
The Complexity of Counting Models of
Linear-time Temporal Logic∗

Hazem Torfah and Martin Zimmermann

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
{torfah, zimmermann}@react.uni-saarland.de

Abstract
We determine the complexity of counting models of bounded size of specifications expressed
in Linear-time Temporal Logic. Counting word-models is #P-complete, if the bound is given
in unary, and as hard as counting accepting runs of nondeterministic polynomial space Turing
machines, if the bound is given in binary. Counting tree-models is as hard as counting accepting
runs of nondeterministic exponential time Turing machines, if the bound is given in unary. For
a binary encoding of the bound, the problem is at least as hard as counting accepting runs of
nondeterministic exponential space Turing machines. On the other hand, it is not harder than
counting accepting runs of nondeterministic doubly-exponential time Turing machines.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Model Counting, Temporal Logic, Model Checking, Counting Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.241

1 Introduction

Model counting, the problem of computing the number of models of a logical formula,
generalizes the satisfiability problem and has diverse applications: many probabilistic inference
problems, such as Bayesian net reasoning [13], and planning problems, such as computing
the robustness of plans in incomplete domains [15], can be formulated as model counting
problems of propositional logic. Model counting for Linear-time Temporal Logic (LTL) has
been recently introduced in [8]. LTL is the most commonly used specification logic for
reactive systems [16] and the standard input language for model checking [2, 5] and synthesis
tools [3, 4, 6]. LTL model counting asks for computing the number of transition systems that
satisfy a given LTL formula. As such a formula has either zero or infinitely many models
one considers models of bounded size: for a formula ϕ and a bound k, the problem is to
count the number of models of ϕ of size k. This is motivated by applications like bounded
model checking [2] and bounded synthesis [7], where one looks for short error paths and small
implementations, respectively, by iteratively increasing a bound on the size of the model.
Just like propositional model counting generalizes satisfiability, by considering two types
of bounded models, namely, word-models (of length k) and tree-models (of height k), the
authors of [8] introduced quantitative extensions of model checking and synthesis.

Word-models are ultimately periodic words of the form u.vω of bounded length |u.v|,
which are used to model computations of a system. Counting word-models can be used
in model checking to determine not only the existence of computations that violate the
specification, but also the number of such violations. To this end, one turns the model

∗ This work was partially supported by the German Research Foundation (DFG) as part of SFB/TR 14
AVACS and by the Deutsche Telekom Foundation.

© Hazem Torfah and Martin Zimmermann;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 241–252

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.241
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


242 The Complexity of Counting Models of Linear-time Temporal Logic

checking problem into an LTL satisfiability problem by encoding the transition system and
the negation of the specification into a single LTL formula. Its models represent erroneous
computations of the system, i.e., counting them gives a quantitative notion of satisfaction.

Tree-models are finite trees (of fixed out-degree) of bounded height with back-edges at the
leaves, i.e., tree-models can be exponentially-sized in the bound. They are used to describe
implementations of the input-output behavior of reactive systems (see, e.g., [7]), namely the
edges of a tree-model represent the input behavior of the environment and the nodes represent
the corresponding output behavior of the system. In synthesis, counting tree-models can be
used to determine not only the existence of an implementation that satisfies the specification,
but also the number of such implementations. This number is a helpful metric to understand
how much room for implementation choices is left by a given specification, and to estimate
the impact of new requirements on the remaining design space.

For safety LTL specifications [17], algorithms solving the word- and the tree-model
counting problem were presented in [8]. The running time of the algorithms is linear
in the bound and doubly-exponential respectively triply-exponential in the length of the
formula. The high complexity in the formula is, however, not a major concern in practice,
since specifications are typically small while models are large (cf. the state-space explosion
problem).

Here, we complement these algorithms by analyzing the computational complexity of
the model counting problems for full LTL by placing the problems into counting complexity
classes. These classes are based on counting accepting runs of nondeterministic Turing
machines. In his seminal paper on the complexity of computing the permanent [20], Valiant
introduced the class #P of counting problems associated with counting accepting runs of
nondeterministic polynomial time Turing machines: a function f : Σ∗ → N is in #P if there
is a nondeterministic polynomial time Turing machine M such that f(w) is equal to the
number of accepting runs ofM on w. Furthermore, for a class C of decision problems, he
defined1 #oC to be the class of counting problems induced by counting accepting runs of a
nondeterministic polynomial time Turing machine with an oracle from C.

A nondeterministic polynomial time Turing machineM (with or without oracle) has at
most O(2p(n)) different runs on inputs of length n for some polynomial p. This means that
there is an exponential upper bound on functions in #P and in #oC for every C. However,
an LTL tautology has exponentially many word-models of length k and more than doubly-
exponentially many tree-models of height k. This means, that no function in any of the
counting classes defined above can capture the counting problems for LTL.

To overcome this, we consider counting classes obtained by lifting the restriction on
considering only nondeterministic polynomial time (oracle) machines: a function f : Σ∗ → N
is in #Pspace, if there is a nondeterministic polynomial space Turing machine M such
that f(w) is equal to the number of accepting runs of M on w. The classes #Exptime,
#Expspace, and #2Exptime are defined analogously2. Some of these classes appeared
in the literature, e.g., #Pspace was shown to be equal to FPspace [11] (if the output is
encoded in binary). Also, computing a specific entry of a matrix power An is in #Pspace, if
A is represented succinctly and n in binary [14], and counting self-avoiding walks in succinctly
represented hypercubes is complete for #Exptime [12] under right-bit-shift reductions.

1 Valiant originally used the notation #C, but we added the subscript to distinguish the oracle-based
classes from the classes introduced below.

2 Following the “satanic” [9] tradition of naming counting classes, we drop the N (standing for nondeter-
ministic) in the names of the classes, just as it is done for #P.



H. Torfah and M. Zimmermann 243

We place the LTL model counting problems in these classes. Unsurprisingly, the encoding
of the bound k is crucial: for unary bounds, we show counting word-models to be #P-complete
and show counting tree-models to be #Exptime-complete. For binary bounds, the word-
model counting problem is #Pspace-complete and counting tree-models is #Expspace-hard
and in #2Exptime. The upper bounds hold for full LTL while the formulas for the lower
bounds define safety properties (using only the temporal operators next and release). Thus,
the lower bounds already hold for the fragment considered in [8].

The algorithms we present to prove the upper bounds are not practical since they are
based on guessing a word (tree) and then model checking it. Hence, a deterministic variant of
these algorithms would enumerate all words (trees) of length (height) k and then run a model
checking algorithm on them. In particular, the running time of the algorithms is exponential
(or worse) in the bound k, which is in stark contrast to the practical algorithms [8]. Our lower
bounds are reductions from the problem of counting accepting runs of a Turing machine.
For the word counting problem, the reductions are slight strengthenings of the reduction
proving Pspace-hardness of the LTL model checking problem [18]. However, the reductions
in the tree case are more involved (and to the best of our knowledge new), since we have
to deal with exponential time respectively exponential space Turing machines. The main
technical difficulties are to encode runs of exponential length and with configurations of
exponential size into tree-models of “small” LTL formulas and to ensure that there is a
one-to-one correspondence between accepting runs and models of the constructed formula.

All proofs omitted due to space restrictions can be found in the full version [19].

2 Preliminaries

We represent models as labeled transition systems. For a given finite set Υ of directions and
a finite set Σ of labels, a Σ-labeled Υ-transition system is a tuple S = (S, s0, τ, o), consisting
of a finite set of states S, an initial state s0 ∈ S, a transition function τ : S × Υ → S,
and a labeling function o : S → Σ. A path in S is a sequence π : N → S × Υ of states
and directions that follows the transition function, i.e., for all i ∈ N if π(i) = (si, ei) and
π(i + 1) = (si+1, ei+1), then si+1 = τ(si, ei). We call the path initial if it starts with the
initial state: π(0) = (s0, e) for some e ∈ Υ.

We use Linear-time Temporal Logic (LTL) [16], with the usual temporal operators Next
, Until U , Release V , and the derived operators Eventually and Globally . We use i to

refer to i nested next operators. LTL formulas are defined over a set of atomic propositions
AP = I ∪ O, which is partitioned into a set I of input propositions and a set O of output
propositions. We denote the satisfaction of an LTL formula ϕ by an infinite sequence
σ : N→ 2AP of valuations of the atomic propositions by σ |= ϕ. A 2O-labeled 2I -transition
system S = (S, s0, τ, o) satisfies ϕ, if for every initial path π the sequence σπ : i 7→ o(π(i)),
where o(s, e) = (o(s) ∪ e), satisfies ϕ. Then S is a model of ϕ.

A k-word-model of an LTL formula ϕ over AP is a pair (u, v) of finite words over 2AP

such that |u.v| = k and u.vω |= ϕ. We call u the prefix and v the period of (u, v). Note that
an ultimately periodic word might be induced by more than one k-word-model, i.e., {a}ω is
induced by the 2-word-models ({a}, {a}) and (ε, {a}{a}). a

b c

e1 e2
e1

e2 e2
e1

Figure 1 A tree-model.

A k-tree-model of an LTL formula ϕ over AP = I ∪ O is a
2O-labeled 2I -transition system that forms a tree (whose root
is the initial state) of height k with added back-edges from the
leaves (for each leaf and direction, there is an edge to a state on
the branch leading to the leaf) that satisfies ϕ. Figure 1 shows a tree-model of height one.

FSTTCS 2014



244 The Complexity of Counting Models of Linear-time Temporal Logic

Fix AP = I ∪O. For a formula ϕ and k ∈ N, the k-word (k-tree) counting problem asks
to compute the number of k-word-models (k-tree-models up to isomorphism) of ϕ over AP.

3 Counting Complexity Classes

We use nondeterministic Turing machines with or without oracle access to define counting
complexity classes, which we assume (without loss of generality) to terminate on every input.
For background on (oracle) Turing machines and counting complexity we refer to [1].

A function f : Σ∗ → N is in the class #P [20] if there is a nondeterministic polynomial
time Turing machineM such that f(w) is equal to the number of accepting runs ofM on w.
Similarly, for a given complexity class C of decision problems, a function f is in #oC [20, 9]
if there is a nondeterministic polynomial time oracle Turing machineM with oracle in C
such that f(w) is equal to the number of accepting runs ofM on w. As a nondeterministic
polynomial time Turing machineM (with or without oracle) has at most O(2p(n)) runs on
inputs of length n for some polynomial p (that only depends onM), we obtain an exponential
upper bound on functions in #P and #oC for every C, which explains the need for larger
counting classes to characterize the model counting problems for LTL.

A function f : Σ∗ → N is in #Pspace, if there is a nondeterministic polynomial space
Turing machine M such that f(w) is equal to the number of accepting runs of M on w.
#Exptime, #Expspace, and #2Exptime are defined by counting accepting runs of non-
deterministic exponential time, exponential space, and doubly-exponential time machines.

I Proposition 1.
1. #P ⊆ #oPspace ⊆ #oExptime ⊆ #oNExptime ⊆ #oExpspace ⊆ #o2Exptime.
2. #Pspace ⊆ #Exptime ( #Expspace ⊆ #2Exptime.
3. f ∈ #Exptime implies f(w) ∈ O(22p(|w|)) for a polynomial p.
4. f ∈ #2Exptime implies f(w) ∈ O(222p(|w|)

) for a polynomial p.
5. w 7→ 22|w| is in #Pspace
6. w 7→ 222|w| is in #Expspace.

We continue by relating the oracle-based and the generalized classes introduced above.

I Lemma 1. #oC ( #C for C ∈ {Pspace,Exptime,Expspace, 2Exptime}.

Proof. We show #oPspace ( #Pspace, the other claims are proven analogously. Let
f ∈ #oPspace, i.e., there is a nondeterministic polynomial time Turing machineM with
oracle A ∈ Pspace such that f(w) is equal to the number of accepting runs ofM on w. Note
that all oracle queries are polynomially-sized in the length |w| of the input toM, sinceM is
polynomially time-bounded. Hence, in nondeterministic polynomial space one can simulate
M and evaluate the oracle calls explicitly by running a deterministic machine deciding A in
polynomial space. Since the oracle queries are evaluated deterministically, the simulation
has as many accepting runs asM has. Thus, f ∈ #Pspace.

Now, consider the function |w| 7→ 22|w| , which is in #Pspace, but not in #oPspace. J

We use parsimonious reductions to define hardness and completeness, i.e., the most
restrictive notion of reduction for counting problems. A counting problem f is #P-hard, if
for every f ′ ∈ #P there is a polynomial time computable function r such that f ′(x) = f(r(x))
for all inputs x. In particular, if f ′ is induced by counting the accepting runs ofM, then
r depends onM (and possibly on its time-bound p(n)). Furthermore, f is #P-complete,
if f is #P-hard and f ∈ #P. Hardness and completeness for the other classes are defined
analogously.



H. Torfah and M. Zimmermann 245

4 Counting Word-Models

In this section, we provide matching lower and upper bounds for the complexity of counting
k-word-models of an LTL specification.

Our hardness proofs are based on constructing an LTL formula ϕwM for a given Turing
machineM and an input w that encodes the accepting runs ofM on w. Constructing such
an LTL formula is straightforward and can be done in polynomial time for Turing machines
with polynomially-sized configurations [18]. However, the challenge is to construct ϕwM such
that the number of accepting runs on w is equal to the number of k-word-models of ϕwM for
a fixed bound k. To this end, we have to enforce that each accepting run is represented by a
unique k-word-model, i.e., by a unique prefix and period of total length k. We choose k such
that a run on w of maximal length can be encoded in k − 1 symbols and define ϕwM such
that it has only k-word-models whose period has length one. If a run ofM is shorter than
the maximal-length run we repeat the final configuration until reaching the maximal length,
which is achieved by accompanying the configurations in the encoding with consecutive id’s.

For the upper bounds we show that there are appropriate nondeterministic Turing
machines that guess an ultimately-periodic word and model check it against ϕ, i.e., the
number of accepting runs on k and ϕ is equal to the number of k-word-models of ϕ.

The Case of Unary Encodings. We show that counting word-models for unary bounds is
#P-complete.

I Theorem 2. The following problem is #P-complete: Given an LTL formula ϕ and a
bound k (in unary), how many k-word-models does ϕ have?

Proof. We start with the hardness proof. LetM = (Q, qι, QF ,Σ, δ) be a one-tape nondeter-
ministic polynomial time Turing machine, where Q is the set of states, qι is the initial state,
QF is the set of accepting states, Σ is the alphabet, and δ : (Q \QF ) × Σ → 2Q×Σ×{−1,1}

is the transition function, where -1 and 1 encode the directions of the head. Note that the
accepting states are terminal and thatM rejects by terminating in a nonaccepting state. Let
M be p(n)-time bounded for some polynomial p, and let w = w0 · · ·wn−1 be an input toM.
We construct an LTL formula ϕwM and define a bound k, both polynomial in |w| and |M|,
such that the number of accepting runs ofM on w is equal to the number of k-word-models
of ϕwM.

A run ofM on w is encoded by a finite alternating sequence of id’s idi and configurations ci
that is followed by an infinite repetition of a dummy symbol:

$ id0 # c0 $ id1 # c1 $ id2 # c2 $ · · · $ idp(n) # cp(n) (⊥)ω (1)

Note that the period of the word-model is of the form ⊥` for some ` > 0. We will define k
such that maximal-length runs ofM on w can be encoded in the prefix, and such that the
only possible period has length one by ensuring that exactly p(n) configurations are encoded
(by repeating the final configuration if necessary). This ensures that an accepting run is
encoded by exactly one k-word-model.

Let lr = p(n) be the maximal length of a run ofM on w. The size of a configuration
of M on w is also bounded by lr. For the id’s we use an encoding of a binary counter
with lc = dlog lre many bits. Let AP = (Q ∪ Σ) ·∪{b1, . . . , blc , $,#,⊥} be the set of atomic
propositions. The atomic propositions in Q ∪ Σ are used to encode the configuration ofM
by encoding the tape contents, the state of the machine, and the head position. The atomic
propositions b1, . . . , blc represent the bit values of an id. The symbols $ and # are used as

FSTTCS 2014



246 The Complexity of Counting Models of Linear-time Temporal Logic

separators between id’s and configurations, and ⊥ is a dummy symbol for the model’s period.
The distance between two $ symbols and also between two # symbols in the encoding is
given by d = lr + 3 (see (1)). Then, ϕwM is the conjunction of the following formulas:

Id encodes the id’s of the configurations. It uses a formula Inc(b1, . . . , blc , d) that asserts
that the number encoded by the bits bj after d steps is obtained by incrementing the
number encoded at the current position. This formula will be reused in the tree case.
Init asserts that the run ofM starts with the initial configuration.
Accept asserts that the run must reach an accepting configuration.
Config declares the consistency of two successive configurations with the transition
relation of M. Here, we use d many next operators to relate the encoding of the two
configurations.
Repeat asserts that the encoding of an accepting configuration is repeated until the
maximal id is reached
Loop defines the period of the word-model, which may only contain ⊥.

All these properties can be expressed with polynomially-sized formulas, which can be
found in the full version [19]. Furthermore, we need a formula to specify technical details:
atomic propositions encoding the id’s are not allowed to appear in the configurations and
vice versa, symbols such as $ and # only to appear as separators, each separator appears
p(n) times every d positions, configuration encodings are represented by singleton sets of
letters in Σ with the exception of one set that contains a symbol from Q to determine the
head position and the state ofM, etc.

For k = lr · (lr + 3) + 1, each accepting run of M on w corresponds to exactly one
k-word-model of ϕwM that encodes the run in its prefix. Thus, the number of k-word-models
is equal to the number of accepting runs ofM on w. The formula ϕwM can be obtained in
polynomial time in |w| + |M|, and k (thus also its unary encoding) is polynomial in |w|.

To show that the problem is in #P we define a nondeterministic polynomial time Turing
machineM as follows. M guesses a prefix u and a period v of an ultimately periodic word
u.vω with |u.v| = k, and checks deterministically in polynomial time [10], whether u.vω
satisfies ϕ. Hence, for each k-word-model (u, v) of ϕ there is exactly one accepting run of
M. Thus, counting the k-word-models of ϕ can be done by counting the accepting runs of
M on the input (k, ϕ). J

The Case of Binary Encodings. Now, we consider the word counting problem for binary
bounds. As the input is more compact, we have to deal with a larger complexity class.

I Theorem 3. The following problem is #Pspace-complete: Given an LTL formula ϕ and
a bound k (in binary), how many k-word-models does ϕ have?

Proof. The hardness proof is similar to the one for Theorem 2: for a nondeterministic
polynomial space Turing machineM bounded by a polynomial p(n) and an input word w
we can define a formula ϕwM in the same way as in Theorem 2. The reason lies in that the
size of configurations remains polynomial and the exponential number of configurations in a
run can still be counted with a binary counter of polynomial size, i.e., we only have to use
more bits bj to encode the id’s. Furthermore, we have to choose k = 2p′(n)(p(n) + 3) + 1
which can still be encoded using polynomially many bits. Here, p′(n) is a polynomial (which
only depends onM) such thatM terminates in at most 2p′(n) steps on inputs of length n.

For the proof of the upper bound we cannot just guess a k-model in polynomial space
as in Theorem 2, since the bound k is encoded in binary. Instead, we guess and verify the
model on-the-fly relying on standard techniques for LTL model checking.



H. Torfah and M. Zimmermann 247

Formally, we construct a nondeterministic polynomial space Turing machineM which
guesses a k-word-model (u, v) by guessing u$v = w(0) · · ·w(i− 1)$w(i) · · ·w(k − 1) symbol
by symbol in a backwards fashion. Here, $ is a fresh symbol to denote the beginning of the
period. To meet the space requirement,M only stores the currently guessed symbol w(j),
discards previously guessed symbols, and uses a binary counter to guess exactly k symbols.

To verify whether u.vω satisfies ϕ,M also creates for every j in the range 0 ≤ j < k a
set Cj of subformulas of ϕ with the intention of Cj containing exactly the subformulas which
are satisfied in position j of u.vω. Due to space-requirements,M only stores the set Ck−1
as well as the sets Cj and Cj+1, if w(j) is the currently guessed symbol. The set Ck−1 is
guessed byM and the sets Cj for j < k − 1 are uniquely determined by the following rules:

The membership of atomic propositions in Cj is determined by w(j), i.e., Cj ∩AP = w(j).
Conjunctions, disjunctions, and negations can be checked locally for consistency, e.g.,
¬ψ ∈ Cj if and only if ψ /∈ Cj .
-formulas are propagated backwards using the following equivalence: ψ ∈ Cj if and

only if ψ ∈ Cj+1 (recall thatM stores Cj and Cj+1).
U-formulas are propagated backwards using the following equivalence: ψ0Uψ1 ∈ Cj if
and only if ψ1 ∈ Cj or ψ0 ∈ Cj and ψ0Uψ1 ∈ Cj+1.
V-formulas can be rewritten into U-formulas.

OnceM has guessed the complete period v = w(i) · · ·w(k − 1) it also checks that the guess
of Ck−1 is correct (recall that Ck−1 is not discarded), which is the case if the following two
requirements are met:

For every subformula ψ we have ψ ∈ Ck−1 if and only if ψ ∈ Ci.
For every subformula ψ0Uψ1 we have ψ0Uψ1 ∈ Ck−1 if and only if ψ1 ∈ Ck−1 or ψ0 ∈ Ck−1
and ψ0Uψ1 ∈ Ci. Furthermore, we have to require that ψ0Uψ1 ∈ Cj for some j in the
range i ≤ j < k implies ψ1 ∈ Cj′ for some j′ in the range i ≤ j′ < k. The latter condition
can be checked on-the-fly while computing the Cj ’s.

A straightforward structural induction over the construction of ϕ shows that we have ψ ∈ Cj
if and only if w(j)w(j + 1) · · ·w(k − 1)vω |= ψ for every subformula ψ of ϕ. Hence, u.vω is a
model of ϕ if and only if ϕ ∈ C0. Thus,M accepts if this is the case. J

5 Counting Tree-Models

In this section, we consider the tree counting problem for unary and binary bounds. There
are at least doubly-exponentially many trees of height k. Hence, if k is encoded in binary,
there are at least triply-exponentially many (in the size of the encoding of k) k-tree-models of
a tautology. In order to capture these cardinalities using counting classes, we have to consider
machines with that many runs, i.e., exponential time and exponential space machines.

In our hardness proofs, we again construct formulas ϕwM that encode accepting runs ofM
on w in trees. We choose binary trees, i.e., we consider a singleton set I of input propositions.
Recall that the power set of I is used to (deterministically) label the edges in the tree. In
the following, we identify the two elements of 2I with the directions left and right. Note
that we have to formalize the structure of our models and have to encode the runs of the
machines using LTL. The semantics require a formula to be satisfied on all paths, which
requires us to write conditional formulas of the form “if the path has a certain form, then
some property is satisfied”. We use two types of formulas: the ones of the first type describe
the structure of the tree (e.g., it is complete and the targets of the back-edges) while the
ones of the second type encode the actual run relying on this structure. The formulas of
type one often assign addresses to nodes (sequences of bits that uniquely identify a leaf).

FSTTCS 2014



248 The Complexity of Counting Models of Linear-time Temporal Logic

In the word case, we encoded runs of Turing machines whose configurations are of
polynomial length. Hence, the distance between encodings of a tape cell in two successive
configurations could be covered by a polynomial number of next-operators. Here, configura-
tions are of exponential size. Thus, the challenge is to encode a run in a tree-model such
that properties of two successive configurations can still be encoded by an LTL formula of
polynomial size. We present two such encodings, one for unary and one for binary bounds.

For the upper bounds we show that there are appropriate nondeterministic machines that
guess a finite tree with back-edges and model check it deterministically against ϕ, i.e., the
number of accepting runs on k and ϕ is equal to the number of k-tree-models of ϕ.

The Case of Unary Encodings. First, we consider tree-model counting for unary bounds.

I Theorem 4. The following problem is #Exptime-complete: Given an LTL formula ϕ
and a bound k (in unary), how many k-tree-models does ϕ have?

Proof. We start with the hardness proof. LetM = (Q, qι, QF ,Σ, δ) be a one-tape nondeter-
ministic exponential time Turing machine. LetM be 2p(n)-time bounded for a polynomial p
and let w = w0 · · ·wn−1 be an input toM. We construct an LTL formula ϕwM and define a
bound k, both polynomial in |w| and |M|, such that the number of accepting runs ofM on
w is equal to the number of k-tree-models of ϕwM.

A run of M is encoded in the leaves of a binary tree-model. Let lr = 2p(n) be the
maximal length of a run of M on w, which also bounds the size of a configuration. We
choose k = 2p(n) to be the height of our tree-models. By using a formula labeling each of the
first k levels of the tree by a unique proposition we enforce that every model of height k is
complete. Thus, it has l2r many leaves, enough to encode a run of maximal length. Figure 2
shows the structure of our tree-model.

Each configuration in the run is encoded in the leaves of a subtree of height p(n), referred
to as a lower-tree (depicted by the light gray trees). The lower-trees are uniquely determined
by a leaf of the upper-tree (depicted in dark gray), which is the root of the lower-tree. By
giving the leaves of the upper-tree id’s, we also obtain unique id’s for each of the lower-
trees. These id’s are used to enumerate the configurations of the run, i.e., two neighboring
lower-trees encode two successive configurations of the run. The id’s can be determined by a
binary counter with polynomially many bits. We also provide each leaf in a lower-tree with
a unique id within this lower-tree. This is used to compare the contents of a tape cell in
two successive configurations by comparing the labels of leaves with the same leaf id in two
successive lower-trees. Thus, every leaf stores the id encoding of the configuration it is part
of and the number of the cell it encodes.

Recall that in a tree-model each leaf has a back-edge for every direction. For the direction
left we require a transition to the root of the upper-tree, and for right a transition to the
root of the own lower-tree. This enables us to compare two leaves in a lower-tree, or two
leaves with the same id in two different lower-trees, with polynomially large formulas.

The following formulas define the structure of our tree-models as explained above and
also provide the nodes of the tree with correct id’s. We begin with Addr(root,a1, . . . , ad)
which specifies a unique id for each leaf of a complete binary tree of height d using bits
a1, . . . , ad, and provides the root of the tree with a label root. The id of a node depends
on the sequence of left and right edges on the path from the root to this node, which is
encoded in the bits a1, . . . , ad:

Addr(root, a1, . . . , ad) = root ∧
d−1∧
i=0

(
i(left→ d−i ¬ai+1) ∧ i(right→ d−i ai+1)

)
.



H. Torfah and M. Zimmermann 249

We use the formula Addr(upper,u1, . . . , up(n)) to address the upper-tree. This gives
each lower-tree a unique id via the id of its root. We also supply each node in a lower-tree
with the id of its root in the upper-tree:

∧
p(n)≤i<k

i(
∧p(n)
j=1 (uj ↔ uj)). Furthermore, we

use the formula p(n) Addr(lower, l1, . . . , lp(n)) to assign every leaf in a lower-tree a unique
id within its lower-tree which essentially encodes the number of the tape cell it encodes.
The next two formulas define the back-edges of the lower-trees. From each leaf, the left
transition leads back to the root of the upper-tree (recall that back-edges lead from a leaf
to an ancestor), i.e., k(left → upper), and the right transition to the root of the
lower-tree, i.e., k(right→ lower). After setting up the structure of the trees, it remains
to show how we encode a run in the leaves. We proceed with the same scheme as in the word
case, and use the formula ∆h(a1, . . . , am) which is satisfied, if and only if the bits a1, . . . , am
encode the number h < 2m.

The formula Init encodes the initial configuration in the lower-tree with id 0.
k
[
∆0(u1, . . . , up(n))→

(
(∆0(l1, . . . , lp(n))→ qι)∧

∧
0≤j<n

(∆j(l1, . . . , lp(n))→ wj)

∧((
∧

0≤j<n
¬∆j(l1, . . . , lp(n)))→ ␣)

)]
.

The formula Accept checks whether the rightmost lower-tree encodes an accepting config-
uration: k((∆lr (u1, . . . , up(n)) ∧

∨
q∈Q q)→

∨
q∈QF

q).
The formulas configq,α and configα for states q and symbols α encode the transition relation.
For a leaf with labels q and α (leaf 1 in Figure 2) and a transition (q, α, q′, β, dir), we
have to check three leaves in the next lower-tree, namely, the leaf with the same id (leaf
2) has to be labeled with β, and depending on dir either the successor leaf (leaf 3) or the
predecessor leaf (leaf 4) has to be labeled with q′. The premise of the following formula
only holds for paths that visit these leaves in the order given above, i.e., paths that lead
to a leaf in a lower-tree, loop back to the root of the full tree and then lead to the same
leaf id in the successor lower-tree (this takes k + 1 edges), loop back to the root of this
lower-tree and visit the leaf to the right (this takes p(n) + 1 edges), back to the root of
this lower-tree again and then to the leaf to the left (this takes p(n) + 1 edges). To specify
such a path, we use the formula Inc to reach the successor leaf and a dual formula called
Dec to reach the predecessor leaf. This formula implements a decrement of a nonzero
counter. Note that we have to require the paths to visit the successor and predecessor
leaf in the next lower-tree, i.e., we have to check the bits uj to reach the next lower-tree
and the bits lj to reach the leaves. Thus, configq,α for q ∈ Q \QF is given by:

k
[
q ∧ α∧Inc(u1, . . . , up(n), k + 1) ∧

∧p(n)

i=1
li ↔ k+1 li)

∧Inc(u1, . . . , up(n), k + p(n) + 2) ∧ Inc(l1, . . . , lp(n), k + p(n) + 2)
∧Inc(u1, . . . , up(n), k + 2p(n) + 3)) ∧Dec(l1, . . . , lp(n), k + 2p(n) + 3)

→
∨

(q′,β, dir)∈δ(q,α)
( k+1 β ∧ (k+1)+cdir(p(n)+1) q′)

]
.

Here, we have cdir = 1, if dir = 1, and cdir = 2, if dir = −1.
The formula configα determines the relation between the other tape cells’ contents, namely
where the head is not pointing to:

k(
p(n)∨
i=1
¬ui ∧ (

∧
q∈Q\QF

¬q) ∧ α ∧ Inc(u1, . . . , up(n), k + 1) ∧ (
p(n)∧
i=1

li ↔ k+1 li)→ k+1 α) .

FSTTCS 2014



250 The Complexity of Counting Models of Linear-time Temporal Logic

The formula Repeat repeats accepting states in the next lower-tree, if the id of the current
lower-tree is not maximal. The repetition of the letters is being taken care of by configα.

k
[( p(n)∨

i=1
¬ui ∧ Inc(u1, . . . , up(n), k + 1) ∧

p(n)∧
i=1

(li ↔ k+1 li)
)
→
( ∧
qf∈QF

qf → k+1 qf
)]
.

Similar to the word case we need some additional formulas to prevent atomic propositions
of configurations to appear elsewhere in the tree to guarantee the one-to-one relation between
runs and tree-models. For example to prevent a state label from appearing twice in a
configuration we use a formula that asserts that from a leaf in which a state is encoded, no
other leaf with a state label is reachable within p(n) + 1 steps, i.e., in the same lower-tree.
This ensures that every configuration has exactly one state.

To show that the problem is in #Exptime we define a nondeterministic exponential time
Turing machineM as follows. M guesses a tree of height k (which is of exponential size)
and checks whether it satisfies ϕ using the classical model checking algorithm: M constructs
the Büchi automaton recognizing the language of ¬ϕ and checks whether the product of
the tree and the automaton has an empty language. The automaton and the product are
of exponential size and the emptiness check can be performed in deterministic polynomial
time (in the size of the product). Hence,M runs in exponential time in k and the size of ϕ.
For each k-tree-model of ϕ, there is exactly one accepting run inM. Thus, counting the
k-tree-models of ϕ can be done by counting the accepting runs ofM on the input (k, ϕ). J

upper

lower

lr

︸ ︷︷ ︸C1 C2

Clr−2

_

_

-
p(n)

p(n)

left

right
1 24 3

Figure 2 Encoding an exponentially long run in a
tree-model of polynomial height. The configurations
are encoded in the lower-trees (light gray subtrees).

The Case of Binary Encodings. In this
section, we consider tree-model counting
for binary bounds. Since the bound is
encoded compactly, the trees we work
with have exponential height and there-
fore doubly-exponential size. Unfortu-
nately, our upper and lower bounds do
not match (see the discussion in the next
section).

I Theorem 5. The following problem
is #Expspace-hard and in #2Exptime:
Given an LTL formula ϕ and a bound k (in binary), how many k-tree-models does ϕ have?

Proof. LetM = (Q, qι, QF ,Σ, δ) be a one-tape nondeterministic exponential space Turing
machine and let w = w0 · · ·wn−1 be an input toM. Furthermore, let lc = 2p(n) − 2 be the
maximal configuration length (for some polynomial p) and let lr = 22p′(n) be the maximal
length of a run ofM on w (p′ is a polynomial which only depends onM).

We choose k = m · 2p′(n) to be the height of our tree-models, where m is the smallest
power of two greater than p(n). Figure 3 shows the main structure of our tree-models. We
use nonbalanced binary trees that are composed of trees of height m. We refer to the latter
trees as the inner-trees. The outermost leaves of an inner-tree are inner nodes and the
others are leaves in the tree-model. Hence, each inner-tree has two children, which are again
inner-trees rooted at the leftmost respectively the rightmost leaf.

In each inner-tree, we will encode a configuration in a similar way as in the unary case
(Theorem 4), namely in the leaves (except the two leaves serving as roots for other inner
trees, which explains the −2 in the definition of lc). We encode the configurations of a run



H. Torfah and M. Zimmermann 251

C1

C2

C3

C4 C5

C6

C7 C8

C9

C10

C11 C12

C13

C14 C15

left

right

_

_

- 3m

- 2m

- m

Figure 3 Tree-model with DFS structure.

in the tree-model such that we traverse the inner-trees in a depth-first search manner (DFS).
In Figure 3, we can see how a run of 16 configurations can be encoded in a tree-model with
four layers of inner-trees. To encode the DFS structure, we label each root of an inner-tree
with its level (the number of inner-tree ancestors) and with its so-called right-child-depth:
the number of right-child-inner-trees visited since the last left child to reach this tree (e.g.,
this value is 0 for the left children C1, C2, C3, C7; it is 1 for C6 and 3 for C15). This will
help to determine the next inner-tree in line in the DFS structure. We need a polynomial
number of bits to encode these addresses. With the right transition we allow the leaves of
an inner-tree to reach its root and we use left in the inner-tree of maximal level to reach the
parent of the next inner-tree in DFS order. In this way, the distance between the encoding
of a tape cell in two successive configurations is polynomial.

As the distance between an inner-tree and its successor is polynomial, the formulas for
encoding the run in the tree-model adapt the ideas of the formulas in the unary case with
slight modifications that deal with the DFS order of inner-trees. A detailed description of
the construction can be found in the full version [19].

The upper bound is proved using the same algorithm as in the proof of Theorem 4. J

6 Discussion

We investigated the complexity of the model counting problem for specifications in Linear-
time temporal logic. The word-model counting problems are #P-complete (for unary bounds)
respectively #Pspace-complete (for binary bounds) while the tree-model counting problems
are #Exptime-complete respectively #Expspace-hard and in #2Exptime, i.e., the exact
complexity of the tree-model counting problem for binary bounds is open.

The problem we face trying to lower the upper bound is that we cannot guess the complete
tree-model in nondeterministic exponential space. To meet the space-requirements, we have
to construct it step by step, as in the proof of the corresponding upper bound in the word
case. However, the correctness of the on-the-fly model checking procedure described there
relies on the fact that the model is an ultimately-periodic word. It is open whether the
technique can be extended to tree-models. On the other hand, if we try to raise the lower
bound, we have to encode doubly-exponential time Turing machines, which seems challenging
using polynomially-sized LTL formulas.

To conclude, let us mention another variation of the model counting problem: counting
arbitrary transition systems, where the bound k now refers to the size of the transition
system. For unary bounds, the problem is #P-hard, which can be shown by strengthening
Theorem 2, and in #oPspace, since LTL model checking is in Pspace. For binary bounds,
the construction presented in Theorem 4 yields #Exptime-hardness and the problem is in
#Exptime, which can be shown by adapting the algorithm presented in the theorem.

FSTTCS 2014



252 The Complexity of Counting Models of Linear-time Temporal Logic

Acknowledgments. We would like to thank Markus Lohrey and an anonymous reviewer
for bringing Ladner’s work on polynomial space counting [11] to our attention.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, New York, NY, USA, 1st edition, 2009.
2 Armin Biere. Bounded model checking. In Handbook of Satisfiability, pages 457–481. IOS

Press, 2009.
3 Roderick Bloem, Hans-Jürgen Gamauf, Georg Hofferek, Bettina Könighofer, and Robert

Könighofer. Synthesizing robust systems with RATSY. In Doron Peled and Sven Schewe,
editors, SYNT, volume 84 of EPTCS, pages 47–53. Open Publishing Association, 2012.

4 Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin.
Acacia+, a tool for LTL synthesis. In P. Madhusudan and Sanjit A. Seshia, editors, CAV,
volume 7358 of LNCS, pages 652–657. Springer, 2012.

5 Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

6 Rüdiger Ehlers. Unbeast: Symbolic bounded synthesis. In TACAS, volume 6605 of LNCS,
pages 272–275. Springer-Verlag, 2011.

7 Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Journal on Software
Tools for Technology Transfer, 15(5-6):519–539, 2013.

8 Bernd Finkbeiner and Hazem Torfah. Counting models of linear-time temporal logic. In
Adrian Horia Dediu, Carlos Martín-Vide, José Luis Sierra-Rodríguez, and Bianca Truthe,
editors, LATA, volume 8370 of LNCS, pages 360–371. Springer, 2014.

9 Lane A. Hemaspaandra and Heribert Vollmer. The satanic notations: counting classes
beyond #P and other definitional adventures. SIGACT News, 26(1):2–13, 1995.

10 Lars Kuhtz and Bernd Finkbeiner. LTL path checking is efficiently parallelizable. In Su-
sanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and Wolf-
gang Thomas, editors, ICALP, volume 5556 of LNCS, pages 235–246. Springer, 2009.

11 Richard E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18(6):1087–
1097, 1989.

12 Maciej Liśkiewicz, Mitsunori Ogihara, and Seinosuke Toda. The complexity of counting
self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theor. Comput.
Sci., 1–3(304):129–156, 2003.

13 Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic boolean satis-
fiability. Journal of Automated Reasoning, 27:2001, 2000.

14 Markus Lohrey and Manfred Schmidt-Schauß. Processing succinct matrices and vectors.
In Edward A. Hirsch, Sergei O. Kuznetsov, Jean-Éric Pin, and Nikolay K. Vereshchagin,
editors, CSR, volume 8476 of LNCS, pages 245–258. Springer, 2014.

15 Daniel Morwood and Daniel Bryce. Evaluating temporal plans in incomplete domains. In
Jörg Hoffmann and Bart Selman, editors, AAAI. AAAI Press, 2012.

16 Amir Pnueli. The temporal logic of programs. In STOC, SFCS’77, pages 46–57, Washington,
DC, USA, 1977. IEEE Computer Society.

17 A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Com-
puting, 6(5):495–511, 1994.

18 A.Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

19 Hazem Torfah and Martin Zimmermann. The complexity of counting models of linear-time
temporal logic. ArXiv e-prints, abs/1408.5752, 2014.

20 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.


	Introduction
	Preliminaries
	Counting Complexity Classes
	Counting Word-Models
	Counting Tree-Models
	Discussion

