ε) = s0 and ∆∗(w0 · · ·wn−1wn) = ∆(∆∗(w0 · · ·wn−1), wn)
for w0 · · ·wn−1wn ∈ (2X)+. A transition system S generates the strategy f
if f(w) = l(∆∗(w)) for every w ∈ (2X)∗. A strategy f is called finite-state if
there exists a transition system that generates f .

To reason about distributed systems, we have to combine strategies with
different inputs, which we call the distributed product. To this end, we have
to introduce widenings of strategies, which intuitively enlarge their domains
with new atomic propositions that are ignored. Also, we need projections,

1A similar constraint could be simulated in LTL by writing that on every important
incoming task, the worker queues are cleared. This, however, removes implementation
freedom and requires the developer to determine how to implement the feature, instead of
letting the synthesis algorithm decide.

9

{y}

∅

{y}

∅
...

(a) Strategy f

∅

{x}

{x}

{x} ∅

∅

{x} ∅

a

∅

{x}

{x} ∅

∅

{x} ∅

¬a

...

(b) Strategy g

{y}

{x}

{y, x}

{x} ∅

{y}

{x} ∅

a

∅

{y, x}

{x} ∅

{y}

{x} ∅

¬a

...

(c) Distributed product f ⊗ g

Figure 1: Visualization of strategies f : (2∅)∗ → 2{y} and g : (2{a})∗ → 2{x} as infinite
trees is shown in (a) and (b), respectively. The distributed product f ⊗ g is equal to the
product of g and the 2{a}-widening of f and is depicted in (c).

which remove outputs from strategies.
In the following, we formally introduce these concepts. A visualization is

given in Fig. 1.

Definition 1 (Distributed Product). Let X,X ′, Y , and Y ′ be finite sets such
that Y and Y ′ are disjoint. Further, let f : (2X)∗ → 2Y and f ′ : (2X)∗ → 2Y

′

be two strategies with the same domain but different co-domains 2Y and 2Y
′
.

• The product f × f ′ : (2X)∗ → 2Y ∪Y
′

of f and f ′ is defined as (f ×
f ′)(w) = f(w) ∪ f ′(w) for every w ∈ (2X)∗.

• The 2X-projection of a sequence w0 · · ·wn ∈ (2X∪X
′
)∗ is proj2X (w0 · · ·wn) =

(w0 ∩X) · · · (wn ∩X) ∈ (2X)∗.

• The 2X
′
-widening of f is defined as wide2X′ (f) : (2X∪X

′
)∗ → 2Y with

wide2X′ (f)(w) = f(proj2X (w)) for w ∈ (2X∪X
′
)∗.

• Given some g : (2X
′
)∗ → 2Y

′
, the distributed product f⊗g : (2X∪X

′
)∗ →

2Y ∪Y
′

is defined as the product wide2X
′\X (f)× wide2X\X′ (g).

Analogously, for transition systems S = 〈S, s0,∆, l〉 and S ′ = 〈S ′, s′0,∆′, l′〉
the distributed product, written S ⊗ S ′, is defined as the transition sys-
tem 〈S × S ′, (s0, s

′
0),∆⊗, l⊗〉, where ∆⊗((s, s′), w) = (s′′, s′′′) if, and only if,

∆(s, w) = s′′ and ∆′(s′, w) = s′′′, and l⊗(s, s′) = l(s) ∪ l′(s′).

Remark 1. The strategy generated by S ⊗ S ′ is equal to the distributed
product of the strategies generated by S and S ′.

10

We define the satisfaction of a PROMPT–LTL formula ϕ (over proposi-
tions X ∪ Y) on strategy f with respect to the bound k, written (f, k) � ϕ
for short, as (w, k) � ϕ for all paths w ∈ f .

Distributed Systems. We characterize a distributed system as a set of pro-
cesses with a fixed communication topology, called an architecture in the
following. Recall that AP is the set of atomic propositions used to build
formulas. An architecture A is a tuple 〈P, penv , {Ip}p∈P , {Op}p∈P 〉, where P
is the finite set of processes and penv ∈ P is the distinct environment process.
We denote by P− = P \ {penv} the set of system processes.

Given a process p ∈ P , the input and output signals of this process are
Ip ⊆ AP and Op ⊆ AP, respectively, where we assume Ipenv = ∅. For P ′ ⊆ P ,
let IP ′ =

⋃
p∈P ′ Ip and OP ′ =

⋃
p∈P ′ Op. While processes may share the same

inputs (in case of broadcasting), the outputs of processes must be pairwise
disjoint, i.e., for all p 6= p′ ∈ P it holds that Op ∩ Op′ = ∅. Finally, we
require that every input of a process originates from some other process, i.e.,
IP ⊆ OP .

An implementation of a process p ∈ P− is a strategy fp : (2Ip)∗ → 2Op

mapping finite input sequences to a valuation of the output variables.

Example 1. Figure 2 shows example architectures A1 and A2:

• A1 = 〈{penv , p1, p2}, penv , {Ipenv , Ip1 , Ip2}, {Openv , Op1 , Op2}〉 with

– Ipenv = ∅, Ip1 = {a}, Ip2 = {b} and

– Openv = {a, b}, Op1 = {c}, Op2 = {d}.

• A2 = 〈{penv , p1, p2}, penv , {Ipenv , Ip1 , Ip2}, {Openv , Op1 , Op2}〉 with

– Ipenv = ∅, Ip1 = {a}, Ip2 = {b} and

– Openv = {a}, Op1 = {b}, Op2 = {c}.

The architecture A1 in Fig. 2(a) contains two system processes, p1 and p2,
and the environment process penv . The processes p1 and p2 receive the in-
puts a and b, respectively, from the environment and output c and d, respec-
tively. Hence, the environment can provide process p1 with information that
is hidden from p2 and vice versa. In contrast, architecture A2, depicted in
Fig. 2(b), is a pipeline architecture where information from the environment
can only propagate through the pipeline processes p1 and p2.

11

penv

p1

p2

c

d

a

b

(a) A1

penv p1 p2
a b c

(b) A2

Figure 2: Examples for distributed architectures.

Distributed Realizability. Let A = 〈P, penv , {Ip}p∈P , {Op}p∈P 〉 be an archi-
tecture. The synchronous PROMPT–LTL realizability problem for A is to
decide, given a PROMPT–LTL formula ϕ, whether there exist a bound k and
a finite-state implementation fp for each process p ∈ P−, such that the dis-
tributed product

⊗
p∈P− fp satisfies ϕ with respect to k, i.e., (

⊗
p∈P− fp, k) �

ϕ. In this case, we say that ϕ is realizable in A. The synchronous LTL realiz-
ability problem is a special case of it, as LTL is a fragment of PROMPT–LTL.

In the following, we show how to solve the synchronous PROMPT–LTL
realizability problem. In our reduction to synchronous LTL realizability, we
introduce a new process that produces a coloring sequence needed for apply-
ing the alternating color technique [6]. Let r /∈ AP be the fresh proposition
introduced for the alternating color technique to relativize formulas and let
A = 〈P, penv , {Ip}p∈P , {Op}p∈P 〉 be an architecture as above. We define the
architecture Ar as

〈P ∪ {pr}, penv , {Ip}p∈P ∪ {Ir}, {Op}p∈P ∪ {Or}〉,

where Ir = ∅ and Or = {r}. Intuitively, this describes an architecture where
one additional process pr is responsible for providing sequences in (2{r})ω, i.e.,
a coloring by r. We show that ϕ in A and cr(ϕ) in Ar are equi-realizable by
applying the alternating color technique. As the processes are synchronized,
the proof is similar to the one for the single-process case by Kupferman et
al. [6].

Theorem 1. A PROMPT–LTL formula ϕ is realizable in A if, and only if,
cr(ϕ) is realizable in Ar.

Proof. Let A = 〈P, penv , {Ip}p∈P , {Op}p∈P 〉 be an architecture and ϕ be a
PROMPT–LTL formula.

Assume that the PROMPT–LTL formula ϕ is realizable in A. Then,
there exist finite-state strategies fp for p ∈ P− and a bound k satisfying

12

the synchronous PROMPT–LTL realizability problem 〈A, ϕ〉. For every w ∈⊗
p∈P− fp, it holds that (w, k) � ϕ. By item 1 of Lemma 1, it holds that

every k-spaced r-coloring w′ of w satisfies cr(ϕ). Let fr : (2∅)∗ → 2{r} be a
(finite-state) strategy that produces the k-spaced sequence (∅k{r}k)ω. Then,
the process implementations {fp}p∈P− together with fr are a solution to the
synchronous LTL realizability problem 〈Ar, cr(ϕ)〉.

Now, assume that the LTL formula cr(ϕ) is realizable in the architec-
ture Ar. Thus, there exist finite-state strategies fp for p ∈ P− and a finite-
state strategy fr for process pr. Note that the strategy fr : (2∅)∗ → 2{r}

has a unique output wr ∈ (2{r})ω, as it has no inputs. We claim that
wr is k-bounded, where k is the number of states of the transition sys-
tem S = 〈S, s0,∆, l〉 generating fr. To see this, note that fr has no inputs,
i.e., each state of S has a unique successor in ∆, and the unique run of S
on ∅ω ends up in a loop which is traversed ad infinitum. As the output wr
has infinitely many change points (since cr(ϕ) is realizable in Ar), the loop
contains at least one state s labeled by l(s) = ∅ and at last one state s′ with
l(s′) = {r}. Thus, the maximal length of a block of wr is bounded by the
length of the loop, which in turn is bounded by the size of S.

Hence, for every w ∈
⊗

p∈P− fp, the word wr∪w is a k-bounded r-coloring
of w with wr ∪ w � rel r(ϕ). By item 2 of Lemma 1, for all such w it holds
that (w, 2k) � ϕ. Hence, {fp}p∈P− together with the bound 2k is a solution
to the synchronous PROMPT–LTL realizability problem.

Theorem 1 allows us to reduce the distributed realizability problem of
PROMPT–LTL to the distributed realizability problem of LTL in a strategy-
preserving manner as shown in the accompanying proof. In particular, we
are able to reuse semi-decision procedures for the latter, such as bounded
synthesis [14], to effectively construct small solutions.

To conclude, we show that the newly introduced process pr also preserves
the property whether the architecture has an information fork [13]. Formally,
consider tuples 〈P ′, V ′, p, p′〉, where P ′ is a subset of the processes, V ′ is a
subset of the variables disjoint from Ip ∪ Ip′ , and p, p′ ∈ P− \ P ′ are two
different processes. Such a tuple is an information fork in A if P ′ together
with the edges that are labeled with at least one variable from V ′ forms a sub-
graph of A rooted in the environment and there exist two nodes q, q′ ∈ P ′
that have edges to p, p′, respectively, such that O{q,p} * Ip′ and O{q′,p′} *
Ip. For example, the architecture in Fig. 2(a) contains the information fork
({penv}, ∅, p1, p2), while the pipeline architecture depicted in Fig. 2(b) has no

13

information forks.

Lemma 2. Ar contains an information fork if, and only if, A contains an
information fork.

Proof. The if direction follows immediately by construction: if 〈P ′, V ′, p, p′〉
is an information fork inA, then it is an information fork inAr as well. Hence,
assume 〈P ′, V ′, p, p′〉 is an information fork in Ar. It holds that neither pr = p
nor pr = p′ since pr has no incoming edges. As Ipr = ∅, pr cannot be in a
sub-graph that is rooted in the environment, hence, pr /∈ P ′ and r /∈ V ′. It
follows that 〈P ′, V ′, p, p′〉 is an information fork in A.

Thus, we can use well-known results for the decidability of distributed
realizability for LTL and weakly ordered architectures [13], i.e., those without
an information fork.

Corollary 1. Let A be an architecture. The synchronous PROMPT–LTL
realizability problem for A is decidable if, and only if, A is weakly ordered.

4. Asynchronous Distributed Synthesis

The asynchronous system model is a generalization of the synchronous
model discussed in the previous section. In an asynchronous system, not all
processes are scheduled at the same time. We model the scheduler as part of
the environment, i.e., at any given time the environment additionally signals
whether a process is enabled. The resulting distributed realizability problem
is already undecidable for LTL specifications and systems with more than
one process [15].

We have to adapt the definition of the synchronous PROMPT–LTL real-
izability problem for the asynchronous setting. Using the definition from
Section 3, the system can never satisfy a PROMPT–LTL formula if the
scheduler is part of the environment, since it may delay scheduling indef-
initely. Moreover, even if the scheduler is assumed to be fair, it can still
build increasing delay blocks between process activation times such that it
is impossible for the system to guarantee any bound k ∈ N. Hence, we em-
ploy the concept of bounded fair schedulers and allow the system bound to
depend on the scheduler bound. More generally, this is a typical instance
of an assume-guarantee specification: under the assumption that the sched-
uler is bounded fair, the system satisfies its specification. In the following,
we formally introduce the distributed realizability problem for asynchronous
systems and assume-guarantee specifications.

14

Scheduling. To model scheduling, we introduce an additional set Sched =
{schedp | p ∈ P−} of atomic propositions. The valuation of schedp indi-
cates whether system process p is currently scheduled or not. Given a (syn-
chronous) architecture A = 〈P, penv , {Ip}p∈P , {Op}p∈P 〉, we define the asyn-
chronous architecture A∗ as the architecture with the environment output
O∗penv = Openv∪Sched . Furthermore, we extend the input Ip of a process by its
scheduling variable schedp, i.e., I∗p = Ip ∪ {schedp} for each p ∈ P−. The en-
vironment can decide at every step which processes to schedule. When a pro-
cess is not scheduled, its state—and thereby its outputs—do not change [14].
Formally, for p ∈ P−, let fp be a finite-state strategy for a process p and
Sp = 〈S, s0,∆, l〉 a transition system that generates fp. For every path
w = w0w1w2 · · · ∈ (2I

∗
p)ω, it holds that if schedp /∈ wi for some i ∈ N, then

∆∗(w[i]) = ∆∗(w[i+ 1]), where w[i] denotes the prefix w0w1 · · ·wi of w. For
the remainder of this section, we will only consider such strategies.

Definition 2 (Assume-Guarantee Realizability). A PROMPT–LTL assume-
guarantee specification 〈ϕ, ψ〉 consists of a pair of PROMPT–LTL formu-
las. The asynchronous PROMPT–LTL assume-guarantee realizability prob-
lem asks, given an asynchronous architecture A∗ and 〈ϕ, ψ〉 as above, whether
for each process p ∈ P− there exists a finite-state strategy fp such that for
every bound k on the assumption there is a bound l on the guarantee such
that for every w ∈

⊗
p∈P− fp, we have that (w, k) � ϕ implies (w, l) � ψ. In

this case, we say that
⊗

p∈P− fp satisfies 〈ϕ, ψ〉.

Consider the bounded fairness specification discussed above, which is
expressed by the formula ϕ =

∧
p∈P− GFP schedp, i.e., for every point in

time, every p is scheduled within a bounded number of steps. We use
ϕ as an assumption on the environment which implies that the guarantee
ψ only has to be satisfied if ϕ holds. Consider, for example, the asyn-
chronous architecture corresponding to Fig. 2(a) and the PROMPT–LTL
specification ψ = G(FP c ∧ FP ¬c ∧ FP d ∧ FP ¬d). Even when we as-
sume a fair scheduler, i.e., ϕ = GF schedp1 ∧GF schedp2 , the environment
can prevent one process from satisfying the specification for any bound l.
This problem is fixed by assuming the scheduler to be bounded fair, i.e.,
ϕ = GFP schedp1 ∧ GFP schedp2 . Then, there exist realizing implementa-
tions for processes p1 and p2 (that alternate between enabling and disabling
the output), and the bound on the guarantee is l = 2 · k for every bound k
on the assumption.

15

While in the case of LTL the assume-guarantee problem 〈ϕ, ψ〉 can be re-
duced to the LTL realizability problem for the implication ϕ→ ψ, this is not
possible in PROMPT–LTL due to the quantifier alternation on the bounds.
As a matter of fact, we do not know yet whether the PROMPT–LTL assume-
guarantee realizability problem in the single-process case is decidable. We
show that even if the problem would turn out to be decidable, an implemen-
tation that realizes the specification in general may need infinite memory.

Lemma 3. There exists a PROMPT–LTL assume-guarantee specification
that can be realized with an infinite-state strategy, but not with a finite-state
one.

Proof. Consider the assume-guarantee specification 〈ϕ, ψ〉 with ϕ = GFP o∨
FG¬o and ψ = ff and a single process architecture with I = ∅ and O = {o}.
As the guarantee ψ is false, the implementation has to falsify the assump-
tion ϕ for every bound k on the prompt-eventually operator to realize 〈ϕ, ψ〉.
To falsify ϕ with respect to a fixed k, the implementation has to produce a
sequence w ∈ (2{o})ω where o is true infinitely often and where ∅k is an infix
of w. Thus, the size of the implementation depends on k and an implemen-
tation that falsifies ϕ for every k must have infinite memory.

Moreover, already the LTL realizability problem is undecidable in the
asynchronous case. Thus, the PROMPT–LTL assume-guarantee realizabil-
ity problem for asynchronous architectures may be at best solvable by a
semi-decision procedure. We present such a semi-decision procedure for the
asynchronous PROMPT–LTL assume-guarantee realizability problem based
on bounded synthesis [14]. In bounded synthesis, a transition system of a
fixed size is “guessed” and model checked by a constraint solver. Model check-
ing for PROMPT–LTL can be solved by checking pumpable non-emptiness
of colored Büchi graphs [6]. However, the pumpability condition cannot di-
rectly be expressed in the bounded synthesis constraint system. Hence, in
Section 4.1, we give an alternative solution to the non-emptiness of colored
Büchi graphs by a reduction to Büchi graphs that have access to the state
space of the transition system. We show how to extend bounded synthesis
to such Büchi graphs in Section 4.2, and present a semi-decision procedure
for PROMPT–LTL assume-guarantee synthesis based on this extension in
Section 4.3.

In the following we use transition systems as representations for finite-
state strategies, since the algorithm developed in this section needs access to

16

the syntactic representation of strategies.

4.1. Nonemptiness of Colored Büchi Graphs

In the case of LTL specifications, the nonemptiness problem for Büchi
graphs gives a classical solution to the model checking problem for a given
system S. Let ϕ be the LTL formula that S should satisfy. In a preprocess-
ing step, the negation of ϕ is translated to a nondeterministic Büchi word
automaton N¬ϕ [26]. Then, ϕ is violated by S if, and only if, the Büchi
graph G representing the product of S and N¬ϕ is nonempty. An accepting
path π in G witnesses a computation of S that violates ϕ. Colored Büchi
graphs are an extension to such graphs in the context of model checking
PROMPT–LTL [6].

A colored Büchi graph of degree two is a tuple G = 〈{r, r′}, V, E, v0, L,B〉,
where r and r′ are propositions, V is a set of vertices, E ⊆ V × V is a set
of edges, v0 ∈ V is the designated initial vertex, L : V → 2{r,r

′} describes the
color of a vertex, and B = {B1, B2} is a generalized Büchi condition of index
two, i.e., B1, B2 ⊆ V . A Büchi graph is a special case where we omit the
labeling function and are interested in finding an accepting path. A path π =
v0v1v2 · · · ∈ V ω is pumpable if we can pump all its r′-blocks without pumping
its r-blocks. Formally, a path is pumpable if for all adjacent r′-change points
i and i′, there are positions j, j′, and j′′ such that i ≤ j < j′ < j′′ < i′,
vj = vj′′ and r ∈ L(vj) if, and only if, r /∈ L(vj′). A path π is accepting,
if it visits both B1 and B2 infinitely often. The pumpable nonemptiness
problem for G is to decide whether G has a pumpable accepting path. It is
NLogSpace-complete and solvable in linear time [6].

We give an alternative solution to this problem based on a reduction to
the nonemptiness problem of Büchi graphs. To this end, we construct a non-
deterministic safety automaton Npump that characterizes the pumpability
condition. A non-deterministic safety automaton N is a tuple 〈Σ, S, s0, δ〉,
where Σ is a finite alphabet, S is a finite set of states, s0 ∈ S is the designated
initial state, and δ : S × Σ→ 2S is the transition function. An infinite word
is accepted by a safety automaton N if, and only if, there exists an infinite
run on this word.

Lemma 4. Let G = 〈{r, r′}, V, E, v0, L,B〉 be a colored Büchi graph of degree
two. There exists a Büchi graph G′, with O(|G′|) = O(|G|2), such that G has
a pumpable accepting path if, and only if, G′ has an accepting path.

17

Proof. We define a non-deterministic safety automatonNpump = 〈V × 2{r,r
′}, S, s0, δ〉

over the alphabet V ×2{r,r
′} that checks the pumpability condition. The prod-

uct of G and Npump (defined later) represents the Büchi graph G′ where every
accepting path is pumpable.

The language L ⊆ (V × 2{r,r
′})ω of pumpable paths (with respect to a

fixed set of vertices V) is an ω-regular language that can be recognized by a
small non-deterministic safety automaton. This automaton Npump operates
in 3 phases between every pair of adjacent r′-change points: first, it non-
deterministically remembers a vertex v and the corresponding truth value of
r. Then, it checks that this value changes and thereafter it remains to show
that the vertex v repeats before the next r′-change point. Thus, the state
space S of Npump is

{s0} ∪
{
sv,x | v ∈ V, x ∈ 2{r,r

′}
}
∪
{
s′v,y | v ∈ V, y ∈ 2{r,r

′}
}
∪
{
s′′z | z ∈ 2{r

′}
}

and the initial state is s0. The state space corresponds to the 3 phases: in
the states sv,x a vertex v and a truth value of r are remembered, before state
s′v,y the value of r changes, and s′′z is the state after the vertex repetition.

The transition function δ : (S×(V ×2{r,r
′}))→ 2S is defined in the following.

We use the notation A =C B to denote (A ∩ C) = (B ∩ C).

• δ(s0, (v, x)) = {sv,x}

• δ(sv,x, (v′, x′)) 3

sv,x if x ={r′} x

′

sv′,x′ if x ={r′} x
′

s′v,x′ if x ={r′} x
′ and x 6={r} x′

• δ(s′v,y, (v′, x)) 3

{
s′v,y if x ={r′} y and v′ 6= v

s′′y∩{r′} if x ={r′} y and v′ = v

• δ(s′′z , (v, x)) 3

{
s′′z if x ={r′} z

sv,x if x 6={r′} z

The size of Npump is in O(|V |). Figure 3 gives a visualization of this automa-
ton.

We define the productG′ of the colored Büchi graphG = 〈{r, r′}, V, E, v0, L,B〉
and the automaton Npump as the Büchi graph (V × S,E ′, (v0, s0),B′), where

((v, s), (v′, s′)) ∈ E ′ ⇔ (v, v′) ∈ E ∧ s′ ∈ δ(s, (v, L(v)))

18

s0

sv,{r,r′}

sv,{r′}

sv,{r}

sv,∅

s′v,{r′}

s′v,{r,r′}

s′v,∅

s′v,{r}

s′′{r′}

s′′∅

¬r

r

¬r

r

r′

¬r′

¬r′

¬r′

r′

r′

Figure 3: Schematic visualization of the automaton Npump from the proof of Lemma 4.
The 3 phases are clearly visible: In the red states sv,x (solid rectangles) the values (v, x)
are non-deterministically stored and those states can only be left if there is a change in
the value of r. The subsequent blue states s′v,y (dashed rectangles) can only be left in case
of a vertex repetition leading to the green state s′′z (dotted circles) that waits for the next
r′-change point.

and where B′ = (B′1, B
′
2) is given by B′i = {(v, s) | v ∈ Bi and s ∈ S} for

i ∈ {1, 2}. The size of G′ is in O(|G|2). It remains to show that G has a
pumpable accepting path if, and only if, G′ has an accepting path.

Consider a pumpable accepting path π in G. We show that there is a
corresponding accepting path π′ in G′. Let i and i′ be adjacent r′-change
points. Then, there are positions j, j′, and j′′ such that i ≤ j < j′ < j′′ < i′,
vj = vj′′ and r ∈ L(vj) if, and only if, r /∈ L(vj′). By construction, at
position i, automaton Npump is at some state from the set {s0, s

′′
∅, s
′′
{r′}}. We

follow the automaton and remember vertex v and the truth value of r at
position j ≥ i (some state sv,x). Next, we take the transition to s′v,y where
the truth value of r changes (at position j′). Lastly, we check that there is a
vertex repetition (at position j′′) and go to state s′′z . At the next r′-change
point i′, the argument repeats. This path is accepting, as the original one is

19

accepting.
Now, consider an accepting path π in G′. We show that there is a

pumpable accepting path in G. Let π′ be the projection of every position of
π to the first component. By construction, π′ is an accepting path in G. Let
πiπi+1 · · · πi′ be an r′-block of π. As π has a run of the automaton Npump,
we know that there exists a state repetition between i and i′ where the truth
value of r changes in between. Hence, the path π′ is pumpable.

Remark 2. Note that in the context of the previous proof, it would be
enough to remember a vertex v without the valuation of {r, r′}, as the ver-
tex determines the valuation by the labeling function L : v → 2{r,r

′} of G.
However, we will later use Npump in a more general setting (cf. Section 4.3).

4.2. Bounded Synthesis

Bounded synthesis [14] is a semi-decision procedure for the distributed
synthesis problem. In its original form, it takes as input a specification
expressed by a universal co-Büchi automaton U , a (possibly asynchronous)
architecture A, and a size bound b (or a family of bounds on the individual
processes), and decides whether a correct implementation of the given size
exists. Bounded synthesis expresses the acceptance of a transition system S
on U , i.e., acceptance of all traces generated by S, as a constraint system
in a decidable first-order theory. In this section, we show a modification of
bounded synthesis that gives the specification automaton access to the states
of the system to be synthesized. This extension is needed for automata that
can express the pumpability condition, in particular the one we constructed
in the proof of Lemma 4. We will show in Section 4.3 how to obtain such
an automaton from a PROMPT–LTL assume-guarantee specification 〈ϕ, ψ〉,
resulting in a semi-decision procedure for asynchronous distributed synthesis
from this class of specifications.

For distributed architectures, bounded synthesis separately considers the
problems of finding a global transition system that is accepted by U and
of dividing the transition system into local components according to the
given architecture. To this end, two sets of constraints are generated: (i) an
encoding of the acceptance by U of a global transition system S of size b,
and (ii) an encoding of the architectural constraints that divides this global
system into local components. If the conjunction of both sets of constraints
is satisfiable, then a satisfying assignment of the constraints represents a
distributed system that satisfies ϕ in A. Since the architectural constraints

20

we consider are the same as in standard bounded synthesis, we only have to
modify the constraints encoding the existence of a global transition system
that satisfies the given specification.

Extended Automata. We define a universal co-Büchi tree automaton as a
tuple U = 〈Σ,Υ, Q, q0, δ, B〉, where Σ is an input alphabet, Υ is a set of
directions, Q is a set of states, δ : Q × Σ → 2Q×Υ is the transition function,
and B⊆ Q is the set of rejecting states.

As mentioned above, we want to check acceptance of a global transition
system by U . Therefore, we consider the sets of inputs I = O∗penv and outputs
O =

⋃
p∈P− O

∗
p of the composition of the system processes, and are interested

in the acceptance of a 2O-labeled 2I-transition system S = 〈S, s0,∆, l〉. In
addition, we want to recognize the pumpability condition. Therefore, we
consider a state-aware universal co-Büchi tree automaton with Σ = 2O × S
and Υ = 2I , i.e., in addition to output valuations, the automaton has access
to the current state of S.

Acceptance of S by the automaton is defined in terms of run graphs: the
run graph of an automaton US = 〈2O × S, 2I , Q, q0, δ, B〉 on S is the minimal
directed graph G = (G,E) that satisfies the constraints:

• G ⊆ Q× S,

• (q0, s0) ∈ G, and

• for every (q, s) ∈ G, it holds{
(q′, υ) ∈ Q× 2I | ((q, s), (q′,∆(s, υ))) ∈ E

}
⊇ δ(q, (l(s), s)).

The co-Büchi condition requires that, for an infinite path g0g1g2 · · · ∈ Gω

of the run graph, gi ∈ B×S holds for only finitely many i ∈ N. A run graph
is accepting if every infinite path g0g1g2 · · · ∈ Gω of the run graph satisfies the
co-Büchi condition. A transition system S is accepted by US if the (unique)
run graph of US on S is accepting.

Annotated transition systems. We introduce an annotation function for tran-
sition systems that witnesses acceptance by a (possibly state-aware) universal
co-Büchi tree automaton. The annotation assigns to each pair (q, s) ∈ Q×S
a natural number or a special symbol ⊥. Natural numbers indicate the max-
imal number of occurrences of rejecting states on any path to (q, s) in the

21

run graph; ⊥ indicates that the pair (q, s) is not reachable. Thus, if for a
given transition system there exists an annotation that assigns natural num-
bers to all vertices of the run graph, then the number of visits to rejecting
states must be bounded in any run. Such annotations are called valid, and
transition systems with valid annotations are exactly those that are accepted
by the automaton.

An annotation of a 2O-labeled 2I-transition system S = 〈S, s0,∆, l〉 on a
state-aware universal co-Büchi tree automaton US = 〈2O × S, 2I , Q, q0, δ, B〉
is a function λ : Q× S → {⊥} ∪ N. An annotation is valid if it satisfies the
following conditions:

• λ(q0, s0) 6= ⊥

• for any (q, s) ∈ Q× S:

if λ(q, s) = n 6= ⊥ and (q′, υ) ∈ δ(q, (l(s), s))
then λ(q′,∆(s, υ)) B λ(q, s),

where B is interpreted as > if q′ ∈ B, and ≥ otherwise.

An annotation is c-bounded if its codomain is contained in {⊥, 0, . . . , c}.

Theorem 2 (see [14]). A finite-state O-labeled I-transition system S =
〈S, s0,∆, l〉 is accepted by a state-aware universal co-Büchi tree automaton
US = 〈2O × S, 2I , Q, q0, δ, B〉 if, and only if, it has a valid (|S| · | B|)-bounded
annotation.

Proof. The original proof by Finkbeiner and Schewe [14] works without
modifications for our extension to state-aware universal co-Büchi tree au-
tomata.

For a given state-aware universal co-Büchi tree automaton US = 〈2O × S, 2I , Q, q0, δ, B〉,
Theorem 2 allows us to decide the existence of an O-labeled I-transition sys-
tem with state space S that is accepted by US.

Encoding of global acceptance. The existence of a (global) transition system
with a valid annotation can be encoded into a set of decidable constraints in
first-order logic modulo a theory with uninterpreted functions and a partial
order. Essentially, we can directly encode the conditions for a valid anno-
tation into constraints, with uninterpreted transition function and labeling

22

for the desired transition system. Such constraints can then be solved by
off-the-shelf satisfiability modulo theories (SMT) tools.

Like the proof of Theorem 2, the original encoding can easily be extended
to support our notion of state-aware universal Büchi tree automata. It is
constructed in the following way:

1. Assume that US is defined in a suitable way, i.e., the sets Q and B,
state q0, and transition relation δ : Q× (2O×S)→ 2(Q×2I) are defined.

2. Declare uninterpreted sets and functions for the transition system S
and the annotation:

• Define the set of states S as {1, . . . , b} for the given bound b ∈ N.

• Declare the transition function of S as ∆ : S × 2I → S and the
labeling function as l : S → 2O.

• Declare two functions that are used to model the annotation func-
tion: λB : Q× S → B = {tt,ff} and λ# : Q× S → N.

3. Assert the following constraints:

s0 ∈ S
λB(q0, s0)

∀q, q′ ∈ Q, s ∈ S, υ ∈ 2I : λB(q, s) ∧ (q′, υ) ∈ δ(q, (l(s), s))
→ λB(q′,∆(s, υ)) ∧ λ#(q′,∆(s, υ)) ≥ λ#(q, s)

∀q, q′ ∈ Q, s ∈ S, υ ∈ 2I : λB(q, s) ∧ (q′, υ) ∈ δ(q, (l(s), s)) ∧ q′ ∈ B
→ λ#(q′,∆(s, υ)) > λ#(q, s)

The encoding ensures that λB(q, s) is true whenever (q, s) ∈ Q × S is
reachable in the run graph of US on S, and that λ# respects the conditions
for a valid annotation for all reachable vertices (q, s). Since there are no
conditions for the annotation on vertices that are not reachable, a solution
for λ# will represent a valid annotation of S on US.

Note that our encoding is a strict generalization of the encoding of Finkbeiner
and Schewe [14]. In particular, our encoding can also be used for specifica-
tions in LTL that are translated into a universal co-Büchi tree automaton (see
Kupferman and Vardi [27]), which can be seen as a state-aware automaton
that ignores the state of the transition system.

23

Encoding of architectural constraints. As mentioned above, the encoding of
architectural constraints can be adopted from the original approach without
changes. For a given asynchronous architectureA∗ = 〈P, penv , {I∗p}p∈P , {O∗p}p∈P 〉,
the additional constraints (1) assert that the state of a process p ∈ P− does
not change if it is not scheduled and (2) that the transitions of a process
only depend on its current state and the visible inputs. In addition, it can
contain additional bounds on the state space of every single component.

The conjunction of both sets of constraints then asks for the existence
of a distributed implementation S =

⊗
p∈P− Sp of size b that is accepted by

U , possibly with additional bounds bp for every p ∈ P− on the size of the
components.

Theorem 3 (see [14]). Given a state-aware universal co-Büchi tree automa-
ton US 2, an asynchronous architecture A∗, and a family of bounds bp for
every p ∈ P−, there is a constraint system (in a decidable first-order theory)
that is satisfiable if, and only if, there exist implementations Sp of size bp for
every p ∈ P− such that S =

⊗
p∈P− Sp is accepted by US and satisfies the

architectural constraints of A∗.

Proof. Follows immediately from Theorem 2 and the correctness of the ar-
chitectural constraints from Finkbeiner and Schewe [14].

4.3. A Semi-Decision Procedure for Assume-Guarantee Realizability

Since the assume-guarantee realizability problem for asynchronous archi-
tectures is undecidable and infinite-state strategies are required in general,
we give a semi-decision procedure for the problem. Our solution is based on
the techniques developed in the last subsections.

As the bounded synthesis approach described in the last subsection al-
ready accounts for “guessing” transition systems Sp for each system process
p according to the architectural constraints given by A∗, we reduce the prob-
lem of model checking individual implementations Sp to model checking the
product system S =

⊗
p∈P− Sp. A transition system S satisfies an assume-

guarantee specification 〈ϕ, ψ〉 if the strategy f generated by S satisfies 〈ϕ, ψ〉,
i.e., if for every bound k there is a bound l such that for every w ∈ f , we
have that (w, k) � ϕ implies (w, l) � ψ.

2As the symbol S in US refers to the state-space of the distributed product, |S| has to
be equal to the product of bounds bp for p ∈ P−.

24

Given an assume-guarantee specification 〈ϕ, ψ〉, we first solve the problem
of model checking assume-guarantee specifications by building a state-aware
universal co-Büchi tree automaton US that accepts a transition system S if,
and only if, S satisfies 〈ϕ, ψ〉. Given US and a bound b on the size of the
implementation, we can then use the encoding from Section 4.2 to decide
realizability modulo this bound, and obtain a semi-decision procedure by
solving the problem for increasing bounds.

Encoding 〈ϕ, ψ〉 into Büchi automata. Let A∗ = 〈P, penv , {I∗p}p∈P , {O∗p}p∈P 〉
be an asynchronous architecture and let I = O∗penv and O =

⋃
p∈P− O

∗
p be

the set of inputs and outputs, respectively, of the composition of the sys-
tem processes. First, we construct the non-deterministic Büchi automaton
Ncr′ (ψ)∧cr(ϕ) = 〈2I∪O∪{r,r′}, Q, q0, δ, B〉, where cr′(ψ) = altr′∧¬rel r′(ψ), whose
language contains exactly those paths that satisfy cr′(ψ) ∧ cr(ϕ) [26]. Then,
we use the following lemma to characterize whether a transition system S
satisfies an assume-guarantee specification 〈ϕ, ψ〉 by reducing it to finding
pumpable error paths in the two-color Büchi graphG = 〈{r, r′}, V, E, v0, L,B〉,
as introduced in Section 4.1, which is the product of S = 〈S, s0,∆, l〉 and
Ncr′ (ψ)∧cr(ϕ). Formally, the elements of G are defined as V = S × 2{r,r

′} ×Q,
E as ((s, R, q), (s′, R′, q′)) ∈ E if, and only if, there is an input valuation
~i ∈ 2I such that s′ = ∆(s,~i) and (q′,~i) ∈ δ(q, l(s)), v0 = (s0, ∅, q0), L as
L((s, R, q, q∗)) = R, and B = {B}.

Lemma 5. Let 〈ϕ, ψ〉 be a PROMPT–LTL assume-guarantee specification,
A∗ an asynchronous architecture and Sp a finite-state implementation for
every system process p ∈ P−. The distributed product S =

⊗
p∈P− Sp does

not satisfy 〈ϕ, ψ〉 if, and only if, the product of S and Ncr′ (ψ)∧cr(ϕ) is pumpable
non-empty.

Proof. Similar to the proof of Lemma 6.1 and Theorem 6.2 in [6]. The missing
proof of Lemma 6.1 is given in [8] (Lemma 8). See also the discussion below
its proof.

To check the existence of pumpable error paths, we use the non-deterministic
automaton Npump = 〈V × 2{r,r

′}, S, s0, δ
′, S〉 from the proof of Lemma 4.

Here, we let V = X ×Q, where X is a set with b elements, representing the
state space of the desired solution S, and Q is the state space of the automa-
ton Ncr′ (ψ)∧cr(ϕ) defined above, that is, we use as V the state space X × Q
of the colored Büchi graph that is used to model check an implementation S
against a specification 〈ψ, ϕ〉.

25

The product of Ncr′ (ψ)∧cr(ϕ) and Npump is an automaton N that operates
on the inputs I, outputs O, propositions {r, r′}, and the state space X of the
implementation, and accepts all those paths that are pumpable and violate
the assume-guarantee specification (cf. Lemma 4).

Formally, N is defined as:

〈2I∪O∪{r,r′} ×X,Q× S, (q0, s0), δ∗, B∗〉,

where δ∗ : Q× S × 2I∪O∪{r,r
′} × {x} → 2Q×S is defined as

δ∗((q, s), (σ, x)) = {(q′, s′) | q′ ∈ δ(q, σ) ∧ s′ ∈ δ′(s, {q, x} ∪ (σ ∩ {r, r′}))} ,

and B∗ is the Büchi condition {(q, s) | q ∈ B, s ∈ S}.
We complement N , resulting in a universal co-Büchi automaton U that

accepts a given sequence w ∈ (2I∪{r,r
′})ω of inputs and the behavior of an

implementation S on w if, and only if, the execution of S on w satisfies 〈ψ, ϕ〉.
Finally, we construct a (state-aware) universal co-Büchi tree automaton US =
(2O × X, 2I∪{r,r′}, Q, q0, δ, B) by spanning a copy of U for every direction in
2I∪{r,r

′}. Then, an implementation S with set S of states is accepted by US
if, and only if, S satisfies 〈ϕ, ψ〉 (for all possible input sequences). Thus, US
solves the problem of model checking assume-guarantee specifications.

Encoding the automaton into constraints. Now, we can use the modified
bounded synthesis algorithm from Section 4.2 to encode US into a set of con-
straints that is satisfiable if, and only if, there exists an implementation S
that satisfies 〈ϕ, ψ〉. We obtain the following corollaries stating the correct-
ness of the constraint system for single-process implementations (Corollary 2)
and distributed implementations (Corollary 3), respectively.

Corollary 2. Given a PROMPT–LTL assume-guarantee specification 〈ϕ, ψ〉
and a bound b, there is a constraint system (in a decidable first-order theory)
that is satisfiable if, and only if, there exists an implementation S of size b
such that S satisfies 〈ϕ, ψ〉.

Corollary 3. Given a PROMPT–LTL assume-guarantee specification 〈ϕ, ψ〉,
an asynchronous architecture A∗, and a family of bounds bp for each p ∈ P−,
there is a constraint system (in a decidable first-order theory) that is satisfi-
able if, and only if, there exist implementations Sp of size bp for each p ∈ P−
such that

⊗
S∈P− Sp satisfies 〈ϕ, ψ〉 in A∗.

26

By exhaustively traversing the space of bounds (bp)p∈P− and by solving
the resulting constraint system, we obtain a semi-decision procedure for the
asynchronous PROMPT–LTL assume-guarantee realizability problem. Fur-
thermore, this also solves the synthesis problem, as a satisfying assignment
of the constraint system directly represents a valid implementation, where
the transition relation is given by (the assignment of) the function ∆, and
the state labeling by (the assignment of) the function l.

Corollary 4. Let A∗ be an asynchronous architecture. The asynchronous
PROMPT–LTL assume-guarantee realizability problem for A∗ is semi-decidable.

5. Beyond PROMPT–LTL

In this section, we consider distributed synthesis for logics stronger than
PROMPT–LTL. As already pointed out in the introduction, PROMPT–LTL
is predated by parametric linear temporal logic (PLTL), which was intro-
duced by Alur et al. [5]. This logic is obtained by adding parameterized
eventually operators of the form F≤x ϕ and parameterized always operators
of the form G≤y to LTL. Here, x and y are variables which are instantiated
by a variable valuation α mapping variables to natural numbers that serve
as bounds: F≤x ϕ holds with respect to α if ϕ holds within the next α(x)
steps, while G≤y ϕ holds with respect to α, if ϕ holds at least for the next
α(y) steps. Thus, intuitively, the variables bound the scope of the operators.
In particular, PROMPT–LTL can be seen as the fragment of PLTL with-
out parameterized always operators and where all parameterized eventually
operators are parameterized by the same variable.

Alur et al. showed that the model checking problem for PLTL, where
the variable valuation α is existentially quantified, is PSpace-complete, and
therefore not harder than LTL model checking. Later, a similar result was
shown for solving infinite games with PLTL winning conditions, which is still
complete for doubly-exponential time [7]. As for PROMPT–LTL, distributed
synthesis for PLTL specifications has never been considered before.

The second logic we consider in this section is parametric linear dynamic
logic (PLDL) [8], which has its roots in another shortcoming of LTL: it lacks
the full expressive power of the ω-regular languages. There is a long line
of extensions of LTL addressing this issue [28, 4, 29]. Most recently, Vardi
introduced linear dynamic logic (LDL), which adds regular expressions as
guards to the temporal operators of LTL: the formula 〈g〉ϕ holds if there

27

is a position such that the prefix up to it matches the guard g and ϕ holds
at this position. Similarly, [g]ϕ holds, if ϕ holds at all positions where the
prefix up to it matches the guard. Thus, the diamond operator is a guarded
eventually operator and the box operator is a guarded always operator. Vardi
showed that LDL has the exponential compilation property [30], i.e., formulas
can be translated into equivalent Büchi automata of exponential size. Thus,
LDL model checking is still PSpace-complete while solving LDL games is
still 2ExpTime-complete.

Now, PLDL is obtained by allowing parameterized diamond and box op-
erators, with the expected semantics. For the first time, this logic addresses
both shortcomings of LTL, lack of timing constraints and limited expressive-
ness, simultaneously. Even in this setting, model checking is just PSpace-
complete and solving games is 2ExpTime-complete [8]. Distributed synthe-
sis for PLDL specifications has never been considered before.

In this section, we address the distributed synthesis problem for both log-
ics, starting with the synchronous variant. For PLTL, we rely on a reduction
to the PROMPT–LTL synthesis problem. The variable valuation α will be
existentially quantified in the problem statement, just as the bound k in the
case of PROMPT–LTL synthesis is existentially quantified. Now, consider a
parameterized always operator G≤y ϕ: if ϕ is satisfied for at last α(y) steps,
then also for at least zero steps, i.e., at the current position. Thus, when the
value for y is existentially quantified, G≤y ϕ degenerates to the formula ϕ,
as y can always be instantiated with 0.

Dually, consider a parameterized eventually operator F≤x ϕ: if ϕ holds at
least once within the next α(x) steps, then also at least once within the next k
steps, for every k ≥ α(x). Thus, if α is existentially quantified, then one can
replace all variables parameterizing parameterized eventually operators by a
unique one. By applying these two replacements, one obtains an equivalent
PROMPT–LTL formula, provided α is existentially quantified. In fact, these
observations were the impetus to introduce PROMPT–LTL. However, the
situation is different when one is interested in a fixed variable valuation or
for optimization problems. In this case, the replacements are no longer valid.

Then, we consider the synchronous synthesis problem for PLDL, which
we solve along the same lines as for its special case PROMPT–LTL: the
alternating color technique has been reformulated for PLDL and the ex-
ponential compilation property holds as well. Finally, we also discuss the
asynchronous synthesis problem. Here, the approach for PLTL and PLDL is
similar. Hence, we restrict our attention to the case of PLDL, as it subsumes

28

PLTL.

5.1. Synchronous Distributed Synthesis for Parametric Linear Temporal Logic

Let V be an infinite set of variables and let AP be a set of atomic propo-
sitions. The formulas of PLTL are given by the grammar

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ | ϕR ϕ | F≤zϕ | G≤zϕ,

where a ∈ AP and z ∈ V . As before, we use the derived operators F and G
as well as implications, which are defined as for PROMPT–LTL.

The set of sub-formulas of a PLTL formula ϕ is denoted by cl(ϕ) and we
define the size of ϕ to be the cardinality of cl(ϕ). Furthermore, we define

varF(ϕ) = {z ∈ V | F≤z ψ ∈ cl(ϕ)}

to be the set of variables parameterizing eventually operators in ϕ, and

varG(ϕ) = {z ∈ V | G≤z ψ ∈ cl(ϕ)}

to be the set of variables parameterizing always operators in ϕ. Finally,
var(ϕ) = varF(ϕ) ∪ varG(ϕ) denotes the set of all variables appearing in ϕ.

To evaluate formulas, we define a variable valuation to be a mapping α : V →
N mapping each variable to a value. Now, we can define the model relation
between a path w = w0w1w2 · · · , a position n of w, a variable valuation α,
and a PLTL formula. For the atomic propositions, Boolean connectives, and
standard temporal operators, it is defined as for PROMPT–LTL, while for
the parameterized operators it is defined as follows:

• (w, n, α) � F≤z ϕ if, and only if, there exists a j ≤ α(z) such that
(w, n+ j, α) � ϕ.

• (w, n, α) � G≤z ϕ if, and only if, for every j ≤ α(z): (w, n+ j, α) � ϕ.

For the sake of brevity, we write (w, α) � ϕ instead of (w, 0, α) � ϕ and
say that w is a model of ϕ with respect to α.

As usual for parameterized temporal logics, the use of variables has to
be restricted: parameterizing eventually and always operators by the same
variable leads to an undecidable satisfiability problem [5].

Definition 3. A PLTL formula ϕ is well-formed if varF(ϕ) ∩ varG(ϕ) = ∅.

29

In the following, we only consider well-formed formulas and omit the
qualifier “well-formed”. Also, we will denote variables in varF(ϕ) by x and
variables in varG(ϕ) by y, if the formula ϕ is clear from the context.

Our solution for the PLTL synthesis problem is based on the monotonicity
of the parameterized temporal operators explained earlier, which is formal-
ized in the following lemma.

Lemma 6 ([5]). Let ϕ be a PLTL formula and let α and β be variable
valuations satisfying α(x) ≤ β(x), for each x ∈ varF(ϕ), and α(y) ≥ β(y),
for each y ∈ varG(ϕ). If (w, α) � ϕ, then (w, β) � ϕ.

Thus, let ϕ be a PLTL formula and let ϕ′ be the PROMPT–LTL-formula
obtained from ϕ by inductively replacing each sub-formula F≤x ψ by FP ψ
and each sub-formula G≤y ψ by ψ. The following is a straightforward conse-
quence of the previous lemma.

Corollary 5. Let ϕ be a PLTL formula and let ϕ′ be defined as above.

1. For every w, if there exists a variable valuation α such that (w, α) � ϕ,
then (w,maxx∈varF(ϕ) α(x)) � ϕ′.

2. For every w, if there exists a bound k such that (w, k) � ϕ′, then
(w, α) � ϕ, where α maps each x ∈ varF(ϕ) to k and each other variable
to 0.

Let A = 〈P, penv , {Ip}p∈P , {Op}p∈P 〉 be an architecture. Here, the syn-
chronous PLTL realizability problem for A is the problem of deciding, given
a PLTL formula ϕ, whether there exist a variable valuation α and a finite-
state implementation fp, for each process p ∈ P−, such that the distributed
product

⊗
p∈P− fp satisfies ϕ with respect to α, i.e., (

⊗
p∈P− fp, α) � ϕ. In

this case, we say that ϕ is realizable in A.

Theorem 4. Let A be an architecture. The synchronous PLTL realizability
problem for A is decidable if, and only if, A is weakly ordered.

Proof. Fix an architecture A. By Corollary 5, a given PLTL formula ϕ is
realizable in A if, and only if, ϕ′ as defined in the corollary is realizable in
A. Thus, Corollary 1 yields the desired result.

Also, bounded synthesis is again applicable, as we can translate the rel-
ativized PLTL formulas into universal co-Büchi automata.

30

5.2. Synchronous Distributed Synthesis for Parametric Linear Dynamic Logic

As before, let V be an infinite set of variables and let AP be the set of
atomic propositions. The formulas of PLDL are given by the grammar

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈g〉ϕ | [g]ϕ | 〈g〉≤z ϕ | [g]≤z ϕ

g ::= φ | ϕ? | g + g | g ; g | g∗

where a ∈ AP, z ∈ V , and φ ranges over propositional formulas over AP.
Here, expressions of the form ϕ? are tests, which allow us to nest opera-
tors. The sets var♦(ϕ), var�(ϕ), and var(ϕ) are defined analogously to the
sets varF(ϕ), varG(ϕ), and var(ϕ) for PLTL, taking sub-formulas in tests
into account.

The satisfaction relation is defined, as before, among a path w, a posi-
tion n, a variable valuation α, and a formula ϕ. First, let the relationR(g, w, α) ⊆
N×N contain all pairs (m,n) ∈ N×N such that wm · · ·wn−1 matches g. For-
mally, it is defined inductively by

• R(φ,w, α) = {(n, n+ 1) | wn � φ} for propositional φ,

• R(ϕ?, w, α) = {(n, n) | (w, n, α) � ϕ},

• R(g0 + g1, w, α) = R(g0, w, α) ∪R(g1, w, α),

• R(g0 ; g1, w, α) = {(n0, n2) | ∃n1 s.t. (n0, n1) ∈ R(g0, w, α) and (n1, n2) ∈ R(g1, w, α)},
and

• R(g∗, w, α) = {(n, n) | n ∈ N}∪
{(n0, nk+1) | ∃n1, . . . , nk s.t. (nj, nj+1) ∈ R(g, w, α) for all j ≤ k}.

Then, for atomic formulas and Boolean connectives it is defined as for
PROMPT–LTL, while for the four temporal operators, it is defined as follows:

• (w, n, α) � 〈g〉ϕ if there exists j ≥ 0 such that (n, n + j) ∈ R(g, w, α)
and (w, n+ j, α) � ϕ,

• (w, n, α) � [g]ϕ if for all j ≥ 0, with (n, n + j) ∈ R(g, w, α), we have
(w, n+ j, α) � ϕ,

• (w, n, α) � 〈g〉≤z ϕ if there exists j ≤ α(z) such that (n, n + j) ∈
R(g, w, α) and (w, n+ j, α) � ϕ, and

31

• (w, n, α) � [g]≤z ϕ if for all j ≤ α(z) with (n, n + j) ∈ R(g, w, α), we
have (w, n+ j, α) � ϕ.

Again, we restrict ourselves to well-formed formulas, i.e., those formulas ϕ
with var♦(ϕ)∩var�(ϕ) = ∅. With this restriction, Lemma 6 holds for PLDL,
too.

Lemma 7. Let ϕ be a PLDL formula and let α and β be variable valuations
satisfying α(x) ≤ β(x), for each x ∈ var♦(ϕ), and α(y) ≥ β(y), for each
y ∈ var�(ϕ). If (w, α) � ϕ, then (w, β) � ϕ.

Recall that the alternating color technique for PROMPT–LTL replaces
every prompt-eventually operator FP ψ by a formula that expresses that ψ
holds within one color change. In LTL, this is naturally expressed by two
nested until operators. In PLDL, parameterized diamond operators, which
are the analogues of prompt-eventually operators, are guarded by regular
expressions, and, thus, one has to express that both the guard holds and at
most one color change occurs. The simplest way to do it is to introduce a
change point bounded variant of the diamond-operator (see [8]).

Formally, we add the operator 〈·〉rcp with the following semantics:

• (w, n, α) � 〈g〉rcp ψ if there exists a j ∈ N s.t. (n, n + j) ∈ R(g, w, α),
wn · · ·wn+j−1 contains at most one r-change point, and (w, n+j, α) � ψ.

Let LDLcp be the logic obtained by disallowing parameterized operators
but allowing the change point-bounded operator, whose semantics are inde-
pendent of variable valuations. Hence, we drop them from our notation for
the satisfaction relation � and the relation R.

We need the following results from [8] which generalizes the replacement of
PLTL sub-formulas G≤y ψ by ψ with respect to variable valuations mapping
y to zero. In PLDL, the situation is different, e.g., the formulas [g]≤y ψ and
ψ are not necessarily equivalent with respect to variable valuations mapping
y to zero, e.g., if r = ϕ? is a test. This test has to be satisfied, even if
α(y) = 0. However, one can easily simplify the guard g to a guard ĝ that
captures g when restricted to matchings of length zero.

Lemma 8 ([8]). For every PLDL formula ϕ there is an efficiently con-
structible PLDL formula ϕ′ without paramterized box operators whose size
is at most the size of ϕ such that

1. var♦(ϕ) = var♦(ϕ
′),

32

2. for each α and each w, (w, α) � ϕ implies (w, α) � ϕ′, and

3. for each α and each w, (w, α) � ϕ′ implies (w, α0) � ϕ.

In the third item, α0 is the valuation mapping each x ∈ var♦(ϕ) to α(x) and
each other variable to 0.

Note that the formulas ϕ and ϕ′ as above are equivalent, if the variable
valuation is existentially quantified.

Now, given such a PLDL formula ϕ, let rel r(ϕ) denote the formula ob-
tained from the formula ϕ′ as in Lemma 8 by inductively replacing each sub-
formula 〈g〉≤x ψ by 〈g〉rcp ψ. Furthermore, let altr = [tt∗] 〈tt∗〉 r∧[true∗] 〈tt∗〉 ¬r,
which is equivalent to the LTL formula GF r∧GF¬r from above. Now, de-
fine cr(ϕ) = rel r(ϕ) ∧ altr, which is an LDLcp formula.

Lemma 9 ([8]). Let ϕ be a PLDL formula and let w ∈
(
2AP
)ω

.

1. If (w, α) � ϕ, then w′ � cr(ϕ) for every k-spaced r-coloring w′ of w,
where k = maxx∈var♦(ϕ) α(x).

2. If w′ is a k-bounded r-coloring of w with w′ � cr(ϕ), then (w, α) � ϕ,
where α maps each x ∈ var♦(ϕ) to 2k and each other variable to zero.

Finally, the exponential compilation property holds for LDLcp as well:
every LDLcp formula can be translated into an equivalent non-determinstic
Büchi automaton of exponential size [8].

Now, the (synchronous) PLDL distributed synthesis problem is defined
as its analogue for PLTL. Let A = 〈P, penv , {Ip}p∈P , {Op}p∈P 〉 be an ar-
chitecture. Then, the synchronous PLDL realizability problem for A is the
problem of deciding, given a PLDL formula ϕ, whether there exist a variable
valuation α and a finite-state implementation fp for each process p ∈ P−,
such that the distributed product

⊗
p∈P− fp satisfies ϕ with respect to α, i.e.,

(
⊗

p∈P− fp, α) � ϕ. In this case, we say that ϕ is realizable in A.

Theorem 5. Let A be an architecture. The synchronous PLDL realizability
problem for A is decidable if, and only if, A is weakly ordered.

Proof. Theorem 1 holds for PLDL as well, using the same proof: a PLDL
formula ϕ is realizable in A if, and only if, cr(ϕ) is realizable in Ar. Now, the
information fork criterion holds for ω-regular conditions as well [13], which
finishes the proof.

Also, bounded synthesis is again applicable, as we can also translate the
relativized PLDL formulas into universal co-Büchi automata.

33

5.3. Asynchronous Distributed Synthesis for PLDL

Finally, we consider the asynchronous setting. We focus on PLDL, as
PLTL is a fragment of PLDL and the approach for both problems is similar.

As for the asynchronous PROMPT–LTL realizability problem, we require
the implementations to only change their state if they are scheduled. Here,
a PLDL assume-guarantee specification 〈ϕ, ψ〉 consists of a pair of PLDL
formulas. The asynchronous PLDL assume-guarantee realizability problem
asks, given an asynchronous architecture A∗ and 〈ϕ, ψ〉 as above, whether
there exists a finite-state implementation fp, for each process p ∈ P−, such
that for each variable valuation α there is a variable valuation β such that
for each w ∈

⊗
p∈P− fp, we have that (w, α) � ϕ implies (w, β) � ψ. In this

case, we say that
⊗

p∈P− fp satisfies 〈ϕ, ψ〉.
To solve the problem, we use the framework of bounded synthesis and

emptiness checking for Büchi graphs as presented for PROMPT–LTL in Sec-
tion 4. In particular, we adapt the notation introduced in Subsection 4.3,
e.g., the product system S =

⊗
p∈P− Sp. Our semi-decision procedure again

guesses implementations and then model checks whether their product S
satisfies the assume-guarantee specification, based on a characterization in
terms of S being pumpable non-empty. To this end, we have to lift Lemma 11
to PLDL, which again requires to remove parameterized box operators. Once
more, we rely on monotonicity, but due to the quantifier alternation and the
implication between ϕ and ψ, the application is not completely trivial. Given
the assumption ϕ, let ϕ′ be the formula as described in Lemma 8, which has
no parameterized box operators. The formula ψ′ is defined similarly.

Lemma 10. Let S, ϕ′, and ϕ′ as above. Then, S satisfies 〈ϕ, ψ〉 if, and only
if, S satisfies 〈ϕ′, ψ′〉.

Proof. Let f denote the strategy generated by S.
For the implication from left to right, let S satisfy 〈ϕ, ψ〉, i.e., for each

α there is a β such that for all w ∈ f : (w, α) � ϕ implies (w, β) � ψ. As β
depends on α, we write β(α) to make the dependency clear.

Now, given some arbitrary α let α0 denote the variable valuation mapping
each x ∈ var♦(ϕ) = var♦(ϕ

′) to α(x) and each other variable to 0. We claim
that (w, α) � ϕ′ implies (w, β(α0)) � ψ′ for all w ∈ f , which implies that S
satisfies 〈ϕ′, ψ′〉.

Thus, assume the assumption is satisfied, i.e., (w, α) � ϕ′. Then, we
also have (w, α0) � ϕ by Lemma 8. Thus, (w, β(α0)) � ψ, which implies
(w, β(α0)) � ψ′, again by Lemma 8.

34

For the other implication, let S satisfy 〈ϕ′, ψ′〉, i.e., for each α there is
a β such that for all w ∈ f : (w, α) � ϕ′ implies (w, β) � ψ′. Again, as β
depends on α, we write β(α) to make the dependency clear.

We claim that (w, α) � ϕ implies (w, β(α)) � ψ for all w ∈ f , which
implies that S satisfies 〈ϕ, ψ〉.

Thus, assume the assumption is satisfied, i.e., (w, α) � ϕ. Then, we
also have (w, α) � ϕ′ by Lemma 8. Thus, (w, β(α)) � ψ′, which implies
(w, (β(α))0) � ψ, again by Lemma 8. Here, (β(α))0 maps each variable in
var♦(ψ) = var♦(ψ

′) to (β(α))(x) and each other variable to 0.

To simplify the notation we can assume that ϕ and ψ do not contain
any parameterized box operators. Thus, the alternating color technique is
applicable to them. Also, there is a non-deterministic Büchi automaton
Ncr′ (ψ)∧cr(ϕ) = 〈2I∪O∪{r,r′}, Q, q0, δ, B〉, where cr′(ψ) = altr′ ∧¬rel r′(ψ) whose
language contains exactly those paths that satisfy cr′(ψ) ∧ cr(ϕ) [8]. Then,
Lemma 11 holds in this setting as well.

Lemma 11. Let 〈ϕ, ψ〉 be a PLDL assume-guarantee specification, A∗ be an
asynchronous architecture, and Sp be a finite-state implementation for each
system process p ∈ P−. The distributed product S =

⊗
p∈P− Sp does not

satisfy 〈ϕ, ψ〉 if, and only if, the product of S and Ncr′ (ψ)∧cr(ϕ) is pumpable
non-empty.

From here on the algorithm is similar to that described in Section 4 and
we obtain the same semi-decidability result.

Corollary 6. Let A∗ be an asynchronous architecture. The asynchronous
PLDL assume-guarantee realizability problem for A∗ is semi-decidable.

6. Conclusion

In this paper, we have initiated the investigation of distributed synthesis
for parameterized specifications, in particular for PROMPT–LTL, PLTL, and
PLDL. These logics subsume LTL, and additionally allow to express bounded
satisfaction of system properties, instead of only eventual satisfaction. To the
best of our knowledge, this is the first treatment of parametrized temporal
logic specifications in distributed synthesis.

We have shown that for the case of synchronous distributed systems, we
can reduce the PROMPT–LTL synthesis problem to an LTL synthesis prob-
lem. Thus, the complexity of PROMPT–LTL synthesis corresponds to the

35

complexity of LTL synthesis, and the PROMPT–LTL realizability problem
is decidable if, and only if, the LTL realizability problem is decidable. For
the case of asynchronous distributed systems with multiple components, the
PROMPT–LTL realizability problem is undecidable, again corresponding to
the result for LTL. For this case, we give a semi-decision procedure based on
a novel method for checking emptiness of two-colored Büchi graphs. Finally,
we have shown that all these results also hold for PLTL and PLDL. Fur-
thermore, the approach is also applicable to PLTL and PLDL in a weighted
setting [9], as even these logics have the exponential compilation property
and the alternating color technique is applicable to them as well. Finally,
we conjecture that the approach also extends to assume-guarantee synthesis
with mutual assumptions between different processes [31, 32].

Among the problems that remain open is realizability of PROMPT–LTL
specifications in asynchronous distributed systems with a single component.
This problem can be reduced to the (single-process) assume-guarantee real-
izability problem for PROMPT–LTL, which was left open in [6].

In the future, we also want to look into the synthesis of distributed sys-
tems with a parametric number of components [33, 34] from parameterized
temporal logics. In addition to the even more difficult problems of realizabil-
ity and synthesis, new questions arise in this context, such as: how does the
bound on prompt eventualities increase with the number of components in
the system?

[1] A. Pnueli, The temporal logic of programs, in: FOCS 1977, IEEE, 1977,
pp. 46–57. doi:10.1109/SFCS.1977.32.

[2] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi,
Y. Zbar, The ForSpec temporal logic: A new temporal property-
specification language, in: J.-P. Katoen, P. Stevens (Eds.), TACAS
2002, Vol. 2280 of LNCS, Springer, 2002, pp. 296–311. doi:10.1007/

3-540-46002-0_21.

[3] C. Eisner, D. Fisman, A Practical Introduction to PSL, Integrated Cir-
cuits and Systems, Springer, 2006. doi:10.1007/978-0-387-36123-9.

[4] M. Y. Vardi, P. Wolper, Reasoning about infinite computations, Inf.
Comput. 115 (1) (1994) 1–37. doi:10.1006/inco.1994.1092.

36

http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-46002-0_21
http://dx.doi.org/10.1007/3-540-46002-0_21
http://dx.doi.org/10.1007/978-0-387-36123-9
http://dx.doi.org/10.1006/inco.1994.1092

[5] R. Alur, K. Etessami, S. La Torre, D. Peled, Parametric temporal logic
for ”model measuring”, ACM Trans. Comput. Log. 2 (3) (2001) 388–407.
doi:10.1145/377978.377990.

[6] O. Kupferman, N. Piterman, M. Y. Vardi, From liveness to promptness,
Formal Methods in System Design 34 (2) (2009) 83–103. doi:10.1007/
s10703-009-0067-z.

[7] M. Zimmermann, Optimal bounds in parametric LTL games, Theor.
Comput. Sci. 493 (2013) 30–45. doi:10.1016/j.tcs.2012.07.039.

[8] P. Faymonville, M. Zimmermann, Parametric linear dynamic logic, Inf.
Comput. 253 (2017) 237–256. doi:10.1016/j.ic.2016.07.009.

[9] M. Zimmermann, Parameterized linear temporal logics meet costs: still
not costlier than LTL, Acta Informatica (2016) 1–24doi:10.1007/
s00236-016-0279-9.

[10] A. Pnueli, R. Rosner, Distributed reactive systems are hard to syn-
thesize, in: FOCS 1990, IEEE Computer Society, 1990, pp. 746–757.
doi:10.1109/FSCS.1990.89597.

[11] O. Kupferman, M. Y. Vardi, Synthesizing distributed systems, in: LICS
2001, IEEE Computer Society, 2001, pp. 389–398. doi:10.1109/LICS.
2001.932514.

[12] S. Mohalik, I. Walukiewicz, Distributed games, in: P. K. Pandya,
J. Radhakrishnan (Eds.), FSTTCS 2003, Vol. 2914 of LNCS, Springer,
2003, pp. 338–351. doi:10.1007/978-3-540-24597-1_29.

[13] B. Finkbeiner, S. Schewe, Uniform distributed synthesis, in: LICS 2005,
IEEE Computer Society, 2005, pp. 321–330. doi:10.1109/LICS.2005.
53.

[14] B. Finkbeiner, S. Schewe, Bounded synthesis, STTT 15 (5-6) (2013)
519–539. doi:10.1007/s10009-012-0228-z.

[15] S. Schewe, B. Finkbeiner, Synthesis of asynchronous systems, in: LOP-
STR 2006, Vol. 4407 of LNCS, Springer, 2006, pp. 127–142. doi:

10.1007/978-3-540-71410-1_10.

37

http://dx.doi.org/10.1145/377978.377990
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1016/j.tcs.2012.07.039
http://dx.doi.org/10.1016/j.ic.2016.07.009
http://dx.doi.org/10.1007/s00236-016-0279-9
http://dx.doi.org/10.1007/s00236-016-0279-9
http://dx.doi.org/10.1109/FSCS.1990.89597
http://dx.doi.org/10.1109/LICS.2001.932514
http://dx.doi.org/10.1109/LICS.2001.932514
http://dx.doi.org/10.1007/978-3-540-24597-1_29
http://dx.doi.org/10.1109/LICS.2005.53
http://dx.doi.org/10.1109/LICS.2005.53
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.1007/978-3-540-71410-1_10
http://dx.doi.org/10.1007/978-3-540-71410-1_10

[16] S. Jacobs, L. Tentrup, M. Zimmermann, Distributed PROMPT-LTL
synthesis, in: GandALF, Vol. 226 of EPTCS, 2016, pp. 228–241. doi:

10.4204/EPTCS.226.16.

[17] K. Chatterjee, T. A. Henzinger, J. Otop, A. Pavlogiannis, Distributed
synthesis for LTL fragments, in: FMCAD 2013, IEEE, 2013, pp. 18–25.
doi:10.1109/FMCAD.2013.6679386.

[18] S. Schewe, Distributed synthesis is simply undecidable, Inf. Process.
Lett. 114 (4) (2014) 203–207. doi:10.1016/j.ipl.2013.11.012.

[19] B. Finkbeiner, L. Tentrup, Detecting unrealizable specifications of dis-
tributed systems, in: Proceedings of TACAS, Vol. 8413 of LNCS,
Springer, 2014, pp. 78–92. doi:10.1007/978-3-642-54862-8_6.

[20] B. Finkbeiner, L. Tentrup, Detecting unrealizability of distributed fault-
tolerant systems, Logical Methods in Computer Science 11 (3). doi:

10.2168/LMCS-11(3:12)2015.

[21] P. Madhusudan, P. S. Thiagarajan, Distributed controller synthesis for
local specifications, in: ICALP 2011, Vol. 2076 of LNCS, Springer, 2001,
pp. 396–407. doi:10.1007/3-540-48224-5_33.

[22] W. Fridman, B. Puchala, Distributed synthesis for regular and con-
textfree specifications, Acta Inf. 51 (3-4) (2014) 221–260. doi:10.1007/
s00236-014-0194-x.

[23] P. Gastin, N. Sznajder, M. Zeitoun, Distributed synthesis for well-
connected architectures, Formal Methods in System Design 34 (3) (2009)
215–237. doi:10.1007/s10703-008-0064-7.

[24] P. Gastin, N. Sznajder, Fair synthesis for asynchronous distributed
systems, ACM Trans. Comput. Log. 14 (2) (2013) 9. doi:10.1145/

2480759.2480761.

[25] P. Faymonville, B. Finkbeiner, M. N. Rabe, L. Tentrup, Encodings of
bounded synthesis, in: Proceedings of TACAS, Vol. 10205 of LNCS,
2017, pp. 354–370. doi:10.1007/978-3-662-54577-5_20.

[26] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press,
2008.

38

http://dx.doi.org/10.4204/EPTCS.226.16
http://dx.doi.org/10.4204/EPTCS.226.16
http://dx.doi.org/10.1109/FMCAD.2013.6679386
http://dx.doi.org/10.1016/j.ipl.2013.11.012
http://dx.doi.org/10.1007/978-3-642-54862-8_6
http://dx.doi.org/10.2168/LMCS-11(3:12)2015
http://dx.doi.org/10.2168/LMCS-11(3:12)2015
http://dx.doi.org/10.1007/3-540-48224-5_33
http://dx.doi.org/10.1007/s00236-014-0194-x
http://dx.doi.org/10.1007/s00236-014-0194-x
http://dx.doi.org/10.1007/s10703-008-0064-7
http://dx.doi.org/10.1145/2480759.2480761
http://dx.doi.org/10.1145/2480759.2480761
http://dx.doi.org/10.1007/978-3-662-54577-5_20

[27] O. Kupferman, M. Y. Vardi, Safraless decision procedures, in: FOCS,
IEEE Computer Society, 2005, pp. 531–542. doi:10.1109/SFCS.2005.
66.

[28] M. Leucker, C. Sánchez, Regular linear temporal logic, in: C. Jones,
Z. Liu, J. Woodcock (Eds.), ICTAC 2007, Vol. 4711 of LNCS,
Springer-Verlag, Macau, China, 2007, pp. 291–305. doi:10.1007/

978-3-540-75292-9_20.

[29] P. Wolper, Temporal logic can be more expressive, Information and Con-
trol 56 (1–2) (1983) 72 – 99. doi:10.1016/S0019-9958(83)80051-5.

[30] M. Y. Vardi, The rise and fall of LTL, in: G. D’Agostino, S. L. Torre
(Eds.), GandALF 2011, Vol. 54 of EPTCS, 2011.

[31] K. Chatterjee, T. A. Henzinger, Assume-guarantee synthesis, in:
TACAS, Vol. 4424 of LNCS, Springer, 2007, pp. 261–275. doi:10.

1007/978-3-540-71209-1_21.

[32] R. Bloem, K. Chatterjee, S. Jacobs, R. Könighofer, Assume-guarantee
synthesis for concurrent reactive programs with partial information, in:
TACAS, Vol. 9035 of LNCS, Springer, 2015, pp. 517–532. doi:10.1007/
978-3-662-46681-0_50.

[33] S. Jacobs, R. Bloem, Parameterized synthesis, Logical Methods in Com-
puter Science 10 (1). doi:10.2168/LMCS-10(1:12)2014.

[34] A. Khalimov, S. Jacobs, R. Bloem, Towards efficient parameterized syn-
thesis, in: VMCAI, Vol. 7737 of LNCS, Springer, 2013, pp. 108–127.
doi:10.1007/978-3-642-35873-9_9.

39

http://dx.doi.org/10.1109/SFCS.2005.66
http://dx.doi.org/10.1109/SFCS.2005.66
http://dx.doi.org/10.1007/978-3-540-75292-9_20
http://dx.doi.org/10.1007/978-3-540-75292-9_20
http://dx.doi.org/10.1016/S0019-9958(83)80051-5
http://dx.doi.org/10.1007/978-3-540-71209-1_21
http://dx.doi.org/10.1007/978-3-540-71209-1_21
http://dx.doi.org/10.1007/978-3-662-46681-0_50
http://dx.doi.org/10.1007/978-3-662-46681-0_50
http://dx.doi.org/10.2168/LMCS-10(1:12)2014
http://dx.doi.org/10.1007/978-3-642-35873-9_9

	Introduction
	Our Contributions
	Related Work
	Structure

	PROMPT–LTL
	Synchronous Distributed Synthesis
	Asynchronous Distributed Synthesis
	Nonemptiness of Colored Büchi Graphs
	Bounded Synthesis
	A Semi-Decision Procedure for Assume-Guarantee Realizability

	Beyond PROMPT–LTL
	Synchronous Distributed Synthesis for Parametric Linear Temporal Logic
	Synchronous Distributed Synthesis for Parametric Linear Dynamic Logic
	Asynchronous Distributed Synthesis for PLDL

	Conclusion

