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Abstract
We investigate the logical foundations of hyperproperties. Hyperproperties generalize trace prop-
erties, which are sets of traces, to sets of sets of traces. The most prominent application of
hyperproperties is information flow security: information flow policies characterize the secrecy
and integrity of a system by comparing two or more execution traces, for example by comparing
the observations made by an external observer on execution traces that result from different
values of a secret variable.

In this paper, we establish the first connection between temporal logics for hyperproperties
and first-order logic. Kamp’s seminal theorem (in the formulation due to Gabbay et al.) states
that linear-time temporal logic (LTL) is expressively equivalent to first-order logic over the natural
numbers with order. We introduce first-order logic over sets of traces and prove that HyperLTL,
the extension of LTL to hyperproperties, is strictly subsumed by this logic. We furthermore
exhibit a fragment that is expressively equivalent to HyperLTL, thereby establishing Kamp’s
theorem for hyperproperties.
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1 Introduction

Linear-time temporal logic (LTL) [19] is one of the most commonly used logics in model
checking [2], monitoring [17], and reactive synthesis [10], and a prime example for the “unusal
effectiveness of logic in computer science” [16]. LTL pioneered the idea that the correctness
of computer programs should not just be specified in terms of a relation between one-time
inputs and outputs, but in terms of the infinite sequences of such interactions captured by
the execution traces of the program. The fundamental properties of the logic, in particular its
ultimately periodic model property [21], and the connection to first-order logic via Kamp’s
theorem [18], have been studied extensively and are covered in various handbook articles
and textbooks (cf. [7, 22]).

In this paper, we revisit these foundations in light of the recent trend to consider not
only the individual traces of a computer program, but properties of sets of traces, so-called
hyperproperties [5]. The motivation for the study of hyperproperties comes from information
flow security. Information flow policies characterize the secrecy and integrity of a system by
relating two or more execution traces, for example by comparing the observations made by
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30:2 The First-Order Logic of Hyperproperties

an external observer on traces that result from different values of a secret variable. Such a
comparison can obviously not be expressed as a property of individual traces, but it can be
expressed as a property of the full set of system traces. Beyond security, hyperproperties also
occur naturally in many other settings, such as the symmetric access to critical resources in
distributed protocols, and Hamming distances between code words in coding theory [12].

HyperLTL [4], the extension of LTL to hyperproperties, uses trace quantifiers and trace
variables to refer to multiple traces at the same time. For example, the formula

∀π. ∀π′. G (aπ ↔ aπ′) (1)

expresses that all computation traces must agree on the value of the atomic proposition a
at all times. The extension is useful: it has been shown that most hyperproperties studied
in the literature can be expressed in HyperLTL [20]. There has also been some success in
extending algorithms for model checking [12], monitoring [1], and satisfiability [11] from LTL
to HyperLTL. So far, however, we lack a clear understanding of how deeply the foundations
of LTL are affected by the extension. Of particular interest would be a characterization of
the models of the logic. Are the models of a satisfiable HyperLTL formula still “simple” in
the sense of the ultimately periodic model theorem of LTL?

It turns out that the differences between LTL and HyperLTL are surprisingly profound.
Every satisfiable LTL formula has a model that is a (single) ultimately periodic trace. Such
models are in particular finite and finitely representable. One might thus conjecture that
a satisfiable HyperLTL formula has a model that consists of a finite set of traces, or an
ω-regular set of traces, or at least some set of ultimately periodic traces. In Section 3, we
refute all these conjectures. Some HyperLTL formulas have only infinite models, some have
only non-regular models, and some have only aperiodic models. We can even encode the
prime numbers in HyperLTL!

Is there some way, then, to characterize the expressive power of HyperLTL? For LTL,
Kamp’s seminal theorem [18] (in the formulation due to Gabbay et al. [14]) states that LTL
is expressively equivalent to first-order logic FO[<] over the natural numbers with order.
In order to formulate a corresponding “Kamp’s theorem for HyperLTL,” we have to decide
how to encode sets of traces as relational structures, which also induces the signature of the
first-order logic we consider. We chose to use relational structures that consist of disjoint
copies of the natural numbers with order, one for each trace. To be able to compare positions
on different traces, we add the equal-level predicate E (cf. [23]), which relates the same time
points on different traces. The HyperLTL formula (1), for example, is equivalent to the
FO[<, E] formula

∀x. ∀y. E(x, y)→ (Pa(x)↔ Pa(y)).

In Section 4, we show that FO[<, E] is strictly more expressive than HyperLTL, i.e.,
every HyperLTL formula can be translated into an equivalent FO[<, E] formula, but there
exist FO[<, E] formulas that cannot be translated to HyperLTL. Intuitively, FO[<, E] can
express requirements which relate at some point in time an unbounded number of traces,
which is not possible in HyperLTL. To obtain a fragment of FO[<, E] that is expressively
equivalent to HyperLTL, we must rule out such properties. We consider the fragment where
the quantifiers either refer to initial positions or are guarded by a constraint that ensures
that the new position is on a trace identified by an initial position chosen earlier. In this
way, a formula can only express properties of the bounded number of traces selected by the
quantification of initial positions. We call this fragment HyperFO, the first-order logic of
hyperproperties. Theorem 9, the main result of the paper, then shows that HyperLTL and
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HyperFO are indeed expressively equivalent, and thus proves that Kamp’s correspondence
between temporal logic and first-order logic also holds for hyperproperties.

All proofs omitted due to space restrictions can be found in the full version [13].

2 HyperLTL

Fix a finite set AP of atomic propositions. A trace over AP is a map t : N→ 2AP, denoted
by t(0)t(1)t(2) · · · . The set of all traces over AP is denoted by (2AP)ω. The projection of t
to AP′ is the trace (t(0) ∩AP′)(t(1) ∩AP′)(t(2) ∩AP′) · · · over AP′. A trace t is ultimately
periodic, if t = t0 · tω1 for some t0, t1 ∈ (2AP)+, i.e., there are s, p > 0 with t(n) = t(n+ p) for
all n ≥ s. A set T of traces is ultimately periodic, if every trace in T is ultimately periodic.

The formulas of HyperLTL are given by the grammar

ϕ ::=∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ranges over atomic propositions in AP and where π ranges over a given countable
set V of trace variables. Conjunction, implication, equivalence, and exclusive disjunction ⊕ as
well as the temporal operators eventually F and always G are derived as usual. A sentence
is a closed formula, i.e., the formula has no free trace variables.

The semantics of HyperLTL is defined with respect to a trace assignment, a partial
mapping Π: V → (2AP)ω. The assignment with empty domain is denoted by Π∅. Given a
trace assignment Π, a trace variable π, and a trace t we denote by Π[π → t] the assignment
that coincides with Π everywhere but at π, which is mapped to t. Furthermore, Π[j,∞]
denotes the assignment mapping every π in Π’s domain to Π(π)(j)Π(π)(j+ 1)Π(π)(j+ 2) · · · .

For sets T of traces and trace-assignments Π we define
(T,Π) |= aπ, if a ∈ Π(π)(0),
(T,Π) |= ¬ψ, if (T,Π) 6|= ψ,
(T,Π) |= ψ1 ∨ ψ2, if (T,Π) |= ψ1 or (T,Π) |= ψ2,
(T,Π) |= Xψ, if (T,Π[1,∞]) |= ψ,
(T,Π) |= ψ1 Uψ2, if there is a j ≥ 0 such that (T,Π[j,∞]) |= ψ2 and for all 0 ≤ j′ < j:
(T,Π[j′,∞]) |= ψ1,
(T,Π) |= ∃π. ϕ, if there is a trace t ∈ T such that (T,Π[π → t]) |= ψ, and
(T,Π) |= ∀π. ϕ, if for all traces t ∈ T : (T,Π[π → t]) |= ψ.

We say that T satisfies a sentence ϕ, if (T,Π∅) |= ϕ. In this case, we write T |= ϕ and say
that T is a model of ϕ. Although HyperLTL sentences are required to be in prenex normal
form, they are closed under boolean combinations, which can easily be seen by transforming
such formulas into prenex normal form.

3 The Models of HyperLTL

Every satisfiable LTL formula has an ultimately periodic model, i.e., a particularly simple
model: It is trivially finite (and finitely represented) and forms an ω-regular language. An
obvious question is whether every satisfiable HyperLTL sentence has a simple model, too.
Various notions of simplicity could be considered here, e.g., cardinality based ones, being
ω-regular, or being ultimately periodic, which all extend the notion of simplicity for the LTL
case. In this section, we refute all these possibilities: We show that HyperLTL models have
to be in general infinite, might necessarily be non-regular, and may necessarily be aperiodic.
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30:4 The First-Order Logic of Hyperproperties

3.1 No Finite Models
Our first result shows that HyperLTL does not have the finite model property (in the
sense that every satisfiable sentence is satisfied by a finite set of traces). The proof is a
straightforward encoding of an infinite set of traces that appears again in the following proofs.

I Theorem 1. There is a satisfiable HyperLTL sentence that is not satisfied by any finite
set of traces.

Proof. Consider the conjunction ϕ of the following formulas over AP = {a}:
∀π. (¬aπ) U (aπ ∧X G¬aπ): on every trace there is exactly one occurrence of a.
∃π. aπ: there is a trace where a holds true in the first position.
∀π. ∃π′. F (aπ ∧X aπ′): for every trace, say where a holds at position n (assuming the
first conjunct is satisfied), there is another trace where a holds at position n+ 1.

It is straightforward to verify that ϕ is satisfied by the infinite set T = {∅n · {a} · ∅ω | n ≥ 0}
and an induction over n shows that every model has to contain T . Here, one uses the first
and second conjunct in the induction start and the first and third conjunct in the induction
step. Actually, the first conjunct then implies that T is the only model of ϕ. J

Next, we complement the lower bound with a matching upper bound.

I Theorem 2. Every satisfiable HyperLTL sentence has a countable model.

Proof. Let ϕ be a satisfiable HyperLTL sentence and let T be a model. If T is countable, then
we are done. Thus, assume T is uncountable and thus in particular non-empty. Furthermore,
we assume w.l.o.g. ϕ = ∀π0. ∃π′0. · · · ∀πk. ∃π′k. ψ with quantifier-free ψ.

As T is a model of ϕ, there is a Skolem function fi : T i → T for every i ≤ k satisfying
the following property: (T,Π) |= ψ for every trace assignment Π that maps each πi to some
arbitrary ti ∈ T and every π′i to fi(t0, . . . , ti). Note that the relation (T,Π) |= ψ does only
depend on Π and ψ, but not on T , as ψ is quantifier-free.

Given a subset S ⊆ T and a Skolem function fi we define

fi(S) = {fi(t0, . . . , ti) | t0, . . . , ti ∈ S}.

Now, fix some t ∈ T . Define S0 = {t} and Sn+1 = Sn ∪
⋃k
i=0 fi(Sn) for every n, and

S =
⋃
n≥0 Sn. The limit stage S is closed under applying the Skolem functions, i.e., if

t0, . . . , ti ∈ S, then fi(t0, . . . , ti) ∈ S. Also, every stage Sn is finite by a straightforward
induction, hence S is countable. We conclude the proof by showing that S is a model of ϕ.

Every trace assignment Π mapping πi to some ti ∈ S and every π′i to fi(t0, . . . , ti) ∈ S
satisfies (T,Π) |= ψ, as argued above. Also, as argued above, this is independent of T due to
ψ being quantifier-free. Hence, we obtain (S,Π) |= ψ. Finally, a simple induction over the
quantifier prefix shows (S,Π∅) |= ϕ, i.e., S is indeed a model of ϕ. J

3.2 No Regular Models
The construction presented in the proof of Theorem 1, which pushes a single occurrence of
the proposition a through the traces to enforce the set {∅n · {a} · ∅ω | n ≥ 0} is reused to
prove the main result of this subsection. We combine this construction with an inductive
swapping construction to show that HyperLTL sentences do not necessarily have ω-regular
models. To illustrate the swapping, consider the following finite traces:

t0 = {a} · ∅ · {a} · ∅ · {a} · ∅ t2 = {a} · {a} · ∅ · {a} · ∅ · ∅
t1 = {a} · {a} · ∅ · ∅ · {a} · ∅ t3 = {a} · {a} · {a} · ∅ · ∅ · ∅
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The trace t1 is obtained from t0 by swapping the first occurrence of ∅ one position to the
right (a swap may only occur between adjacent positions, one where a holds and one where
it does not). Furthermore, with two more swaps, one turns t1 into t2 and t2 into t3.

Our following proof is based on the following three observations: (1) In an alternating
sequence of even length such as t1, the number of positions where a holds and where a
does not hold is equal. Such a sequence is expressible in (Hyper)LTL. (2) A swap does not
change this equality and can be formalized in HyperLTL. (3) Thus, if all occurrences of {a}
are swapped to the beginning, then the trace has the form {a}n · ∅n for some n. Hence,
if we start with all alternating sequences as in t0, then we end up with the non-regular
language {{a}n · ∅n | n > 0}.

I Theorem 3. There is a satisfiable HyperLTL sentence that is not satisfied by any ω-regular
set of traces.

Proof. Consider the conjunction ϕ of the formulas ϕi, i ∈ {1, . . . , 8} over AP = {a, b, 1, 2, †}.
ϕ1 = ∀π. (1π ⊕ 2π) ∧ ¬ †π ∧¬ †π U G (†π ∧ ¬aπ).

Every trace from a set of traces satisfying ϕ1 either satisfies 1 or 2 at the first position.
Consequently, we speak of traces of type i for i ∈ {1, 2}. Also, on every such trace the truth
value of † changes exactly once, from false to true, after being false at least at the first
position. In the following, we are only interested in the unique maximal prefix of a trace
where † does not hold, which we call the window of the trace. Note that a may only hold in
the window of a trace. Considering windows essentially turns infinite traces into finite ones.

The balance bal(t) of a trace t is the absolute value of the difference between the number
of window positions where a holds and the number of those where a does not hold, i.e.,

bal(t) = | |{n | a ∈ t(n) and † /∈ t(n)}| − |{n | a /∈ t(n) and † /∈ t(n)}| |.

ϕ2 = ∀π. 1π → (aπ ∧G (aπ → X¬aπ ∧X¬ †π ∧X X (aπ ∨ †π)))
ϕ3 = ∃π. 1π ∧ aπ ∧X X †π
ϕ4 = ∀π. ∃π′. 1π → (1π′ ∧ F (¬ †π ∧X †π ∧X X¬ †π′ ∧X X X †π′))

If ϕ1 ∧ · · · ∧ ϕ4 is satisfied by a set of traces, then the projection to {a} of the window of
every type 1 trace has the form ({a} · ∅)n for some n > 0, due to ϕ2. In particular, every
type 1 trace has balance zero. Furthermore, due to ϕ3 and ϕ4, there is a trace with such a
window for every n > 0.

ϕ5 = ∀π. 2π → bπ ∧ bπ U G¬bπ
Finally, ϕ5 requires every type 2 trace to have a prefix where b holds true, after which it
never holds true again. The length of this prefix is the rank of the trace, which is finite.

The next formula implements the swapping process. Each swap has to decrease the rank
until a type 1 trace is reached. This rules out models satisfying the formulas by cyclic swaps.

ϕ6 = ∀π. ∃π′. 2π → (F (†π ∧ †π′ ∧X¬ †π ∧X¬†π′)) ∧ ϕswp(π, π′) ∧ [
(1π′ ∧ bπ ∧X¬bπ)∨
(2π′ ∧ F (bπ′ ∧X¬bπ′ ∧X bπ ∧X X¬bπ))]

where

ϕswp(π, π′) = (aπ ↔ aπ′) U ((aπ⊕X aπ)∧ (aπ′ ⊕X aπ′)∧ (aπ⊕aπ′)∧X X G (aπ ↔ aπ′)).

Intuitively, this formula requires for every trace t of type 2 the existence of a trace t′ of the
same window length and where the difference in the truth values of a in t and t′ is only a
single swap at adjacent positions (first line). Furthermore, if t has rank one, then t′ has to
be of type 1 (line two); otherwise, if t has rank r > 1, then t′ has to be of type 2 and has to
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30:6 The First-Order Logic of Hyperproperties

have rank r − 1 (line three). Thus, the rank is an upper bound on the number of swaps that
can be executed before a trace of type 1 is reached.

An induction over the rank of type 2 traces shows that every such trace has balance zero,
as a swap as formalized by ϕswp does not change the balance.

ϕ7 = ∃π. 2π ∧ aπ
ϕ8 = ∀π. ∃π′. 2π → (2π′ ∧ (aπ ∧ aπ′) U (G¬aπ ∧ aπ′ ∧X G¬aπ′))

The last two formulas imply for every n > 0 the existence of a trace of type 2 which has
a prefix where a holds true at exactly the first n positions, after which it never holds true
again. Due to the balance of type 2 traces being zero (assuming all previous formulas are
satisfied), the projection to {a} of the window of such a trace has the form {a}n · ∅n.

Now, towards a contradiction, assume that T |= ϕ for some ω-regular T . It follows from
the observations made above that projecting T to {a, †} and intersecting it with the ω-regular
language {a}∗ · ∅∗ · {†}ω results in the language {{a}n · ∅n · {†}ω | n > 0}, which is not
ω-regular. This yields the desired contradiction.

To conclude, it suffices to remark that ϕ is satisfied by taking the union of the set of all
required type 1 traces and of the set of all type 2 traces with finite window length, balance
zero, and with rank equal to the number of swaps necessary to reach a type 1 trace. J

Note that this result can be strengthened by starting with type 1 traces of the form
(∅ · {a} · {a′} · {a, a′})+{†}ω for some fresh proposition a′ and then modify the swap operation
to obtain sequences of the form ∅n · {a}n · {a′}n · {a, a′}n{†}ω. These form, when ranging
over all n, a non-ω-contextfree language (see [6] for a formal definition of these languages).
Thus, not every HyperLTL sentence has an ω-contextfree model.

I Theorem 4. There is a satisfiable HyperLTL sentence that is not satisfied by any ω-
contextfree set of traces.

It is an interesting question to find a non-trivial class of languages that is rich enough for
every satisfiable HyperLTL sentence to be satisfied by a model from this class.

3.3 No Periodic Models
Next, we extend the techniques developed in the previous two subsections to show our final
result on the complexity of HyperLTL models: although every LTL formula has an ultimately
periodic model, one can construct a HyperLTL sentence without ultimately periodic models.

I Theorem 5. There is a satisfiable HyperLTL sentence that is not satisfied by any set of
ultimately periodic traces.

Proof. A trace t is not ultimately periodic, if for every s, p > 0 there is an n ≥ s with
t(n) 6= t(n+ p). In the following, we construct auxiliary traces that allow us to express this
property in HyperLTL. The main difficulty is to construct traces of the form ({b}p · ∅p)ω for
every p, to implement the quantification of the period length p.

We construct a sentence ϕ over AP = {a, b, 1, 2, $} with the desired properties, which is a
conjunction of several subformulas. The first conjunct requires every trace in a model of ϕ
to have exactly one occurrence of the proposition a. If it holds at position n, then we refer
to n+ 1 as the characteristic of the trace (recall that a trace starts at position 0).

As in the proof of Theorem 3, we have two special types of traces in models of ϕ, which
are identified by either 1 or 2 holding true at the first position of every trace, but there might
be other traces as well. Type 1 traces are of the form ∅c · {a} · ∅ω for c ≥ 0. As in the proof
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of Theorem 1, one can construct a conjunct that requires the models of ϕ to contain a type 1
trace for every such c, but no other traces of type 1.

The projection to {b} of a trace t of type 2 is a suffix of ({b}c · ∅c)ω, where c is the
characteristic of t. We claim that one can construct a conjunct of ϕ that requires all models
of ϕ to contain all these type 2 traces, i.e., all possible suffixes for every c > 0. This is
achieved by formalizing the following properties in HyperLTL:
1. Every type 2 trace has infinitely many positions where b holds and infinitely many

positions where b does not hold. A block of such a trace is a maximal infix whose
positions coincide on their truth values of b, i.e., either b holds at every position of the
infix, but not at the last one before the infix (if it exists) and not at the first position
after the infix or b does not hold at every position of the infix, but at the last one before
it (if it exists) and at the first position after it.

2. For every type 1 trace there is at least one type 2 trace of the same characteristic.
3. The length of the first block of every type 2 trace is not larger than its characteristic.
4. If a block ends at the unique position of a type 2 trace where its a holds, then it has to

be the first block.
5. For every type 2 trace there is another one of the same characteristic that is obtained by

shifting the truth values of b one position to the left.

Assume a set T of traces satisfies all these properties and assume there is a type 2
trace t ∈ T whose projection to {b} is not a suffix of ({b}c · ∅c)ω, where c is the characteristic
of t. The length of its first block is bounded by c, due to the third property. Thus, there
has to be a non-first block whose length ` is not equal to c. If ` > c, we can use the fifth
property to shift this block to the left until we obtain a type 2 trace of characteristic c in T
whose first block has the same length `. This trace violates the third property. If ` < c, then
we can again shift this block to the left until we obtain a trace in T of characteristic c that
has a block of length ` that ends at the unique position where a holds. Due to ` < c, this
cannot be the first block, i.e., we have derived a contradiction to the fourth property.

On the other hand, for every c > 0, there is a some type 2 trace of characteristic c in T .
As shown above, its projection to {b} is a suffix of ({b}c · ∅c)ω. Thus, applying the left-shift
operation 2c− 1 times yields all possible suffixes of ({b}c · ∅c)ω. Thus, T does indeed contain
all possible type 2 traces, if it satisfies the formulas described above.

Recall that we have to express the following property: there is a trace t such that for every
s, p > 0 there is an n ≥ s with t(n) 6= t(n+ p). To this end, we first existentially quantify a
trace π (the supposedly non-ultimately periodic one). Then, we universally quantify two
type 1 traces πs and πp (thereby fixing s and p as the characteristics of πs and πp). Thus,
it remains to state that π has two positions n and n′ satisfying s ≤ n < n′ = n + p such
that the truth value of $ differs at these positions. To this end, we need another trace π′p of
the same characteristic p as πp so that a block of π′p starts at position n, which allows to
determine n′ = n+ p by just advancing to the end of the block starting at n.

Formally, consider the following statement: there is a trace π such that for all type 1
traces πs and πp (here, we quantify over s and p) there is a type 2 trace π′p that has the
same characteristic as πp such that the following is true: there is a position n no earlier than
the one where a holds in πs such that

the truth value of b in π′p differs at positions n− 1 and n (i.e., a block begins at n), and
the atomic proposition $ holds at n in π and not at n′ in π or vice versa, where n′ > n is
the smallest position such that the truth value of b in π′p differs at n′ − 1 and n′ (i.e., the
next block begins at position n′), which implies n′ = n+ p.
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30:8 The First-Order Logic of Hyperproperties

The formalization of this statement in HyperLTL is the final conjunct of ϕ. Hence, ϕ has no
models that contain an ultimately periodic trace.

Finally, ϕ is satisfied by all models that contain all possible type 1 and all possible type 2
traces as well as at least one trace that is not ultimately periodic when projected to {$}. J

Note that the type 1 and type 2 traces above are ultimately periodic, i.e., although we
have formalized the existence of a single non-ultimately periodic trace, the model always
has ultimately periodic ones as well. By slightly extending the construction, one can even
construct a satisfiable sentence whose models contain not a single ultimately periodic trace.
To this end, one requires that every trace (in particular the type 1 and type 2 traces) is
non-ultimately periodic, witnessed by the proposition $ as above.

I Theorem 6. There is a satisfiable HyperLTL sentence that is not satisfied by any set of
traces that contains an ultimately periodic trace.

As a final note on the expressiveness of HyperLTL we show how to encode the prime
numbers. Let type 1 and type 2 traces be axiomatized as in the proof of Theorem 5. Recall
projecting a type 2 trace to {b} yields a suffix of ({b}c · ∅c)ω, where c > 0 is the trace’s
characteristic. We say that such a trace is proper, if its projection equal to ({b}c · ∅c)ω. Being
proper can be expressed in HyperLTL, say by the formula ϕprp(π) with a single free variable,
relying on the fact that the only occurrence of a induces the characteristic c. Also, we add a
new atomic proposition ′ to AP to encode the prime numbers as follows: the proposition ′
holds at the first position of a type 1 trace of characteristic c if, and only if, c is a prime
number.

Now, consider the following formula, which we add as a new conjunct to the axiomatization
of type 1 and type 2 traces:

∀π1. ∀π2. (1π1 ∧ ′π1 ∧ ϕprp(π2)→ ¬ψ(π1, π2))∧
∀π1. ∃π2. (1π1 ∧ ¬ ′π1 → ϕprp(π2) ∧ ψ(π1, π2))

Here, the formula ψ(π1, π2) expresses that the single a in π1 appears at the end of a non-first
block in π2 and that the characteristic of π2 is strictly greater than one. Thus, ψ(π1, π2)
holds if, and only if, the characteristic of π2 is a non-trivial divisor of the characteristic of π1.
Thus, the first conjunct expresses that a type 1 trace of characteristic c > 1 may only have
a ′ at the first position, if c has only trivial divisors, i.e., if c is prime. Similarly, the second
conjunct expresses that a type 1 trace of characteristic c > 1 may only not have a ′ at the first
position, if c has a non-trivial divisor, i.e., if c is not prime. Thus, by additionally hardcoding
that 1 is not a prime, one obtains a formula ϕ such that every model T of ϕ encodes the
primes as follows: c is prime if, and only if, there is a type 1 trace of characteristic c in T
with ′ holding true at its first position.

4 First-order Logic for Hyperproperties

Kamp’s seminal theorem [18] states that Linear Temporal Logic with the until-operator U
and its dual past-time operator “since” is expressively equivalent to first-order logic over the
integers with order, FO[<] for short. Later, Gabbay et al. [14] proved that LTL as introduced
here (i.e., exclusively with future-operators) is expressively equivalent to first-order logic over
the natural numbers with order. More formally, one considers relational structures of the
form (N, <, (Pa)a∈AP) where < is the natural ordering of N and each Pa is a subset of N.
There is a bijection mapping a trace t over AP to such a structure t. Furthermore, FO[<] is
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first-order logic1 over the signature {<}∪ {Pa | a ∈ AP} with equality. The result of Gabbay
et al. follows from the existence of the following effective translations: (1) For every LTL
formula ϕ there is an FO[<] sentence ϕ′ such that for all traces t: t |= ϕ if, and only if,
t |= ϕ′. (2) For every FO[<] sentence ϕ there is an LTL formula ϕ′ such that for all traces t:
t |= ϕ if, and only if, t |= ϕ′.

In this section, we investigate whether there is a first-order logic that is expressively
equivalent to HyperLTL. The first decision to take is how to represent a set of traces as a
relational structure. The natural approach is to take disjoint copies of the natural numbers,
one for each trace and label them accordingly. Positions on these traces can be compared using
the order. To be able to compare different traces, we additionally introduce a (commutative)
equal-level predicate E, which relates the same time points on different traces.

Formally, given a set T ⊆ (2AP)ω of traces over AP, we define the relational structure T =
(T × N, <T ,ET , (PTa )a∈AP) with

<T= {((t, n), (t, n′)) | t ∈ T and n < n′ ∈ N},
ET = {((t, n), (t′, n)) | t, t′ ∈ T and n ∈ N}, and
P
T
a = {(t, n) | a ∈ t(n)}.

We consider first-order logic over the signature {<,E} ∪ {Pa | a ∈ AP}, i.e., with atomic
formulas x = y, x < y, E(x, y), and Pa(x) for a ∈ AP, and disjunction, conjunction, negation,
and existential and universal quantification over elements. We denote this logic by FO[<, E].
We use the shorthand x ≤ y for x < y ∨ x = y and freely use terms like x ≤ y < z with the
obvious meaning. A sentence is a closed formula, i.e., every occurrence of a variable is in the
scope of a quantifier binding this variable. We write ϕ(x0, . . . , xn) to denote that the free
variables of the formula ϕ are among x0, . . . , xn.

I Example 7.
1. The formula Succ(x, y) = x < y ∧ ¬∃z. x < z < y expresses that y is the direct successor

of x on some trace.
2. The formula min(x) = ¬∃y. Succ(y, x) expresses that x is the first position of a trace.

Our first result shows that full FO[<, E] is too expressive to be equivalent to HyperLTL.
To this end, we apply a much stronger result due to Bozzelli et al. [3] showing that a certain
property expressible in KLTL (LTL with the epistemic knowledge operator K [9]) is not
expressible in HyperCTL∗, which subsumes HyperLTL.

I Theorem 8. There is an FO[<, E] sentence ϕ that has no equivalent HyperLTL sentence:
For every HyperLTL sentence ϕ′ there are two sets T0 and T1 of traces such that
1. T0 6|= ϕ and T1 |= ϕ, but
2. ϕ′ cannot distinguish T0 and T1, i.e., either both T0 |= ϕ′ and T1 |= ϕ′ or both T0 6|= ϕ′

and T1 6|= ϕ′.

Proof. Fix AP = {p} and consider the following property of sets T of traces over AP: there
is an n > 0 such that p /∈ t(n) for every t ∈ T . This property is expressible in FO[<, E], but
Bozzelli et al. [3] proved that it is not expressible in HyperLTL by constructing sets T0, T1 of
traces with the desired property.2 J

1 We assume familiarity with the syntax and semantics of first-order logic. See, e.g., [8], for an introduction
to the topic.

2 Actually, they proved a stronger result showing that the property cannot expressed in HyperCTL∗,
which subsumes HyperLTL. As the latter logic is a branching-time logic, they actually constructed
Kripke structures witnessing their result. However, it is easy to show that taking the languages of traces
of these Kripke structures proves our claim.
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As already noted by Bozzelli et al., the underlying insight is that HyperLTL cannot
express requirements which relate at some point in time an unbounded number of traces.
By ruling out such properties, we obtain a fragment of FO[<, E] that is equivalent to
HyperLTL. Intuitively, we mimic trace quantification of HyperLTL by quantifying initial
positions and then only allow quantification of potentially non-initial positions on the traces
already quantified. Thus, such a sentence can only express properties of the bounded number
of traces selected by the quantification of initial positions.

To capture this intuition, we have to introduce some notation: ∃Mx. ϕ is shorthand for
∃x. min(x) ∧ ϕ and ∀Mx. ϕ is shorthand for ∀x. min(x)→ ϕ, i.e., the quantifiers ∃M and
∀M only range over the first positions of a trace in T . We use these quantifiers to mimic
trace quantification in HyperLTL.

Furthermore, ∃Gy ≥ x. ϕ is shorthand for ∃y. y ≥ x ∧ ϕ and ∀Gy ≥ x. ϕ is shorthand
for ∀y. y ≥ x → ϕ, i.e., the quantifiers ∃G and ∀G are guarded by a free variable x and
range only over greater-or-equal positions on the same trace that x is on. We call the free
variable x the guard of the quantifier.

We consider sentences of the form

ϕ = QM1 x1. · · ·QMk xk. QG1 y1 ≥ xg1 . · · ·QG` y` ≥ xg`
. ψ (2)

with Q ∈ {∃,∀}, where we require the sets {x1, . . . , xk} and {y1, . . . , y`} to be disjoint, every
guard xgj

to be in {x1, . . . , xk}, and ψ to be quantifier-free with free variables among the
{y1, . . . , y`}. We call this fragment HyperFO. Note that the subformula starting with the
quantifier QG1 being in prenex normal form and ψ only containing the variables yj simplifies
our reasoning later on, but is not a restriction.

I Theorem 9. HyperLTL and HyperFO are equally expressive.

We prove this result by presenting effective translations between HyperLTL and HyperFO
(see Lemma 12 and Lemma 13). We begin with the direction from HyperFO to HyperLTL.
Consider a HyperFO sentence ϕ as in (2). It quantifies k traces with the quantifiers ∃M and
∀M . Every other quantification is then on one of these traces. As trace quantification is
possible in HyperLTL, we only have to take care of the subformula starting with the guarded
quantifiers. After replacing these quantifiers by unguarded ones, we only have to remove
the equal-level predicate to obtain an FO[<] sentence. To this end, we merge the k traces
under consideration into a single one, which reduces the equal-level predicate to the equality
predicate (cf. [23]). The resulting sentence is then translated into LTL using the theorem of
Gabbay et al., the merging is undone, and the quantifier prefix is added again. We show
that the resulting sentence is equivalent to the original one.

Fix a HyperFO sentence ϕ as in (2) and consider the subformula

χ = QG1 y1 ≥ xg1 . · · ·QG` y` ≥ xg`
. ψ

obtained by removing the quantification of the guards. We execute the following replacements
to obtain the formula χm:
1. Replace every guarded existential quantification ∃Gyj ≥ xgj

by ∃yj and every guarded
universal quantification ∀Gyj ≥ xgj by ∀yj .

2. Replace every atomic formula Pa(yj) by P(a,gj)(yj), where xgj
is the guard of yj .

3. Replace every atomic formula E(yj , yj′) by yj = yj′ .
As we have removed all occurrences of the free guards, the resulting formula χm is actually a
sentence over the signature {<} ∪ {Pa | a ∈ AP× {1, . . . , k}}, i.e., an FO[<] sentence.

Given a list (t1, . . . , tk) of traces over AP, define the trace mrg(t1, . . . , tk) = A0A1A2 · · ·
over AP× {1, . . . , k} via An =

⋃k
j=1 tj(n)× {j}, i.e., we merge the tj into a single trace.
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I Claim 10. Let T be a set of traces and let β0 : {x1, . . . , xk} → T × {0} be a variable
valuation of the guards x1, . . . , xk to elements of T . Then, (T , β0) |= χ if, and only if,
mrg(t1, . . . , tk) |= χm, where tj is the unique trace satisfying β0(xgj

) = (tj , 0).

This claim can be proven by translating a winning strategy for either player in the model
checking game [15] for (T , χ) (starting with the initial variable valuation β0) into a winning
strategy for the same player in the model checking game for (mrg(t1, . . . , tk), χm).

Now, we apply the theorem of Gabbay et al. [14] to χm and obtain an LTL formula χ′m
over AP× {1, . . . , k} that is equivalent to χm. Let χ′ be the HyperLTL formula obtained
from χ′m by replacing every atomic proposition (a, j) by aπj

, i.e., we undo the merging. The
following claim is proven by a simple structural induction over χm.

I Claim 11. Let T be a set of traces and let Π: {π1, . . . , πk} → T be a trace assignment.
Then, mrg(Π(π1), . . . ,Π(πk)) |= χ′m if, and only if, (T,Π) |= χ′.

Now, we add the quantifier prefix Q1π1. · · ·Qkπk. to χ′, where Qj = ∃, if QMj = ∃M , and
Qj = ∀, if QMj = ∀M . Call the obtained HyperLTL sentence ϕ′.

I Lemma 12. For every HyperFO sentence ϕ, there is a HyperLTL sentence ϕ′ such that
for every T ⊆ (2AP)ω: T |= ϕ if, and only if, T |= ϕ′.

Proof. Fix a HyperFO sentence ϕ and let the χ, χm, χ′m, χ′, and ϕ′ be as constructed as
above. Let β0 be a variable valuation as in Claim 10, let the traces t1, . . . , tk ∈ T be defined
as in this claim, and let the trace assignment Π map πj to tj .

Then, the following equivalences hold:

(T , β0) |= χ
Claim 10⇔ mrg(t1, . . . , tk) |= χm

by def.⇔ mrg(t1, . . . , tk) |= χ′m
Claim 11⇔ (T,Π) |= χ′.

Finally, the equivalence of ϕ and ϕ′ follows from the fact that one can identify quantifica-
tion of initial elements of paths in T and trace quantification in T , as both ϕ and ϕ′ have
the same quantifier prefix. J

It remains to consider the translation of HyperLTL into HyperFO, which is straightforward,
as usual.

I Lemma 13. For every HyperLTL sentence ϕ, there is a HyperFO sentence ϕ′ such that
for every T ⊆ (2AP)ω: T |= ϕ if, and only if, T |= ϕ′.

Proof. Let π1, . . . , πk be the trace variables appearing in ϕ and fix a set G = {x1, . . . , xk, xt}
of first-order variables, which we use as guards: the xj with j ≤ k are identified with the
trace variables and we use variables guarded by xt to model the flow of time. We inductively
construct a formula fo(ϕ) satisfying the following invariant: For each subformula ψ of ϕ, the
free variables of the formula fo(ψ) comprise of a subset of G and one additional (different!)
variable, which we call the time-variable of fo(ψ). We require the time-variables of the
subformulas to be fresh unless stated otherwise and also different from the guards in G.
Intuitively, the time-variables are used to mimic the flow of time when translating a temporal
operator. Formally, we define:

fo(aπj
) = ∃Gy ≥ xj . E(y, z) ∧ Pa(y), i.e., z is the time-variable of fo(aπj

).
fo(¬ψ1) = ¬fo(ψ1), i.e., the time-variable is unchanged.
fo(ψ1 ∨ ψ2) = fo(ψ′1) ∨ fo(ψ2), where we assume w.l.o.g. that fo(ψ1) and fo(ψ′2) have the
same time-variable, which is also the time-variable of the disjunction.
fo(Xψ1) = ∃Gz1 ≥ xt. Succ(z, z1)∧ fo(ψ1), where z1 is the time-variable of fo(ψ1). Hence,
z is the time-variable of fo(Xψ1).
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fo(ψ1 Uψ2) = ∃Gz2 ≥ xt. z ≤ z2 ∧ fo(ψ2) ∧ ∀Gz1 ≥ xt. z ≤ z1 < z2 → fo(ψ1), where zi is
the time-variable of fo(ψi). Hence, z is the time-variable of fo(ψ1 Uψ2).
fo(∃πj . ψ) = ∃Mxj . fo(ψ), i.e., the time-variable is unchanged.
fo(∀πj . ψ) = ∀Mxj . fo(ψ), i.e., the time-variable is unchanged.

Now, we define ϕ′ = ∃Mxt. ∃Mz. xt = z ∧ fo(ϕ), where z is the time-variable of fo(ϕ).
It is straightforward to show that ϕ′ is equivalent to ϕ. Finally, ϕ′ can be rewritten into
prenex normal form (with quantifiers QM and QG!) so that the outermost quantifiers bind
the guards while the inner ones are guarded. J

5 Conclusion and Discussion

The extension from LTL to HyperLTL has fundamentally changed the models of the logic.
While a satisfiable LTL formula is guaranteed to have an ultimately periodic model, we
have shown that there is no guarantee that a satisfiable HyperLTL formula has a model
that is finite, ω-regular, or even just ω-contextfree. Characterizing the expressive power of
HyperLTL is thus a formidable challenge. Nevertheless, the results of this paper provide a
first such characterization. With the definition of FO[<, E] and HyperFO, and the resulting
formulation and proof of Kamp’s theorem for hyperproperties, we have established the first
connection between temporal logics for hyperproperties and first-order logic. This connection
provides a strong basis for a systematic exploration of the models of hyperproperties.

While hyperproperties have recently received a lot of attention from a practical perspective
(cf. [1, 4, 12]), their logical and language-theoretic foundations are far less understood, and it
is our hope that this paper will attract more research into this exciting area. An important
open problem is to find a non-trivial class of languages so that every satisfiable HyperLTL
formula is guaranteed to be satisfied by a model from this class. In Section 3, we have ruled
out some of the obvious candidates for such a class of languages, such as the ω-regular and
ω-contextfree languages. The challenge remains to identify a class of languages that is rich
enough for every satisfiable HyperLTL formula.

Another major open problem is to find a temporal logic that is expressively equivalent to
FO[<, E]. In Section 4, we have shown that HyperLTL is less expressive than FO[<, E], by
arguing that HyperLTL cannot express requirements which relate at some point in time an
unbounded number of traces. Since KLTL [9] can express such properties, KLTL and related
epistemic temporal logics are natural candidates for logics that are expressively equivalent to
FO[<, E]. Another promising candidate is HyperLTL with past operators, motivated by the
results on HyperCTL∗ with past [3].

Acknowledgements. We thank Markus N. Rabe and Leander Tentrup for fruitful discus-
sions.
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