
Tradeoffs in Infinite Games

Habilitation thesis submitted to
the Faculty of Mathematics and Computer Science

at Saarland University

by

Dr. rer. nat. Martin Zimmermann.

Saarbrücken, April 26, 2017





Table of Contents

1 Infinite Games in Theoretical Computer Science 3

2 State of the Art 6
2.1 Delay Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Quantitative Games: Boundedness vs. Optimization . . . . . . . . 7

3 Motivation 10

4 My Contributions 11
4.1 Expressiveness vs. Complexity . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Linear Temporal Logics . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Request-response Conditions . . . . . . . . . . . . . . . . 14
4.1.3 Average-energy Conditions . . . . . . . . . . . . . . . . . 14

4.2 Size vs. Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Winning Conditions with Costs . . . . . . . . . . . . . . . 16
4.2.2 Prompt-LTL . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Lookahead vs. Complexity . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Delay Games with Qualitative Winning Conditions . . . . 17
4.3.2 Delay Games with Quantitative Winning Conditions . . . 18

4.4 Lookahead vs. Quality . . . . . . . . . . . . . . . . . . . . . . . . 18

5 A Note on Notation 19

6 Conclusion and Outlook 19

List of Publications Constituting this Thesis 21

References 23

1





1 Infinite Games in Theoretical Computer Science

Games of infinite duration, infinite games for short, constitute one of the pil-
lars of theoretical computer science with a wide range of applications in log-
ics, automata theory, descriptive set theory, and program synthesis. For ex-
ample, the model-checking problem, the task of deciding whether a given for-
mula holds true in a given structure, can be interpreted as a game between
a player trying to prove that the formula holds true, and a player trying to
disprove this [Grä02]1. For fixed-point logics, such games are of infinite du-
ration. In fact, model-checking the modal µ-calculus is linear-time equivalent
to determining the winner of a parity game [EJS01], a certain type of infinite
game. Other applications of parity games include the seminal game-based proof
of Rabin’s theorem by Gurevich and Harrington [GH82], which considerably
simplified Rabin’s original proof [Rab69] showing the decidability of monadic
second-order logic over infinite trees. Furthermore, emptiness problems for tree
automata and alternating automata (see [GTW02] for an overview) as well as
satisfiability problems for temporal logics (see [DGL16] for an overview) have
been expressed as infinite games. Moreover, the existence of a bisimulation be-
tween two structures [JM99], the diagonalizability of relations [TL93, TB73],
language inclusion between !-automata [EWS05], the existence of Wadge re-
ductions [Wad72, Wad83], and many other problems have been characterized
in terms of infinite games.

In this work, we are most concerned with the reactive synthesis problem,
which has its roots in Church’s synthesis problem [Chu63]. Church asked for
a given specification of the input-output behavior of a circuit, whether one can
automatically construct a circuit that satisfies this specification, if such a circuit
exists at all. As an example of such a specification, consider the conjunction of
the following three requirements on a circuit with a single input bit and a single
output bit:

1. Whenever the input bit is 1, then the output bit is 1, too.

2. At least one out of every three consecutive output bits is a 1.

3. If there are infinitely many 0’s in the input stream, then there are infinitely
many 0’s in the output stream.

The following circuit which stores the last three inputs satisfies all three require-
ments: if the input bit is a 0, answer with a 0, unless the last two output bits
were already 0, in this case output a 1. On the other hand, every 1 in the input
stream is answered by a 1.

Büchi and Landweber [BL69] solved the problem by framing it as an infi-
nite game between a player representing the environment of the circuit, who
produces the stream of input bits, and a player representing the circuit to be
synthesized, who is in charge of producing the output bits. The game is played
in rounds n = 0, 1, 2, . . . as follows: in round n, first the environment player
picks a bit ↵(n), then the circuit player picks a bit �(n). After ! rounds, the cir-
cuit player wins, if the sequence ↵(0)�(0)↵(1)�(1) · · · satisfies the specification.

1There are two types of references in this introductory part of the thesis: numeric references
refer to publications constituting this thesis while all other references are alphanumeric.
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Typically, such a game is modeled as a graph-based game. Here, the arena
of the game, which describes the rules of the game, is a directed graph whose
vertices are partitioned into the positions of the two players. We call them
Player 0 and Player 1 and assume for pronomial convenience [McN00] Player 0
to be female and Player 1 to be male. Such a game is played as follows: a token
is placed at some initial vertex and always moved to some successor vertex,
which is picked by the player who owns the vertex the token is currently at.
After ! moves, the players have produced an infinite path through the arena, a
so-called play. The winner is determined by the winning condition, a subset of
the plays. If the play is in the winning condition, then Player 0 wins, otherwise
Player 1 wins.

Figure 1 shows a graph-based game formalizing the instance of Church’s syn-
thesis problem given by the specification above. Here, the vertices of Player 0
are depicted as circles and those of Player 1 as squares. As the game models
the players picking bits, each vertex has two outgoing edges, one represent-
ing picking a 0 (dashed) and the other one representing picking a 1 (solid).
The initial vertex is marked by an incoming arrow. Note that the vertices are
“colored” by natural numbers, which induce the winning condition: a play is
winning for Player 0, if either only vertices of color 0 are seen infinitely often
(but none of color 1 or 2) or if color 2 is visited infinitely often. The set of win-
ning plays captures the specification above, the first two conjuncts are encoded
in the transition structure and the fact that the lower right vertex is a losing sink
for Player 0, and the third condition is expressed by the winning condition. The
winning condition of the example above is a parity condition: the vertices are
“colored” by natural numbers and a play is winning for Player 0, if the parity of
the maximal color visited infinitely often is zero.

0 1

0

2 1 2 1

1

Figure 1: A graph-based infinite game.

The following is a winning strategy for Player 0, who has to pick successors
at the circle vertices: at the leftmost two vertices of color 1 move to the right,
at the rightmost vertex of color 1 and at the lower vertex of color 0 move back
to the initial vertex. It is easy to verify that this strategy is winning for her and
corresponds to the strategy described above informally.

In a graph-based game, a strategy for Player i is a function mapping a play
prefix ending in a vertex v of Player i to some successor of v. It is said to be
winning, if every play that starts in the initial vertex and is played according to
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the strategy is won by Player i. If some player has a winning strategy, then we
say that she wins the game. Typically, one is interested in determining whether
Player 0 wins a given game and in computing a winning strategy for her.

In the setting of graph-based infinite games, Büchi and Landweber’s sem-
inal theorem solving the synthesis problem reads as follows: “The winner of
an infinite game in a finite arena with !-regular winning condition can be de-
termined effectively and a finite-state winning strategy for the winner can be
computed [BL69].” Here, a finite-state strategy is essentially a finite automaton
with output that implements a strategy by reading play prefixes and returning
a next move to be taken. Finite-state strategies are desirable as they are a finite
representation of an a priori infinite object. An important special case of finite-
state strategies are positional strategies, which base their decision only on the
vertex the token is currently at. The strategy described above for the game in
Figure 1 is positional.

A simple proof of the Büchi-Landweber theorem reduces the problem to that
of determining the winner (and a winning strategy) of a parity game. To this
end, one starts from a deterministic parity automaton A recognizing the win-
ning condition and takes the product of the arena and the automaton, which
is still an infinite game. There is a bijection between the plays ⇢ in the origi-
nal arena and the extended plays in the product game, which are products of a
play ⇢ and the unique run of A on ⇢. Thus, declaring those plays of the product
to be winning for Player 0 that have an accepting run in the second component,
yields an equivalent game. Finally, as winning now only depends on the accep-
tance of the run, the product game can inherit the acceptance condition of the
automaton, i.e., the product is a parity game. Thus, determining the winner of
the product game yields also the winner of the original game. Furthermore, po-
sitional winning strategies suffice for winning parity games [EJ91, Mos91] and
can be computed effectively. Such a strategy and the automaton A recognizing
the winning condition can easily be turned into a finite-state winning strategy
for the original game. Finally, if the original game is an instance of Church’s syn-
thesis problem, then the finite-state strategy can even be turned into a circuit.
This is another example of the importance of parity games.

The setting considered in the original Büchi-Landweber theorem is that of
turn-based two-player deterministic zero-sum games of duration ! in finite are-
nas with !-regular winning condition and complete information for both play-
ers. Since the publication of the original result in 1969 all these characteristics
have been generalized to concurrent games [dAH00] and delay games [HL72],
multi-player games [GU08], stochastic games [CH12, Sha53], games of ordinal
length greater than ! [CH08], non-zero sum games [GU08], games of imperfect
information [DR11], games in infinite arenas [Wal01], timed games [BCD+07],
and to distributed settings [MW03, PR90]. Finally, the variation receiving the
most attention concerns the winning condition: Both special cases with better
properties in terms of algorithmic complexity and memory requirements and
more expressive winning conditions have been studied. The latter subsumes
both qualitative extensions and quantitative extensions. Quantitative exten-
sions are of particular importance for reactive synthesis, as explained later.

In this work, we consider several of these generalizations, often two at a
time. The publications described in Section 4.1 and Section 4.2 investigate more
expressive (qualitative and quantitative) winning conditions for infinite games
and distributed infinite games. The publications described in Section 4.3 and
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Section 4.4 are concerned with delay games with (qualitative and quantitative)
winning conditions. Furthermore, games in infinite arenas and games of finite
duration are used as tools to solve the problems at hand.

2 State of the Art

The two basic problems one is interested in for a class of infinite games are the
computational complexity of determining the winner (and a winning strategy),
the so-called solution complexity, and the worst-case memory requirements of
such a winning strategy. Both of these characteristics depend on the expressive-
ness and the succinctness of the winning condition. For this reason, it is prudent
to distinguish between high-level winning conditions, typically expressive and
succinct specification logics, and low-level winning conditions, typically derived
from acceptance conditions for automata on infinite objects [GTW02, Tho90],
which tend to be less succinct.

For almost all low-level winning conditions, the exact solution complexity
and tight upper and lower bounds on the memory requirements for both play-
ers are known. The most notable exception are parity games: while it is known
that positional winning strategies exist for both players [EJ91, Mos91], solv-
ing such games remains the most intriguing problem in the theory of infinite
games: There is a plethora of algorithms (e.g., [BDHK06, BCJ+97, EL86, FS13a,
HKLN12, Jur00, McN93, Obd03, Sch17, VJ00, Zie98, ZP96]), some with subex-
ponential [BV07, JPZ08, Lud95] and even quasipolynomial [CJK+16, FJS+17,
JL17] running time, but it is open whether there is a polynomial time algo-
rithm. In contrast, the solution problem for parity games is known to be in
UP \ CO-UP [Jur98] and therefore unlikely to be NP-complete.

Similarly, for Linear Temporal Logic (LTL) [Pnu77], the de-facto standard
linear-time specification language for reactive systems and the foundation of
current high-level specification languages [AFF+02, EF06], the solution prob-
lem is 2EXPTIME-complete and doubly-exponential memory is both sufficient
and in general necessary for both players [PR89a, PR89b, Ros91]. This result
is shown similarly to the proof sketch of the Büchi-Landweber theorem above,
starting with a deterministic parity automaton for the winning condition, which
is, in general, of doubly-exponential size.

Most of the generalizations discussed in the previous section raise new ques-
tions beyond the basic ones about complexity and memory requirements. For
example, multi-player games and non-zero sum games require solution con-
cepts beyond winning strategies, e.g., equilibria. Similarly, stochastic strategies,
which are necessary in concurrent and imperfect-information games, are typi-
cally also not winning in the sense introduced above, but one is interested in
bounding the probability of losing. All these extensions have received consid-
erable effort from the community and most of their properties are well under-
stood.

2.1 Delay Games

One notable type of game that has not yet been thoroughly studied are de-
lay games where one of the players is afforded a lookahead on her opponent’s
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moves. These were introduced in 1972 [HL72], only three years after the Büchi-
Landweber theorem, but have only recently been revisited [HKT12]. The evolu-
tion of the lookahead in a delay game is part of the rules, i.e., a delay game con-
sists of a delay function f : N ! N\{0} and a winning condition L ✓ (⌃I⇥⌃O)!,
where ⌃I and ⌃O are the input alphabet and the output alphabet, respectively.
The game is played for ! rounds. But instead of both players picking one letter
in each round as in the game modeling Church’s problem, first Player I (the
antagonist) has to pick f(n) letters from ⌃I in round n, then Player O (the
protagonist) picks a single letter from ⌃O. Thus, the lookahead increases by
f(n) � 1 letters in round n. After ! rounds, both players have produced an
infinite word over their alphabet; Player O wins if the pair of both words is in
the winning condition L.

Typically, one is given a winning condition L and is interested in what kind
of delay function f is necessary for Player O to win the game induced by L and
f . Of particular interest are the bounded delay functions, , i.e., those that have
finitely many n with f(n) > 1. This implies that the size of the lookahead is
eventually stable. Even more restricted are the constant delay functions, those
with f(n) = 1 for all n > 1, i.e., the size of the lookahead is constantly equal to
f(0)� 1.

The asynchronous transmission of data in networks or components with
buffers can be modeled via delay games. More theoretically, delay games also
solve the diagonalizability problem [TL93, TB73] for relations L ✓ (⌃I ⇥⌃O)!,
which asks, given L, whether there is a continuous function � : ⌃!

I
! ⌃!

O
whose

graph is a subset of L. Then, we say � diagonalizes L. A relation L is diagonal-
ized by a continuous function if, and only if, Player O wins the delay game with
winning condition L with respect to some arbitrary delay function [HKT12].
Similarly, L is diagonalized by a Lipschitz-continuous function if, and only if,
Player O wins the delay game with winning condition L with respect to some
bounded delay function.

Hosch and Landweber [HL72] proved the decidability of the following prob-
lem: given an !-regular L, is there a constant delay function f such that
Player O wins the delay game induced by L and f . Almost 40 years later, the
problem was revisited by Holtmann, Kaiser, and Thomas [HKT12], who proved
that, for an !-regular winning condition, Player O wins with respect to some
arbitrary delay function if, and only if, she wins with respect to some constant
delay function, i.e., unbounded lookahead does not provide an additional ad-
vantage over constant lookahead if the winning condition is !-regular. Further-
more, they streamlined the decidability result of Hosch and Landweber, gave an
algorithm with doubly-exponential running time, and gave doubly-exponential
upper bounds on the constant lookahead necessary to win (in the size of a de-
terministic parity automaton recognizing the winning condition).

2.2 Quantitative Games: Boundedness vs. Optimization

During the last decade another shortcoming of the classical setting of Büchi
and Landweber was addressed by considering quantitative instead of qualita-
tive winning conditions. For example, consider a simple request-response prop-
erty [WHT03] asking every request to be eventually responded to. This prop-
erty is !-regular and is therefore covered by the Büchi-Landweber theorem.
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However, it does not rule out that the waiting time between requests and re-
sponses diverges. Such a behavior is undesirable, but cannot be prevented with
!-regular conditions.

The boundedness variant of the problem asks for the existence of an arbi-
trary, but fixed bound on the waiting time, i.e., it is a quantitative strengthening.
Recently, boundedness problems in logics and automata theory have seen a lot
of attention [BtCCV15, BCK+14, Boj04, Boj11, BC06, BGMS14, BPT16, BT09,
Col13, CKL10, CL10, FHKS15, HS12] and far-reaching decidability results have
been presented. In particular, Rabin’s theorem has been extended to quantita-
tive logics [Boj14, BT12] (see also [FHKS15, Van11]). Taking this approach one
step further turns infinite games and reactive synthesis from a decision problem
into an optimization problem: Instead of determining whether Player 0 wins a
game with a qualitative winning condition, one defines semantic quality mea-
sures for winning strategies and aims to compute an optimal winning strategy
for her. In the request-response example above, one would ask for a strat-
egy that realizes the minimal waiting time among all winning strategies. As in
the case of request-response conditions, these quality measures are often ob-
tained by adding quantitative features to a qualitative winning condition, e.g.,
by bounding the waiting times in request-response games. In the same vein,
there are quantitative extensions of LTL by parameterized eventually operators
whose scope is bounded in time, e.g., Prompt-LTL and Parametric LTL (PLTL).

For example, the LTL formula G (q ! F p) expresses the request-response
property mentioned above. Formally, every occurrence of the atomic propo-
sition q representing requests has to be answered by a later occurrence of p,
representing the response. Again, LTL cannot prevent diverging waiting times.
To overcome this limitation, Alur et al. introduced PLTL [AELP01], which adds
the unary temporal operators Fx and Gy , where x and y are variables ranging
over natural numbers that are used to bound the scope of the operators. For
example, with respect to a valuation ↵(x) of x, the formula G (q ! Fx p) ex-
presses that every request has to be answered within ↵(x) steps. Thus, dually,
Gy  holds true with respect to ↵(y), if  holds true at least for the next ↵(y)
steps.

In decision problems, the valuation ↵ is typically existentially quantified,
i.e., the PLTL synthesis problem asks, given an arena labeled by a set of atomic
propositions and given a PLTL formula ', whether there is a valuation ↵ of
'’s variables such that Player 0 has a winning strategy such that every consis-
tent play satisfies ' with respect to ↵. Alur et al. proved that the PLTL model-
checking problem has the same complexity as the classical special case of LTL
model-checking, i.e., it is PSPACE-complete [AELP01]. Later, a similar result
was shown for the PLTL synthesis problem: it is still 2EXPTIME-complete and
doubly-exponential memory is both necessary and sufficient [Zim13]. Thus,
one can increase the expressiveness of LTL for free when considering bounded-
ness problems. In contrast, the complexity of the optimization variant of the
synthesis problem, asking for a minimal ↵ is still open: there is an algorithm
with triply-exponential running time and the problem is trivially 2EXPTIME-
complete [Zim13].

Shortly after the introduction of PLTL, Kupferman, Piterman, and Vardi stud-
ied Prompt-LTL [KPV09], which can be seen as the fragment of PLTL without
parameterized always operators and with a single variable bounding the pa-
rameterized eventually operators. They argued that the usefulness of the pa-
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rameterized always operators is questionable when considering boundedness
problems, as they trivialize due to monotonicity: if  can be satisfied for some
number ↵(y) of steps, then it can also be satisfied for zero steps, i.e., Gy  

is equivalent to  when existentially quantifying the value for y. Similarly, if  
holds true within the next ↵(x) steps at least once, then also at least once within
the next k steps for every k � ↵(x). Hence, when asking for the existence of
some variable valuation that satisfies the formula, one does not lose generality
when assuming all parameterized eventually operators to be parameterized by
the same variable. These two observations imply that boundedness problems
for PLTL can be reduced to boundedness problems for Prompt-LTL.

The most influential contribution in [KPV09] is the introduction of the so-
called alternating-color technique. Alur et al.’s decidability proof for PLTL model-
checking [AELP01] relies on intricate pumping arguments, which are not gen-
eralizable to solving games. In contrast, Kupferman et al. presented a very
general approach to dealing with boundedness problems, the alternating-color
technique, which essentially consists of a reduction from Prompt-LTL to LTL: a
new proposition is introduced that colors infinite traces and a subformula Fx  

is replaced by an LTL formula that expresses that  holds true within at most
one color change. If the distance between the color changes is bounded from
below and from above, then these two formulas are equivalent. In a game,
bounding the distance between color changes can be achieved easily by charg-
ing Player 0 with coloring the plays with infinitely many color changes. Then,
a simple pumping argument shows that a finite-state strategy for her, which al-
ways exists if she wins, bounds the distance. This technique turned out to be
applicable in other settings as well [CKL10].

Another important class of quantitative winning conditions are finitary par-
ity and Streett conditions, which strengthen qualitative parity and Streett con-
ditions. Recall that the classical parity condition is defined over sequences of
colors (natural numbers) and holds true if the maximal color occurring infinitely
often is even, e.g., the sequence

⇡ = 10 2 1 0 0 2 1 0 0 0 2 1 0 0 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 2 · · ·

satisfies the parity condition, as the largest color occurring infinitely often is
2. Equivalently, one can require that almost all occurrences of an odd color
are followed by a larger even color, e.g., in the example every 1 is eventually
followed by a 2. Here, occurrences of odd colors can be understood as requests
that are answered by larger even colors. The finitary parity condition introduced
by Chatterjee and Henzinger [CH06] now requires the existence of a bound b

such that almost all requests are answered within b steps. Hence, the sequence ⇡
above does not satisfy the finitary parity condition, as the distance between the
occurrences of the request 1 and their answers (the next occurrence of a 2)
diverges.

While the finitary parity condition strengthens the parity conditions, Horn
showed finitary parity games to be solvable in polynomial time [Hor07] (see
also [CHH09]), while there is no known algorithm solving parity games in poly-
nomial time. Surprisingly, this situation is reversed for Streett conditions, which
generalize parity games by giving up the hierarchical nesting of the requests and
responses [Str81]: solving them is CO-NP-complete [Hor05] while solving fini-
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tary Streett games, which are defined as expected, is EXPTIME-hard2, and thus
much harder (under standard complexity-theoretic assumptions).

Finally, energy conditions [BFL+08, CRR14, JLR13, JLS15] also have re-
ceived considerable attention during the last decade modeling systems with a
limited resource that can be drained and recharged. Typical requirements are
to keep the energy level between some fixed upper and lower bound, often
while satisfying some other condition. For example, energy-parity games can be
solved in NP \ CO-NP and Player 0 needs exponential memory while Player 1
still has positional strategies [CD12]. In subsequent work, a multitude of gen-
eralizations [CD12, CRR14, JLS15, VCD+15] of the energy condition have been
studied, e.g., the average-energy condition which requires the average energy
level to be bounded from above by some given threshold. Solving such games
with a given lower and upper bound on the energy level and a threshold on the
average energy level is EXPTIME-complete [BMR+15].

3 Motivation

The results presented in this thesis are broadly concerned with tradeoffs be-
tween different characteristics of infinite games, e.g., the expressiveness of the
winning condition, complexity of the solution problem, memory requirements
of winning strategies, semantic quality of winning strategies, and amount of
lookahead. As an example, consider the work on the boundedness variant of
Prompt-LTL and PLTL games. Both logics extend LTL quantitatively, but the so-
lution complexity and the memory requirements are not affected. Thus, one can
increase the expressiveness of LTL for free.

In this thesis, we investigate how far this result can be strengthened without
affecting the complexity of the solution problem and the memory requirements,
i.e., we study the tradeoff between expressiveness and complexity in games with
winning conditions specified in linear temporal logics:

How much can the expressiveness of LTL be increased for free?

The second type of tradeoff we investigate is that between the semantic
quality of winning strategies and both the solution complexity and the mem-
ory requirements. For example, the optimization variant of Prompt-LTL and
PLTL games are only known to be solvable in triply-exponential time and only
a triply-exponential upper bound on the necessary memory is known. The best
corresponding lower bounds are both the trivial doubly-exponential ones for
LTL games. This raises the question:

Does playing a quantitative game optimally come at a price?

Then, we shift our attention to delay games. As already mentioned earlier,
most of their basic properties are still open, i.e., there are no non-trivial lower
bounds on the solution complexity and the necessary lookahead. Also, only !-
regular winning conditions have been considered, but nothing is known about
the properties of weaker or stronger winning conditions. Thus, we first study
the tradeoff between lookahead and solution complexity, thereby studying the
basic properties of delay games:

2Shown in unpublished work by Chatterjee, Henzinger, and Horn, obtained by a minor modifi-
cation to the proof of EXPTIME-hardness of solving request-response games [CHH11].
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What is the price of adding lookahead to infinite games?

It is straightforward to come up with simple games that can only be won with
lookahead, i.e., lookahead allows you to win more games. But does lookahead
also allow you to improve the quality of winning strategies in games that can
even be won without lookahead:

Can lookahead be traded for quality of winning strategies?

We answer all these questions in this thesis.

4 My Contributions

The publications constituting this thesis are grouped into four lines of work
along the four questions motivating this work. The next four subsections sum-
marize our results in terms of the tradeoffs considered.

In Subsection 4.1, we consider the tradeoff between expressiveness of the
winning condition and complexity (in terms of the solution problem and the
memory requirements of optimal strategies). First, we review several publica-
tions on linear temporal logics and then one each on request-response games
and on average-energy games.

Then, in Subsection 4.2 we consider the tradeoff between the size of winning
strategies and their semantic quality, first for finitary games and games with
costs, and then for Prompt-LTL games.

The last two subsections are concerned with delay games: first, in Subsec-
tion 4.3 we consider the influence the addition of lookahead has on the com-
plexity of the solution problem. Also, here we are interested in the necessary
lookahead to win a delay game with a given winning condition.

Finally, in Subsection 4.4, we consider the tradeoff between lookahead and
the semantic quality of strategies.

4.1 Expressiveness vs. Complexity

The overarching theme of the first line of research is the quest for expressive-
ness: strengthening and generalizing formalisms for specifying winning condi-
tions without increasing the solution complexity and the memory requirements.
For LTL, we were able to show that this is indeed possible: in a series of publi-
cations, we added both qualitative and quantitative features to LTL while pre-
serving all desirable algorithmic properties of LTL: standing on the shoulders of
Kupferman, Piterman, and Vardi [KPV09]

we vastly increased the expressiveness of LTL for free.

Also, we studied an optimization problem for request-response games and
solved an open problem concerning a variant of average-energy games. Here,
the increase of expressiveness comes at a price in terms of the solution complex-
ity.
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4.1.1 Linear Temporal Logics

LTL is the de-facto standard specification language for reactive systems and the
basis for industrial logics like PSL [EF06] and ForSpec [AFF+02]. This popu-
larity is based on being expressively equivalent to first-order logic while having
intuitive variable-free syntax and semantics. Furthermore, its desirable algo-
rithmic properties are all based on the exponential-compilation property: LTL
formulas can be translated into equivalent Büchi automata of exponential size.
This property yields the polynomial space model-checking algorithm and the
algorithm solving LTL games in doubly-exponential time.

However, there are two shortcomings of LTL that have been identified and
tackled in previous work: LTL is unable to express timing constraints and it is
less expressive than the !-regular languages. The first issue was addressed by
introducing Prompt-LTL and PLTL while there is a long line of extensions of LTL
with the full expressive power of the !-regular languages [LS07, Var11, VW94,
Wol83] and even temporal logics with the full expressive power of the !-visibly
pushdown languages [AEM04, AM04, Boz07, BS14a, BS14b], which are able to
express recursive properties that go beyond !-regularity.

In this line of work, we explore the limits of the exponential-compilation
property by strengthening LTL as much as possible without losing the property.
My work on this question started during my PhD studies where I studied in-
finite games with PLTL winning conditions (as a boundedness problem) and
was able to show that the alternating-color technique is applicable to them as
well [Zim13]: I proved the problem to be 2EXPTIME-complete and gave tight
doubly-exponential bounds on the necessary memory. Then, I considered the
optimization variant and showed triply-exponential upper bounds on complex-
ity and memory.

Later, in collaboration with Peter Faymonville [1], I introduced and inves-
tigated Parametric Linear Dynamic Logic (PLDL), the first parameterized tem-
poral logic with the full expressiveness of the !-regular languages, which is ob-
tained by adding parameters to the guarded temporal operators of LDL [Var11].
For example, the formula G (q ! hri

x
p) expresses that every request has to be

answered by a response within some fixed, but arbitrary number of steps and
the guard r — a regular expression — has to match between the request and
the response. Hence, hri

x
can be understood as a guarded generalization of

the parameterized eventually operator Fx .
We developed a generalization of the alternating-color technique for PLDL

and proved that PLDL model-checking and solving PLDL games are still PSPACE-
and 2EXPTIME-complete, respectively. Also, we gave doubly exponential bounds
on the necessary memory in PLDL games. Thus, PLDL retains the same desir-
able properties of LTL while being more expressive, both qualitatively and and
quantitatively.

Afterwards, I generalized the setting even further by considering a weighted
framework and interpreted parameterized operators to have a scope of bounded
costs instead of bounded time [2], e.g., here, the request-response property
G (q ! Fx p) expresses that the cost between every request and its response
has to be bounded by some fixed, but arbitrary value. To this end, I intro-
duced the logics cPLTL and cPLDL and by again generalizing the alternating-
color technique to the weighted setting I showed that even these logics have
the same desirable properties as LTL. Furthermore, if the weights are given in
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a unary encoding, then even the complexity of the optimization problems does
not change.

All these results are similar in that they are based on generalizations of
the alternating-color technique and on proving the exponential compilation
property for these logics, i.e., we adapted the alternating-color technique to
deal with guarded operators (for PLDL) and with costs (for cPLTL) and de-
vised a novel translation of LDL (with additional operators to capture the color
changes) to alternating Büchi automata.

However, there are still desirable properties that cannot be expressed in
these logics, e.g., “there are never more responses than requests” ruling out
superfluous responses. This property is not !-regular, but !-contextfree. Us-
ing the full class of !-contextfree languages for specifying reactive systems is
not prudent, as the class is not closed under conjunction and complementation.
Instead, the fragment of !-visibly pushdown languages [AM04] has been the fo-
cus of intensive research, as it has much better closure properties. Nevertheless,
it still able to express the example property above and many other important
properties of recursive systems.

There are several proposals for a temporal logic with the same expressive
power as the !-visibly pushdown languages [AEM04, AM04, Boz07, BS14a,
BS14b], but most of them do not come close to LTL in terms of an intuitive
syntax and semantics. Furthermore, the algorithmic properties of these logics
are no longer as desirable as those of LTL, but not much harder. In particular
model checking is often EXPTIME-complete. However, the syntax and semantics
of these logics is no longer as intuitive as that of LTL or LDL.

With Alexander Weinert [3], I proposed to equip the intuitive temporal op-
erators of LDL with visibly pushdown automata as guards to obtain a logic with
intuitive syntax and semantics and with the expressive power of the !-visibly
pushdown languages, called VLDL (Visibly Linear Dynamic Logic). We pre-
sented an exponential translation of VLDL into !-visibly pushdown automata via
alternating jumping automata [Boz07], an automaton model without stack, but
with non-local transitions. From this translation, we straightforwardly obtain
exponential time algorithms for satisfiability and model-checking as well as an
algorithm solving games in triply-exponential running time. Furthermore, we
proved all these problems to be complete for the respective complexity classes.
Thus, we finally have to pay a price for the vast increase in expressiveness and
applicability from LDL to VLDL.

All algorithmic results in these papers were concerned with model-checking
and solving graph-based games. In collaboration with Swen Jacobs and Le-
ander Tentrup, I also considered distributed synthesis for Prompt-LTL specifi-
cations [4], the first work on distributed synthesis for parameterized specifica-
tions. Finkbeiner and Schewe [FS05] proved that decidability of distributed LTL
synthesis depends on the imperfect information induced by the communication
structure of the components and gave a necessary and sufficient criterion for
decidability. By a reduction to the LTL case via the alternating-color technique
we were able to show that the synchronous distributed Prompt-LTL synthesis is
decidable for a fixed communication structure if, and only if, the synchronous
distributed LTL synthesis problem is decidable for this structure. Furthermore,
both problems have asymptotically the same complexity. For the asynchronous
case, we gave a semi-algorithm, as the problem is already undecidable for two
processes and LTL specifications. Whether the one-process asynchronous case
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is decidable for Prompt-LTL, as it is for LTL, is an open problem. In unpub-
lished work, we have generalized these results to stronger logics like PLTL and
PLDL [JTZ17].

Finally, with Bernd Finkbeiner [5], I considered an orthogonal extension of
LTL: instead of adding generalized temporal operators, HyperLTL adds trace
quantifiers to LTL. HyperLTL is able to express information flow properties to
specify the secrecy and integrity of security-critical systems, e.g., non-inter-
ference and observational determinism [CFK+14]. For example, the formula

8⇡8⇡
0(G (i⇡ $ i⇡0)) ! (G (o⇡ $ o⇡0))

expresses that the system is input-deterministic, i.e., for all traces ⇡ and ⇡
0, if

they coincide on their truth values of the input bit i, then they also have to
coincide on their output bit o.

It is known that HyperLTL model-checking is decidable [CFK+14, FRS15]
while HyperLTL satisfiability is undecidable, even for a single quantifier alterna-
tion [FH16]. However, the foundations of HyperLTL had been unexplored: We
proved that HyperLTL differs significantly from LTL, where every satisfiable for-
mula has a model that is an ultimately periodic trace. In contrast, HyperLTL for-
mulas have in general only infinite models, have in general no !-regular models
(not even !-contextfree ones), and one can express in HyperLTL that every trace
in a model is aperiodic. In a second part of this work, we presented a first-order
logic for hyperproperties that is expressively equivalent to LTL, thereby lifting
the seminal Theorem of Kamp [GPSS80, Kam68] to HyperLTL.

4.1.2 Request-response Conditions

In collaboration with Florian Horn, Wolfgang Thomas, and Nico Wallmeier [6],
I investigated request-response games as introduced earlier. These games are
very versatile, as conjunctions of request-response conditions cover conjunc-
tions of safety conditions and Büchi conditions. One way to turn the qualitative
request-response condition into a quantitative one is to require every request
to be answered within an arbitrary, but fixed number of steps, as it is done
for Prompt-LTL. In this work, however, we considered a more sophisticated ap-
proach by measuring the quality of a play by the limit superior of the mean ac-
cumulated waiting times between requests and their responses, i.e., the penalty
grows quadratically.

By a reduction to mean-payoff games we proved that if Player 0 has a win-
ning strategy for a request-response game, then she also has an optimal winning
strategy, which can be determined in doubly-exponential time and implemented
with doubly-exponential memory. Whether these bounds are tight is an open
problem.

4.1.3 Average-energy Conditions

Furthermore, with multiple co-authors I studied another quantitative winning
condition for infinite games, the average-energy condition. Here, the edges of
the arena are labeled by integers that model the discharge or recharge of a re-
source, e.g., a battery. While the energy condition requires the energy level to be
always between a given lower and/or a given upper bound, the average-energy
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condition requires the average energy level to be below a given threshold. This
winning condition was first rigorously studied by Bouyer, Markey, Randour,
Larsen, and Laursen [BMR+15]. One problem left open by them was the de-
cidability of the average-energy condition in conjunction with a non-negativity
constraint on the energy level, i.e., there is a lower bound on the energy level,
but no upper bound. In collaboration with the authors of the original work on
average-energy games, I was able to solve this open problem.

First, with Kim G. Larsen and Simon Laursen [LLZ16], I considered the vari-
ation where the bound on the average energy level is not part of the input, but
existentially quantified. For applications this means that one does not check
whether a given battery size suffices to satisfy the specification, but whether
there is a battery size that allows to satisfy it. We proved this problem to be
decidable by showing it to be equivalent to asking for the existence of an upper
bound on the energy level. However, these reductions only proved the existence
of some bound, but they were not sharp enough the solve the original problem
with a given fixed bound on the average-energy.

Then, together with Patricia Bouyer, Piotr Hofman, Nicolas Markey, and
Mickael Randour [7], I was able to show decidability of the original problem by
proving a sufficient upper bound on the energy level, which yielded a reduction
to the known case of average-energy games with both a given lower and up-
per bound on the energy level. The resulting algorithm has doubly-exponential
running time and doubly-exponential memory is sufficient. Furthermore, we
improved the lower bound on the complexity of the problem from EXPTIME-
hardness to EXPSPACE-hardness.

4.2 Size vs. Quality

My results on playing games with quantitative winning conditions optimally
mentioned above often show that the best (known) algorithms for the opti-
mization variant are exponentially worse than those for the boundedness vari-
ant, e.g., for request-response games and for games with winning conditions in
parameterized temporal logics. The same is true in these cases for the memory
requirements. This naturally raised the second question motivating my work:
Does playing a quantitative game optimally come at a price?

There are some examples of such tradeoffs, e.g., for the resource reach-
ability problem in pushdown graphs [Lan14], where adding memory allows
to keep counters smaller than the bounds that are obtainable with positional
strategies. In contrast, there are also examples where such tradeoffs do not ex-
ist, e.g., a certain tradeoff between size and quality of strategies in boundedness
games [FHKS15] has been ruled out, which refuted a conjecture with important
implications for automata theory and logics.

For several other types of winning conditions, I was able to show that there
is indeed a tradeoff:

Computing optimal strategies can be harder than computing ar-
bitrary winning strategies and playing optimally may require
more memory than just winning.

These results have profound implications for the quest turning synthesis into an
optimization problem. Computing the optimal strategy may be infeasible while
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computing an arbitrary, i.e., non-optimal, strategy might still be feasible. This
motivates the study of approximation algorithms for quantitative games and the
study of tradeoff-aware algorithms.

4.2.1 Winning Conditions with Costs

This line of work is about tradeoffs in finitary parity and Streett games as in-
troduced above and in parity and Streett games with costs, an extension of the
finitary variants introduced by Nathanaël Fijalkow and me [8]. Recall that the
finitary parity condition requires a bound on the number of steps between a re-
quest and its response. The conditions with costs are evaluated in a setting with
edge-costs and require a bound on the cost between a request and its response.
Solving these games is at least as hard as solving parity games, as they are sub-
sumed as the special case of cost zero on every edge. Similarly, finitary parity
games are obtained as the special case of cost one on every edge. We showed
that parity games with costs are also not harder than they have to be, i.e., as
hard as parity games, and that Player 0 always has positional winning strategies
for the boundedness variant.

Then, with Alexander Weinert [9], I considered the optimization variant of
parity games with costs: determining the optimal bound is PSPACE-complete
and an optimal strategy might need exponential memory to implement. Both
lower bounds already hold for finitary parity games. Thus, unless P = PSPACE,
playing them optimally is harder than winning them. On the other hand, the
upper bounds even hold for games whose costs are encoded in binary. In un-
published work, we showed the situation to be different for Streett conditions:
determining the optimal bound is still EXPTIME-complete and exponential mem-
ory is necessary and sufficient [WZ17]. Both results already hold for the bound-
edness variant. Thus, playing Streett games with costs optimally is not harder
than just winning them.

4.2.2 Prompt-LTL

Together with Leander Tentrup and Alexander Weinert [10], I was also able to
exhibit tradeoffs between size and quality of winning strategies for Prompt-LTL
games. Here, playing optimally may increase the memory requirements expo-
nentially. However, the exact complexity of the optimization problem remains
open.

Nevertheless, we took a step towards closing the gap by presenting an ap-
proximation algorithm with doubly-exponential running time that computes a
strategy with respect to the bound 2kopt, where kopt is the optimal bound.
Thus, the algorithm matches the 2EXPTIME lower bound inherited from solv-
ing LTL games. Furthermore, being based on the principle of bounded syn-
thesis [FS13b], the algorithm allows to specify upper bounds on the size of
a strategy and on the quality of the strategy and then check whether there is
a winning strategy with these characteristics, i.e., one can precisely prioritize
size over quality and vice versa. Finally, we empirically evaluated a prototype
implementation which was able to solve small examples.
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4.3 Lookahead vs. Complexity

I initiated the first in-depth study of delay games, both with quantitative win-
ning conditions (!-regular and !-contextfree ones), as well as with quantitative
ones. With my collaborators, I resolved the problems left open by Holtmann,
Kaiser, and Thomas, and we

determined the exact price of adding lookahead

for a wide range of winning conditions by developing a very general proof tech-
nique that is applicable to all these conditions.

4.3.1 Delay Games with Qualitative Winning Conditions

My work on delay games started shortly after Holtmann, Kaiser, and Thomas
revisited the problem and proved decidability of !-regular delay games with re-
spect to arbitrary delay functions and that doubly-exponential constant looka-
head is sufficient to win such games [HKT12]. A natural question back then was
the extension of these results to !-contextfree winning conditions, as delay-free
games with such winning conditions remain decidable [Wal01].

Together with Wladimir Fridman and Christoph Löding [11], I proved that
delay games with !-contextfree winning conditions behave quite differently:
determining the winner with respect to arbitrary delay functions or with respect
to bounded delay functions is undecidable. Furthermore, unbounded lookahead
might be necessary to win. Finally, even the growth rate of the necessary looka-
head might be non-elementary. All our results hold for very small subclasses
of !-pushdown automata, which completed the quest to extend the positive re-
sults for !-regular winning conditions to (subclasses of) !-contextfree winning
conditions.

Instead, I turned my attention back to the !-regular case whose exact com-
plexity had been left open by Holtmann, Kaiser, and Thomas. Together with
Felix Klein [12]3, I was able to prove the problem to be EXPTIME-complete by
presenting a faster algorithm and by proving the first lower bound on the prob-
lem, which already holds for very weak fragments. Furthermore, we were able
to settle the necessary lookahead to win !-regular games, again by improving
the upper bound and by exhibiting the first non-trivial lower bound. All these
results assume the winning condition to be given by a deterministic parity au-
tomaton while both lower bounds already hold for very weak subclasses.

Furthermore, these results also yielded trivial upper bounds for non-deter-
ministic, universal, and alternating automata via determinization, which in-
volves an exponential respectively doubly-exponential blowup, both in com-
plexity and necessary lookahead. In later work, we showed these bounds to be
tight.

Finally, together with Felix Klein [13] I studied the determinacy problem for
delay games. A game is determined if it has a winner. This foundational prop-
erty allows to infer the existence of a winning strategy for Player 1 � i from
the non-existence of a winning strategy for Player i. This quantifier change

3Note that there is a bug in the proof of Theorem 4.8 of that paper. A corrected version is
currently under review at LMCS. This thesis contains the paper as it is published right now, i.e., with
the bug. The revised proof technique is also used to prove Theorem 1 in [16], which generalizes
Theorem 4.8 of [12].
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lies at the heart of Rabin’s theorem. While the games one typically encoun-
ters, in particular those in this thesis, are determined, there are also undeter-
mined games [GS53]. Martin’s determinacy theorem [Mar75] posits that a wide
class of winning conditions, those in the Borel hierarchy, all induce determined
games. We lifted this far-reaching result to games with lookahead: delay games
with Borel winning conditions are determined.

4.3.2 Delay Games with Quantitative Winning Conditions

In later work, I showed that the techniques developed for settling the qualitative
!-regular case are applicable to quantitative winning conditions as well.

For example, weak monadic second-order with the unbounding quantifier
(WMSO+U) is a quantitative extension of monadic second-order logic (which
captures the !-regular languages) able to express (un)boundedness proper-
ties. Extending the approach to solving !-regular delay games in this direc-
tion instead of !-contextfree winning conditions turned out to be more promis-
ing [14]: delay games with WMSO+U winning conditions restricted to bounded
delay functions are decidable and doubly-exponential lookahead is always suf-
ficient in that case. However, I also found a WMSO+U winning condition that
requires unbounded lookahead. Nevertheless, I also proved that WMSO+U can-
not enforce a minimal growth rate of the lookahead, i.e., any unbounded delay
function is sufficient. The problem of deciding delay games with WMSO+U win-
ning conditions with respect to arbitrary delay functions remains open. Also,
the need for unbounded lookahead makes these games undesirable: WMSO+U
is just too expressive. Hence, in subsequent work I investigated fragments of
WMSO+U for which bounded lookahead suffices.

With Felix Klein [15], I showed that the most natural candidate, Prompt-LTL,
is much better behaved: again by generalizing the techniques developed for the
!-regular case and by combining it with the alternating-color technique, we
proved solving Prompt-LTL delay games to be 3EXPTIME-complete and triply-
exponential lookahead to be sufficient and in general necessary to win. On the
one hand, all lower bounds already hold for LTL; on the other hand, the upper
bounds also hold for the stronger parameterized logics discussed earlier. Finally,
the techniques developed in this work also yielded the matching lower bounds
on solution complexity and necessary lookahead for delay games with winning
conditions given by non-deterministic, universal, and alternating automata.

Throughout my work on delay games, a pattern became apparent: adding
delay causes an exponential increase in the complexity, e.g., from P-complete-
ness to EXPTIME-completeness for safety conditions and from 2EXPTIME-com-
pleteness to 3EXPTIME-completeness for LTL and Prompt-LTL. Also, the neces-
sary lookahead is of the same order of magnitude, i.e., exponential, respectively
triply-exponential.

4.4 Lookahead vs. Quality

Finally, I studied the tradeoff between the necessary lookahead and the quality
of strategies in delay games with finitary parity conditions and parity conditions
with costs [16]. First of all, these games are still only EXPTIME-complete and
therefore not harder than delay games with parity conditions. Furthermore,
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exponential lookahead is again always sufficient. In that respect, delay games
behave similarly to delay-free games: adding costs comes for free.

Then, I constructed examples where one can improve the quality of a win-
ning strategy by employing more lookahead and vice versa. Thus, there is a
tradeoff:

Lookahead can indeed be traded for quality of strategies.

This result demonstrates the usefulness of adding delay to infinite games with
quantitative winning conditions.

5 A Note on Notation

Several publications constituting this thesis share the same notation.
The publications [6, 8, 9] are all concerned with graph-based games and

share most basic definitions, e.g., the ones of arenas, games, strategies, memory
structures, and reductions. The introductory part of Section 2 in [8] contains
all necessary notation and definitions. However, the paper on average-energy
games [7] uses different notation and slightly different definitions due to tech-
nical necessities.

Similarly, the publications [11, 12, 13, 14, 15, 16] are all concerned with
delay games and also share their basic definitions, which can be found, for
example, in Section 2.2 of [12]. This section also contains some introductory
examples of delay games.

Finally, the logics Prompt-LTL, PLTL, and PLDL appear in the publications [4,
10, 15], sometimes without giving the full syntax and semantics. Prompt-LTL
is introduced in, for example, [4], we use the definition of PLTL as in [Zim13],
and PLDL is introduced in [1].

6 Conclusion and Outlook

With the work presented in this thesis, my co-authors and I have advanced the
state of the art in infinite games on multiple fronts, e.g., we laid the foundations
for employing much stronger specification languages, exhibited the need for
tradeoff-aware algorithms for quantitative winning conditions, presented the
first in-depth study of delay games, and illustrated the benefits of lookahead in
infinite games. In future work, I plan to continue our study of all these tradeoffs.

Of particular theoretical and practical interest is the Prompt-LTL optimiza-
tion problem, whose exact complexity is still open. Also, we plan to revisit
the prototype implementation of our tradeoff-aware algorithm for Prompt-LTL
games in order to make it competitive with current algorithms solving LTL
games.

Furthermore, we continue our investigation of tradeoffs in delay games. We
have already proved that lookahead can be traded for quality and vice versa.
The natural dimension to study next are the memory requirements of winning
strategies. However, it is surprisingly non-trivial to come up with the “right”
notion of finite-state strategy in such games. Based on a proposal put forth by
Salzmann [Sal15] we study whether lookahead can be traded for memory and
vice versa. Note that in this setting, it is not even clear that adding lookahead
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decreases the memory requirements in comparison to the delay-free game with
the same winning condition.

Also, we are currently developing a very general framework for studying de-
lay games, which would explain the similarities between all our results: adding
delay incurs an exponential blowup in the solution complexity. Also, it will
allow to obtain upper bounds on the necessary lookahead.

Finally, we plan to intensify our work on logics for hyperproperties: the
discovery of a first-order logic that is equivalent to HyperLTL raised multiple
questions, e.g., about similar results for extensions with knowledge operators,
quantification of atomic propositions, etc.

For more avenues for further research, we refer to the respective sections of
the papers constituting this thesis.
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Also, I am thankful to Mikołaj Bojańczyk, Patricia Bouyer, Kim G. Larsen,
and Nicolas Markey for hosting me during research visits in Warsaw, Paris, and
Aalborg, which all left their mark on this work.

Most of the research presented in this thesis was financially supported by the
German Research Foundation, first via the Transregional Collaborative Research
Center “AVACS” and then by the project “TriCS”. Earlier research was supported
by the ESF project “Gasics” and the ERC Starting Grant “SOSNA”. In particular,
several of the results presented here were obtained in collaboration with other
members of Gasics. I am very grateful for the opportunities that arose (and still
arise) from being a member of this project.

Also, let me thank all the members of the habilitation committee, in particu-
lar Bernd Finkbeiner (mentor and reviewer), Christoph Weidenbach (scientific
tutor), and Holger Herrmanns (committee chair).

Also, I am thankful to Swen Jacobs and Alexander Weinert for proof-reading
the introductory part of this thesis and to Christa Schäfer for the administrative
support, which allowed me to focus on my research.

Finally, I am most grateful for my family, who took this journey with me. To
my parents, who supported me during my diploma studies, which started this
journey. And to Nadine and Paulina, who joined later and ever since gave me
the reason to continue it, but also, very crucially, provided the necessary relief.

Pau, this one is dedicated to you. I am excited to find out where your journey
will take you.

20



List of Publications Constituting this Thesis

[1] Peter Faymonville and Martin Zimmermann. Parametric linear dynamic
logic. Information and Computation, 253(2):237–256, 2017. Journal ver-
sion of [FZ14].

[2] Martin Zimmermann. Parameterized linear temporal logics meet costs:
Still not costlier than LTL. Acta Informatica, 2017. Article in Press. Journal
version of [Zim15b].

[3] Alexander Weinert and Martin Zimmermann. Visibly linear dynamic logic.
In Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen, editors, FSTTCS
2016, volume 65 of LIPIcs, pages 28:1–28:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016.

[4] Swen Jacobs, Leander Tentrup, and Martin Zimmermann. Distributed
Prompt-LTL synthesis. In Domenico Cantone and Giorgio Delzanno, edi-
tors, GandALF 2016, volume 226 of EPTCS, pages 228–241, 2016.

[5] Bernd Finkbeiner and Martin Zimmermann. The First-Order Logic of Hy-
perproperties. In Heribert Vollmer and Brigitte Vallée, editors, STACS
2017, volume 66 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[6] Florian Horn, Wolfgang Thomas, Nico Wallmeier, and Martin Zimmer-
mann. Optimal strategy synthesis for request-response games. RAIRO -
Theor. Inf. and Applic., 49(3):179–203, 2015.

[7] Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, and Mar-
tin Zimmermann. Bounding average-energy games. In Javier Esparza and
Andrzej S. Murawski, editors, FOSSACS 2017, volume 10203 of LNCS,
pages 179–195. Springer, 2017.

[8] Nathanaël Fijalkow and Martin Zimmermann. Parity and Streett games
with costs. LMCS, 10(2), 2014. Journal version of [FZ12].

[9] Alexander Weinert and Martin Zimmermann. Easy to win, hard to mas-
ter: Optimal strategies in parity games with costs. In Jean-Marc Talbot
and Laurent Regnier, editors, CSL 2016, volume 62 of LIPIcs, pages 31:1–
31:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[10] Leander Tentrup, Alexander Weinert, and Martin Zimmermann. Approxi-
mating optimal bounds in Prompt-LTL realizability in doubly-exponential
time. In Domenico Cantone and Giorgio Delzanno, editors, GandALF 2016,
volume 226 of EPTCS, pages 302–315, 2016.

[11] Wladimir Fridman, Christof Löding, and Martin Zimmermann. Degrees
of lookahead in context-free infinite games. In Marc Bezem, editor, CSL
2011, volume 12 of LIPIcs, pages 264–276. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2011.

[12] Felix Klein and Martin Zimmermann. How much lookahead is needed to
win infinite games? LMCS, 12(3), 2016. Journal version of [KZ15].

21



[13] Felix Klein and Martin Zimmermann. What are strategies in delay games?
Borel determinacy for games with lookahead. In Stephan Kreutzer, editor,
CSL 2015, volume 41 of LIPIcs, pages 519–533. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015.

[14] Martin Zimmermann. Delay games with WMSO+U winning conditions.
RAIRO - Theor. Inf. and Applic., 50(2):145–165, 2016. Journal version of
[Zim15a].

[15] Felix Klein and Martin Zimmermann. Prompt delay. In Akash Lal, S. Ak-
shay, Saket Saurabh, and Sandeep Sen, editors, FSTTCS 2016, volume 65
of LIPIcs, pages 43:1–43:14. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2016.

[16] Martin Zimmermann. Games with costs and delays. arXiv, 1701.02168,
2017. Accepted for publication at LICS 2017.

22



References

[AELP01] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled.
Parametric temporal logic for "model measuring". ACM Trans. Com-
put. Log., 2(3):388–407, 2001.

[AEM04] Rajeev Alur, Kousha Ettesami, and Parthasarathy Madhusudan. A
temporal logic of nested calls and returns. In TACAS 2004, volume
2988 of LNCS, pages 467–481. Springer, 2004.

[AFF+02] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg,
Tomer Kanza, Avner Landver, Sela Mador-Haim, Eli Singerman, An-
dreas Tiemeyer, Moshe Y. Vardi, and Yael Zbar. The ForSpec tem-
poral logic: A new temporal property-specification language. In
Joost-Pieter Katoen and Perdita Stevens, editors, TACAS 2002, vol-
ume 2280 of LNCS, pages 296–311. Springer, 2002.

[AM04] Rajeev Alur and Parthasarathy Madhusudan. Visibly Pushdown Lan-
guages. In STOC 2004, pages 202–211. ACM, 2004.
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Proposals for Scientific Talks According to § 11

Tradeoffs in Infinite Games

Games of infinite duration, infinite games for short, constitute one of the pillars
of theoretical computer science with a wide range of applications in logics, au-
tomata theory, descriptive set theory, and synthesis. Recently, a lot of effort has
been invested in turning the synthesis problem for reactive systems, which can
be formulated as a game, into an optimization problem. As a simple example
consider a request-response condition: the qualitative variant asks every request
to be answered, the boundedness variant asks for some bound on the response
time between request and responses, and the optimization variant asks for the
minimal such bound.

Throughout this work a pattern became apparent: the best algorithms solv-
ing the optimization problem have worse running times than those solving the
qualitative and the boundedness variant. Also, the optimal strategies computed
by these algorithms are larger than those for the qualitative and the bounded-
ness variant. However, there were no lower bounds, i.e., it was open whether
playing optimally is indeed harder than just winning.

We answer this question affirmatively for several winning conditions: com-
puting an optimal strategy can be harder than computing an arbitrary strategy
and optimal strategies are necessarily larger than arbitrary ones. These results
have profound consequences for the quest of turning reactive synthesis into an
optimization problem. To overcome this, we report on a prototypical implemen-
tation of a tradeoff-aware synthesis algorithm.

Based on joint work with Nathanaël Fijalkow, Leander Tentrup, and Alexan-
der Weinert presented in the habilitation thesis.

The complexity of Counting Models of Linear Temporal Logic

We determine the complexity of counting models of bounded size of specifica-
tions expressed in linear-time temporal logic.

Counting word-models is #P-complete, if the bound is given in unary, and
as hard as counting accepting runs of nondeterministic polynomial space Turing
machines, if the bound is given in binary.

Counting tree-models is as hard as counting accepting runs of nondetermin-
istic exponential time Turing machines, if the bound is given in unary. For a
binary encoding of the bound, the problem is at least as hard as counting ac-
cepting runs of nondeterministic exponential space Turing machines, and not
harder than counting accepting runs of nondeterministic doubly-exponential
time Turing machines.

Finally, counting arbitrary transition systems satisfying a formula is #P-hard
and not harder than counting accepting runs of nondeterministic polynomial
time Turing machines with a PSPACE oracle, if the bound is given in unary.
If the bound is given in binary, then counting arbitrary models is as hard as
counting accepting runs of nondeterministic exponential time Turing machines.



Based on joint work with Hazem Torfah not presented in the habilitation
thesis.

Some Recent Results on Pattern Matching

Every sufficiently long word over an arbitrary finite alphabet contains a pattern
of the form xyx, i.e., as soon as a letter has two non-adjacent occurrences.
Similarly, every sufficiently long word over a binary alphabet contains a square,
an infix of the form xx for some non-empty x. In fact, every word of length
four has such a pattern. On the other hand, there is an infinitely long square-
free word over a ternary alphabet and an infinitely long cube-free word over a
binary alphabet.

Thus, the pattern xyx is unavoidable while squares and cubes are avoidable,
as there are alphabets for which they are avoidable.

There is a beautiful characterization of the unavoidable and avoidable pat-
terns via so-called Zimin patterns Zn. These patterns are defined inductively
over variables xj as Z1 = x1 and Zn = Zn�1xnZn�1 for n greater than 1. Now,
Zimin and independently Bean, Ehrenfeucht and McNulty proved that a pattern
over n variables is unavoidable if, and only if, it appears in the Zimin pattern Zn.
For example, xyx appears in the pattern Z2.

A natural question concerns bounds on the maximal length f(n, k) of words
over an alphabet of size k that avoid the pattern Zn. Also, this question has
important connections to the equivalence problem of deterministic pushdown
automata, which was famously solved by Sénizergues.

Cooper and Rorabaugh proved that f(n, k) is upper-bounded by a tower
of exponentials and Carayol and Göller gave a matching lower bound using
Stockmeyer’s yardstick construction.

We give an overview of these results, focussing on the recently presented
lower bound.


