
Synthesizing Optimally Resilient Controllers
Daniel Neider
Max Planck Institute for Software Systems, 67663 Kaiserslautern, Germany
neider@mpi-sws.org

Alexander Weinert1

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
weinert@react.uni-saarland.de

Martin Zimmermann2

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
zimmermann@react.uni-saarland.de

Abstract
Recently, Dallal, Neider, and Tabuada studied a generalization of the classical game-theoretic
model used in program synthesis, which additionally accounts for unmodeled intermittent distur-
bances. In this extended framework, one is interested in computing optimally resilient strategies,
i.e., strategies that are resilient against as many disturbances as possible. Dallal, Neider, and
Tabuada showed how to compute such strategies for safety specifications.

In this work, we compute optimally resilient strategies for a much wider range of winning
conditions and show that they do not require more memory than winning strategies in the classical
model. Our algorithms only have a polynomial overhead in comparison to the ones computing
winning strategies. In particular, for parity conditions optimally resilient strategies are positional
and can be computed in quasipolynomial time.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Controller Synthesis, Infinite Games, Resilient Strategies, Disturbances

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.34

Related Version Full version available online [18], https://arxiv.org/abs/1709.04854.

1 Introduction

Reactive synthesis is an exciting and promising approach to solving a crucial problem, whose
importance is ever-increasing due to ubiquitous deployment of embedded systems: obtaining
correct and verified controllers for safety-critical systems. Instead of an engineer program-
ming a controller by hand and then verifying it against a formal specification, synthesis
automatically constructs a correct-by-construction controller from the given specification (or
reports that no such controller exists).

Typically, reactive synthesis is modeled as a two-player zero-sum game on a finite
graph that is played between the system, which seeks to satisfy the specification, and its
environment, which seeks to violate it. Although this model is well understood, there are
still multiple obstacles to overcome before synthesis can be realistically applied in practice.
These obstacles include not only the high computational complexity of the problem, but
also more fundamental ones. Among the most prohibitive issues in this regard is the need

1 Supported by the Saarbrücken Graduate School of Computer Science.
2 Supported by the project “TriCS” (ZI 1516/1-1) of the German Research Foundation (DFG).

© Daniel Neider, Alexander Weinert, and Martin Zimmermann;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neider@mpi-sws.org
mailto:weinert@react.uni-saarland.de
mailto:zimmermann@react.uni-saarland.de
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.34
https://arxiv.org/abs/1709.04854
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Synthesizing Optimally Resilient Controllers

for a complete model of the interaction between the system and its environment, including
an accurate model of the environment, the actions available to both players, as well as the
effects of these actions.

This modeling task often places an insurmountable burden on engineers as the environ-
ments in which real-life controllers are intended to operate tend to be highly complex or not
fully known at design time. Also, when a controller is deployed in the real world, a common
source of errors is a mismatch between the controller’s intended result of an action and the
actual result. Such situations arise, e.g., in the presence of disturbances, when the effect
of an action is not precisely known, or when the intended control action of the controller
cannot be executed, e.g., when an actuator malfunctions. By a slight abuse of notation from
control theory, such errors are subsumed under the generic term disturbance (cf. [10]).

To obtain controllers that can handle disturbances, one has to yield control over their
occurrence to the environment. However, due to the antagonistic setting of the two-player
zero-sum game, this would allow the environment to violate the specification by causing
disturbances at will. Overcoming this requires the engineer to develop a realistic disturbance
model, which is a highly complex task, as such disturbances are assumed to be rare events.
Also, incorporating such a model into the game leads to a severe blowup in the size of the
game, which can lead to intractability due to the high computational complexity of synthesis.

To overcome these fundamental difficulties, Dallal, Neider, and Tabuada [10] proposed a
conceptually simple, yet powerful extension of infinite games termed “games with unmodeled
intermittent disturbances”. Such games are played similarly to classical infinite games: two
players, called Player 0 and Player 1, move a token through a finite graph, whose vertices
are partitioned into vertices under the control of Player 0 and Player 1, respectively; the
winner is declared based on a condition on the resulting play. In contrast to classical games,
however, the graph is augmented with additional disturbance edges that originate in vertices
of Player 0 and may lead to any other vertex. Moreover, the mechanics of how Player 0
moves is modified: whenever she moves the token, her move might be overridden, and the
token instead moves along a disturbance edge. This change in outcome implicitly models the
occurrence of a disturbance – the intended result of the controller and the actual result differ –
but it is not considered to be antagonistic. Instead, the occurrence of a disturbance is treated
as a rare event without any assumptions on frequency, distribution, etc. This approach very
naturally models the kind of disturbances typically occurring in control engineering [10].

As a non-technical example, consider a scenario with three siblings, Alice, Bob, and
Charlie, and their father, Donald. He repeatedly asks Alice to fetch water from a well using
a jug made of clay. Alice has three ways to fulfill that task: she may get the water herself
or she may delegate it to either Bob or Charlie. In a simple model, the outcome of these
strategies is identical: Donald’s request for water is fulfilled. This is, however, unrealistic, as
this model ignores the various ways that the execution of the strategies may go wrong. By
modeling the situation as a game with disturbances, we obtain a more realistic model.

If Alice gets the jug herself, no disturbance can occur: she controls the outcome completely.
If she delegates the task to Bob, the older of her brothers, Donald may get angry with her
for not fulfilling her duties herself, which should not happen infinitely often. Finally, if she
delegates the task to her younger brother Charlie, he might drop and break the jug, which
would be disastrous for Alice.

These strategies can withstand different numbers of disturbances: the first strategy does
not offer any possibility for disturbances, while infinitely many (a single) disturbance cause
Alice to lose when using the second (the third) strategy. This model captures the intuition
about Donald’s and Charlie’s behavior: both events occur non-antagonistically and their
frequency is unknown.

D. Neider, A. Weinert, and M. Zimmermann 34:3

A

B

C

v6/1

v4/1

v5/0v3/1

v2/2v1/1

v7/0 v8/1

v9/0 v10/0

Figure 1 A (max-) parity game with disturbances. Disturbance edges are drawn as dashed arrows.
Vertices are labeled with both a name and a color. Vertices under control of Player 0 are drawn as
circles, while vertices under control of Player 1 are drawn as rectangles.

This non-antagonistic nature of disturbances is different from existing approaches in the
literature and causes many interesting phenomena that do not occur in the classical theory
of infinite graph-based games. Some of these already manifest themselves in the parity game
shown in Figure 1, in which vertices are labeled with non-negative integers, so-called colors,
and Player 0 wins if the highest color seen infinitely often is even. Consider, for instance,
vertex v2. In the classical setting without disturbances, Player 0 wins every play reaching v2
by simply looping in this vertex forever (since the highest color seen infinitely often is even).
However, this is no longer true in the presence of disturbances: a disturbance in v2 causes a
play to proceed to vertex v1, from which Player 0 can no longer win. In vertex v7, Player 0
is in a similar, yet less severe situation: she wins every play with finitely many disturbances
but loses if infinitely many disturbances occur. Finally, vertex v9 falls into a third category:
from this vertex, Player 0 wins every play even if infinitely many disturbances occur. In fact,
disturbances partition the set of vertices from which Player 0 can guarantee to win into three
disjoint regions (indicated as shaded boxes in Figure 1): (A) vertices from which she can win
if at most a fixed finite number of disturbances occur, (B) vertices from which she can win if
any finite number of disturbances occurs but not if infinitely many occur, and (C) vertices
from which she can win even if infinitely many disturbances occur.

The observation above gives rise to a question that is both theoretically interesting and
practically important: if Player 0 can tolerate different numbers of disturbances from different
vertices, how should she play to be resilient3 to as many disturbances as possible, i.e., to
tolerate as many disturbances as possible but still win? Put slightly differently, disturbances
induce an order on the space of winning strategies (“a winning strategy is better if it is more
resilient”), and the natural problem is to compute optimally resilient winning strategies,
yielding optimally resilient controllers. Note that this is in contrast to the classical theory of
infinite games, where the space of winning strategies is unstructured.

Dallal, Neider, and Tabuada [10] have solved the problem of computing optimally resilient
winning strategies for safety games. Their approach exploits the existence of maximally
permissive winning strategies in safety games [2], which allows Player 0 to avoid “harmful”
disturbance edges during a play. In games with more expressive winning conditions, however,
this is no longer possible, as witnessed by vertex v4 in the example of Figure 1: although
Player 0 can avoid a disturbance edge by looping in v4 forever, she needs to move to v2
eventually in order to see an even color (otherwise she loses), thereby risking to lose if a

3 We have deliberately chosen the term resilience so as to avoid confusion with the already highly
ambiguous notions of robustness and fault tolerance.

CSL 2018

34:4 Synthesizing Optimally Resilient Controllers

disturbance occurs. In fact, the problem of constructing optimally resilient winning strategies
for games other than safety games is still open. In this work, we solve this problem for a large
class of infinite games, including parity games. In detail, our contributions are as follows.

We study the concept of resilience, which captures for each vertex how many disturbances
need to occur for Player 0 to lose. This generalizes the notion of determinacy and allows us
to derive optimally resilient winning strategies.

Our main result is an algorithm for computing the resilience of vertices and optimally
resilient winning strategies. This algorithm requires the game to have a prefix-independent
winning condition, to be determined, and all its subgames to be (classically) solvable. The
latter two conditions are necessary, as resilience generalizes determinacy and computing
optimally resilient strategies generalizes solving games. The algorithm uses solvers for the
underlying game without disturbances as a subroutine, which it invokes a linear number
of times on various subgames. For many winning conditions, the time complexity of our
algorithm thus falls into the same complexity class as solving the original game without
disturbances, e.g., we obtain a quasipolynomial algorithm for parity games with disturbances,
which matches the currently best known upper bound for classical parity games.

Stated differently, if the three assumptions above are satisfied by a winning condition,
then computing the resilience and optimally resilient strategies is not harder than determining
winning regions and winning strategies (ignoring a polynomial overhead).

Our algorithm requires the winning condition of the game to be prefix-independent. We
also show how to overcome this restriction by generalizing the classical notion of game
reductions to the setting of games with disturbances. As a consequence, via reductions our
algorithm can be applied to prefix-dependent winning conditions. Hence, we have generalized
the original result of Dallal, Neider, and Tabuada from safety games to all games which are
algorithmically solvable, in particular all ω-regular games.

Finally, we discuss further phenomena that arise in the presence of disturbances. Amongst
others, we illustrate how the additional goal of avoiding disturbances whenever possible
affects the memory requirements of strategies. Moreover, we raise the question of how
benevolent disturbances can be leveraged to recover from losing a play. However, an in-depth
investigation of these phenomena is outside the scope of this paper and left for future work.

Proofs omitted due to space restrictions are in the full version [18].

Related Work. The notion of unmodeled intermittent disturbances in infinite games has
recently been formulated by Dallal, Neider, and Tabuada [10]. In that work, the authors
also present an algorithm for computing optimally resilient strategies for safety games with
disturbances, which is an extension of the classical attractor computation [14]. Due to the
relatively simple nature of such games, however, this algorithm cannot easily be extended to
handle more expressive winning conditions, and the approach presented in this work relies
on fundamentally different ideas.

For the special case of parity games, we can also characterize vertices of finite resilience
(presented in Subsection 3.1) by a reduction to finding optimal strategies in energy parity
games [9], which yields the same complexity as our algorithm (though such a reduction would
not distinguish between vertices of type B and type C). Also, it is unclear if and how this
reduction can be extended to other winning conditions and if custom-made solutions would
be required for each new class of game. By contrast, our refinement-based approach works
for any class of infinite games that satisfies the mild assumptions discussed in Section 4.

Resilience is not a novel concept in the context of reactive systems synthesis. It appears,
for instance, in the work by Topcu et al. [21] as well as Ehlers and Topcu [12]. A notion
of resilience that is very similar to the one considered here has been proposed by Huang

D. Neider, A. Weinert, and M. Zimmermann 34:5

et al. [15], where the game graph is augmented with so-called “error edges”. However, this
setting differs from the one studied in this work in various aspects. Firstly, Huang et al. work
in the framework of concurrent games and model errors as being under the control of Player 1.
This contrasts to the setting considered here, in which the players play in alternation and
disturbances are seen as rare events rather than antagonistic to Player 0. Secondly, Huang
et al. restrict themselves to safety games, whereas we consider a much broader class of infinite
games. Finally, Huang et al. compute resilient strategies with respect to a fixed parameter k,
thus requiring to repeat the computation for various values of k to find optimally resilient
strategies. In contrast, our approach computes an optimal strategy in a single run. Hence,
they consider a more general model of interaction, but only a simple winning condition, while
the notion of disturbances considered here is incomparable to theirs.

Related to resilience are various notions of fault tolerance [1, 7, 11, 13] and robustness [3,
4, 5, 6, 16, 19, 20]. For instance, Brihaye et al. [7] consider quantitative games under failures,
which are a generalization of sabotage games [22]. The main difference to our setting is that
Brihaye et al. consider failures – embodied by a saboteur player – as antagonistic, whereas
we consider disturbances as a non-antagonistic events. Moreover, solving a parity game
while maintaining a cost associated with the sabotage semantics below a given threshold is
ExpTime-complete, whereas our approach computes optimally resilient controllers for parity
conditions in quasipolynomial time.

Besides fault tolerance, robustness in the area of reactive controller synthesis has also
attracted considerable interest in the recent years, typically in settings with specifications of
the form ϕ⇒ ψ stating that the controller needs to fulfill the guarantee ψ if the environment
satisfies the assumption ϕ. A prominent example of such work is that of Bloem et al. [3], in
which the authors understand robustness as the property that “if assumptions are violated
temporarily, the system is required to recover to normal operation with as few errors as
possible” and consider the synthesis of robust controllers for the GR(1) fragment of Linear
Temporal Logic [6]. Other examples include quantitative synthesis [4], where robustness
is defined in terms of payoffs, and the synthesis of robust controllers for cyber-physical
systems [16, 19]. For a more in-depth discussion of related notions of resilience and robustness
in reactive synthesis, we refer the interested reader to Dallal, Neider, and Tabuada’s section
on related work [10, Section I]. Moreover, a survey of a large body of work dealing with
robustness in reactive synthesis has been presented by Bloem et al. [5].

2 Preliminaries

For notational convenience, we employ some ordinal notation à la von Neumann: the non-
negative integers are defined inductively as 0 = ∅ and n+ 1 = n ∪ {n}. Now, the first limit
ordinal is ω = {0, 1, 2, . . .}, the set of the non-negative integers. The next two successor
ordinals are ω + 1 = ω ∪ {ω} and ω + 2 = ω + 1∪ {ω + 1}. These ordinals are ordered by set
inclusion, i.e., we have 0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2. For convenience of notation,
we also denote the cardinality of ω by ω.

Infinite Games with Disturbances. An arena (with unmodeled disturbances) A = (V, V0, V1,

E,D) consists of a finite directed graph (V,E), a partition {V0, V1} of V into the set of
vertices V0 of Player 0 (denoted by circles) and the set of vertices of Player 1 (denoted by
squares), and a set D ⊆ V0 × V of disturbance edges (denoted by dashed arrows). Note that
only vertices of Player 0 have outgoing disturbance edges. We require that every vertex v ∈ V
has a successor v′ with (v, v′) ∈ E to avoid finite plays.

CSL 2018

34:6 Synthesizing Optimally Resilient Controllers

A play in A is an infinite sequence ρ = (v0, b0)(v1, b1)(v2, b2) · · · ∈ (V × {0, 1})ω such
that b0 = 0 and for all j > 0: bj = 0 implies (vj−1, vj) ∈ E, and bj = 1 implies
(vj−1, vj) ∈ D. Hence, the additional bits bj for j > 0 denote whether a standard or
a disturbance edge has been taken to move from vj−1 to vj . We say ρ starts in v0. A play
prefix (v0, b0) · · · (vj , bj) is defined similarly and ends in vj . The number of disturbances in a
play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is #D(ρ) = |{j ∈ ω | bj = 1}|, which is either some k ∈ ω
(if there are finitely many disturbances, namely k) or it is equal to ω (if there are infinitely
many). A play ρ is disturbance-free, if #D(ρ) = 0.

A game (with unmodeled disturbances), denoted by G = (A,Win), consists of an arena A =
(V, V0, V1, E,D) and a winning condition Win ⊆ V ω. A play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is
winning for Player 0, if v0v1v2 · · · ∈Win, otherwise it is winning for Player 1. Hence, winning
is oblivious to occurrences of disturbances. A winning condition Win is prefix-independent if
for all ρ ∈ V ω and all w ∈ V ∗ we have ρ ∈Win if and only if wρ ∈Win.

In examples, we often use the parity condition, the canonical ω-regular winning condition.
Let Ω: V → ω be a coloring of a set V of vertices. The (max-) parity condition Parity(Ω) =
{v0v1v2 · · · ∈ V ω | lim sup Ω(v0)Ω(v1)Ω(v2) · · · is even} requires the maximal color occurring
infinitely often during a play to be even. A game (A,Win) is a parity game, if Win = Parity(Ω)
for some coloring Ω of the vertices of A. In figures, we label a vertex v with color c by v/c.

In our proofs we make use of the safety condition Safety(U) = {v0v1v2 · · · ∈ V ω | vj /∈
U for every j ∈ ω} for a given set U ⊆ V of unsafe vertices. It requires Player 0 to only visit
safe vertices, i.e., Player 1 wins a play if it visits at least one unsafe vertex.

A strategy for Player i ∈ {0, 1} is a function σ : V ∗Vi → V such that (vj , σ(v0 · · · vj)) ∈ E
holds for every v0 · · · vj ∈ V ∗Vi. A play (v0, b0)(v1, b1)(v2, b2) · · · is consistent with σ, if
vj+1 = σ(v0 · · · vj) for every j with vj ∈ Vi and bj+1 = 0, i.e., if the next vertex is the one
prescribed by the strategy unless a disturbance edge is used. A strategy σ is positional, if
σ(v0 · · · vj) = σ(vj) for all v0 · · · vj ∈ V ∗Vi.

I Remark. Note that a strategy σ does not have access to the bits indicating whether a
disturbance occurred or not. However, this is not a restriction: let (v0, b0)(v1, b1)(v2, b2) · · ·
be a play with bj = 1 for some j > 0. We say that this disturbance is consequential (w.r.t.
σ), if vj 6= σ(v0 · · · vj−1), i.e., if the disturbance transition (vj−1, vj) traversed by the play
did not lead to the vertex the strategy prescribed. Such consequential disturbances can be
detected by comparing the actual vertex vj to σ’s output σ(v0 · · · vj−1). On the other hand,
inconsequential disturbances will just be ignored. In particular, the number of consequential
disturbances is always at most the number of disturbances.

Infinite Games without Disturbances. We characterize the classical notion of infinite
games, i.e., those without disturbances, (see, e.g., [14]) as a special case of games with
disturbances. Let G be a game with vertex set V . A strategy σ for Player i in G is a winning
strategy for her from v ∈ V , if every disturbance-free play that starts in v and that is
consistent with σ is winning for Player i.

The winning region Wi(G) of Player i in G contains those vertices v ∈ V from which
Player i has a winning strategy. Thus, the winning regions of G are independent of the
disturbance edges, i.e., we obtain the classical notion of infinite games. We say that Player i
wins G from v, if v ∈ Wi(G). Solving a game amounts to determining its winning regions.
Note that every game has disjoint winning regions. In contrast, a game is determined, if
every vertex is in either winning region.

D. Neider, A. Weinert, and M. Zimmermann 34:7

Resilient Strategies. Let G be a game with vertex set V and let α ∈ ω + 2. A strategy σ
for Player 0 in G is α-resilient from v ∈ V if every play ρ that starts in v, that is consistent
with σ, and with #D(ρ) < α, is winning for Player 0. Thus, a k-resilient strategy with k ∈ ω
is winning even under at most k − 1 disturbances, an ω-resilient strategy is winning even
under any finite number of disturbances, and an (ω + 1)-resilient strategy is winning even
under infinitely many disturbances. Note that every strategy is 0-resilient, as no play has
less than zero disturbances. Also, a strategy is 1-resilient from v if and only if it is winning
for Player 0 from v. We define the resilience of a vertex v of G as

rG(v) = sup{α ∈ ω + 2 | Player 0 has an α-resilient strategy for G from v}.

Note that the definition is not antagonistic, i.e., it is not defined via strategies of Player 1.
Nevertheless, due to the remarks above, resilient strategies generalize winning strategies.
I Remark. Let G be a determined game. Then, rG(v) > 0 if and only if v ∈ W0(G).

A strategy σ is optimally resilient, if it is rG(v)-resilient from every vertex v. Every such
strategy is a uniform winning strategy for Player 0, i.e., a strategy that is winning from
every vertex in her winning region. Hence, positional optimally resilient strategies can only
exist in games which have uniform positional winning strategies for Player 0. Our goal is to
determine the mapping rG and to compute an optimally resilient strategy.

3 Computing Optimally Resilient Strategies

To compute optimally resilient strategies, we first characterize the vertices of finite resilience
in Subsection 3.1. All other vertices either have resilience ω or ω + 1. To distinguish
between these possibilities, we show how to determine the vertices with resilience ω + 1 in
Subsection 3.2. In Subsection 3.3, we show how to compute optimally resilient strategies
using the results of the first two subsections.

3.1 Characterizing Vertices of Finite Resilience
Our goal in this subsection is to characterize vertices with finite resilience in a game with
prefix-independent winning condition, i.e., those vertices from which Player 0 can win even
under k − 1 disturbances, but not under k disturbances, for some k ∈ ω.

To illustrate our approach, consider the parity game in Figure 1 (on Page 3). The winning
region of Player 1 only contains the vertex v1. Thus, by Remark 2, v1 is the only vertex with
resilience zero, every other vertex has a larger resilience.

Now, consider the vertex v2, which has a disturbance edge leading into the winning region
of Player 1. Due to this edge, v2 has resilience one. The unique disturbance-free play starting
in v1 is consistent with every strategy for Player 0 and violates the winning condition. Due
to prefix-independence, prepending the disturbance edge does not change the winner and
consistency with every strategy for Player 0. Hence, this play witnesses that v2 has resilience
at most one, while v2 being in Player 0’s winning region yields the matching lower bound.
However, v2 is the only vertex to which this reasoning applies. Now, consider v3: from here,
Player 1 can force a play to visit v2 using a standard edge. Thus, v3 has resilience one as
well. Again, this is the only vertex to which this reasoning is applicable.

In particular, from v4 Player 0 can avoid reaching the vertices for which we have determined
the resilience by using the self loop. However, this comes at a steep price for her: doing so
results in a losing play, as the color of v4 is odd. Thus, if she wants to have a chance at
winning, she has to take a risk by moving to v2, from which she has a 1-resilient strategy,

CSL 2018

34:8 Synthesizing Optimally Resilient Controllers

i.e., one that is winning if no more disturbances occur. For this reason, v4 has resilience one
as well. The same reasoning applies to v6: Player 1 can force the play to v4 and from there
Player 0 has to take a risk by moving to v2.

The vertices v3, v4, and v6 share the property that Player 1 can either enforce a play
violating the winning condition or reach a vertex with already determined finite resilience.
These three vertices are the only ones currently satisfying this property. They all have
resilience one since Player 1 can enforce to reach a vertex of resilience one, but he cannot
enforce reaching a vertex of resilience zero. Now, we can also determine the resilience of v5:
The disturbance edge from v5 to v3 witnesses it being two.

Afterwards, these two arguments no longer apply to new vertices: no disturbance edge
leads from a v ∈ {v7, . . . , v10} to some vertex whose resilience is already determined and
Player 0 has a winning strategy from each v that additionally avoids vertices whose resilience is
already determined. Thus, our reasoning cannot determine their resilience. This is consistent
with our goal, as all four vertices have non-finite resilience: v7 and v8 have resilience ω and
v9 and v10 have resilience ω+ 1. Our reasoning here cannot distinguish these two values. We
solve this problem in Subsection 3.2.

We now formalize the reasoning sketched above: starting from the vertices in Player 1’s
winning region having resilience zero, we use a so-called disturbance update and risk update
to determine all vertices of finite resilience. A disturbance update computes the resilience of
vertices having a disturbance edge to a vertex whose resilience is already known (such as
vertices v2 and v5 in the example of Figure 1). A risk update, on the other hand, determines
the resilience of vertices from which either Player 1 can force a visit to a vertex with known
resilience (such as vertices v3 and v6) or Player 0 needs to move to such a vertex in order to
avoid losing (e.g., vertex v4). To simplify our proofs, we describe both as monotone operators
updating partial rankings mapping vertices to ω, which might update already defined values.
We show that applying these updates in alternation eventually yields a stable ranking that
indeed characterizes the vertices of finite resilience.

Throughout this section, we fix a game G = (A,Win) withA = (V, V0, V1, E,D) and prefix-
independent Win ⊆ V ω satisfying the following condition: the game (A,Win ∩ Safety(U)) is
determined for every U ⊆ V . We discuss this requirement in Section 4.

A ranking for G is a partial mapping r : V 99K ω. The domain of r is denoted by dom(r),
its image by im(r). Let r and r′ be two rankings. We say that r′ refines r if dom(r′) ⊇ dom(r)
and if r′(v) ≤ r(v) for all v ∈ dom(r). A ranking r is sound, if we have r(v) = 0 if and only
if v ∈ W1(G) (cf. Remark 2).

Let r be a ranking for G. We define the ranking r′ as

r′(v) = min
(
{r(v)} ∪ {r(v′) + 1 | v′ ∈ dom(r) and (v, v′) ∈ D}

)
,

where {r(v)} = ∅ if v /∈ dom(r), and min ∅ is undefined (causing r′(v) to be undefined). We
call r′ the disturbance update of r.

I Lemma 1. The disturbance update r′ of a sound ranking r is sound and refines r.

Again, let r be a ranking for G. For every k ∈ im(r) let Ak =W1(A,Win ∩ Safety({v ∈
dom(r) | r(v) ≤ k})) the winning region of Player 1 in the game where he either wins
by reaching a vertex v with r(v) ≤ k or by violating the winning condition. Now, define
r′(v) = min{k | v ∈ Ak}, where min ∅ is again undefined. We call r′ the risk update of r.

I Lemma 2. The risk update r′ of a sound ranking r is sound and refines r.

D. Neider, A. Weinert, and M. Zimmermann 34:9

Let r0 be the unique sound ranking with domain W1(G), i.e., r0 maps exactly the vertices
in Player 1’s winning region to zero. Starting with r0, we inductively define a sequence of
rankings (rj)j∈ω such that rj for an odd (even) j > 0 is the disturbance (risk) update of
rj−1, i.e., we alternate between disturbance and risk updates.

Due to refinement, the rj eventually stabilize, i.e., there is some j0 such that rj = rj0

for all j ≥ j0. Define r∗ = rj0 . Due to r0 being sound and by Lemma 1 and Lemma 2, each
rj , and r∗ in particular, is sound. If v ∈ dom(r∗), let jv be the minimal j with v ∈ dom(rj);
otherwise, jv is undefined.

I Lemma 3. If v ∈ dom(r∗), then rjv (v) = rj(v) for all j ≥ jv.

Lemma 3 implies that an algorithm computing the rj does not need to implement the
definition of the two updates as presented above, but can be optimized by taking into account
that a rank is never updated once set. However, for the proofs below, the definition presented
above is more expedient, as it gives stronger preconditions to rely on, e.g., Lemma 1 and 2
only hold for the definition presented above.

Also, from the proof of Lemma 3, we obtain an upper bound on the maximal rank of r∗.
This in turn implies that the rj stabilize quickly, as rj = rj+1 = rj+2 implies rj = r∗.

I Corollary 4. We have im(r∗) = {0, 1, . . . , n} for some n < |V | and r∗ = r2|V |.

The main result of this section shows that r∗ characterizes the resilience of vertices of
finite resilience.

I Lemma 5. Let r∗ be defined for G as above, and let v ∈ V .
1. If v ∈ dom(r∗), then rG(v) = r∗(v).
2. If v /∈ dom(r∗), then rG(v) ∈ {ω, ω + 1}.

Combining Corollary 4 and Lemma 5, we obtain an upper bound on the resilience of
vertices with finite resilience.

I Corollary 6. We have rG(V) ∩ ω = {0, 1, . . . , n} for some n < |V |.

3.2 Characterizing Vertices of Resilience ω + 1

Our goal in this subsection is to determine the vertices of resilience ω + 1, i.e., those from
which Player 0 can win even under an infinite number of disturbances. Intuitively, in this
setting, we give Player 1 control over the disturbance edges, as he cannot execute more than
infinitely many disturbances during a play.

In the following, we prove this intuition to be correct. To this end, we transform the
arena of the game so that at a Player 0 vertex, first Player 1 gets to chose whether he wants
to take one of the disturbance edges and, if not, gives control to Player 0, who is then able
to use a standard edge.

Given a game G = (A,Win) with A = (V, V0, V1, E,D), we define the rigged game Grig =
(A′,Win′) with A′ = (V ′, V ′0 , V ′1 , E′, D′) such that V ′ = V ′0 ∪ V ′1 with V ′0 = {v | v ∈ V0} and
V ′1 = V and D′ = ∅. The set E′ of edges is the union of the following sets:

D: Player 1 uses a disturbance edge.
{(v, v) | v ∈ V0}: Player 1 does not use a disturbance edge and yields control to Player 0.
{(v, v′) | (v, v′) ∈ E and v ∈ V0}: Player 0 has control and picks a standard edge.
{(v, v′) | (v, v′) ∈ E and v ∈ V1}: Player 1 takes a standard edge.

CSL 2018

34:10 Synthesizing Optimally Resilient Controllers

W1

W0

v6/1

v4/1v4/1

v5/0

v5/0

v3/1

v2/2

v2/2

v1/1

v7/0 v7/0 v8/1

v9/0 v9/0 v10/0

Figure 2 The rigged game obtained for the game of Figure 1.

Further, Win′ = {ρ ∈ (V ′)ω | h(ρ) ∈ Win} where h is the homomorphism induced by
h(v) = v and h(v) = ε for every v ∈ V .

Figure 2 illustrates the construction of a rigged game for the example game of Figure 1
(note that the rigged game is also a parity game in this example). Note that the winning
region of Player 0 corresponds to the vertices of resilience ω + 1 in the game of Figure 1.

The following lemma formalizes the observation that W0(Grig) characterizes the vertices
of resilience ω + 1 in G. Note that we have no assumptions on G here.

I Lemma 7. Let v be a vertex of game G. Then, v ∈ W0(Grig) if and only if rG(v) = ω + 1.

Note that a slight extension of the rigged game also allows to characterize the vertices of
resilience ω. To this end, one uses the same arena as for the rigged game, but adds to the
winning condition of the rigged game all those plays during which Player 1 takes infinitely
many disturbance edges. Then, Player 0 has to satisfy the original winning condition if
only finitely many disturbance edges are taken by Player 1, but wins vacuously if Player 1
takes infinitely many disturbance edges. This is possible from exactly those vertices that
have resilience ω. However, for our purposes, we do not need to investigate this modified
rigged game. We have shown how to determine the vertices of finite resilience and those of
resilience ω + 1. Thus, all other vertices have resilience ω.

Furthermore, the proof of Lemma 7 also yields the preservation of positional strategies.

I Corollary 8. Assume Player 0 has a positional winning strategy for Grig from v. Then,
Player 0 has an (ω + 1)-resilient positional strategy from v.

3.3 Computing Optimally Resilient Strategies
This subsection is concerned with computing the resilience and optimally resilient strategies.
Here, we focus on positional and finite-state strategies, which are sufficient for the majority
of winning conditions in the literature. Nevertheless, it is easy to see that our framework is
also applicable to infinite-state strategies.

In the proof of Lemma 5, we construct strategies σf and σω such that σf is rG(v)-resilient
from every v with rG(v) ∈ ω and such that σω is ω-resilient from every v with rG(v) ≥ ω. Both
strategies are obtained by combining winning strategies for some game (A,Win∩ Safety(U)).
However, even if these winning strategies are positional, the strategies σf and σω are in
general not positional. Nonetheless, we show in the proof of Theorem 9 that such positional
winning strategies and a positional one for Grig can be combined into a single positional
optimally resilient strategy.

Recall the requirements from Subsection 3.1 for a game (A,Win): Win is prefix-
independent and the game GU is determined for every U ⊆ V , where we write GU for
the game (A,Win ∩ Safety(U)) for some U ⊆ V . To prove the results of this subsection, we

D. Neider, A. Weinert, and M. Zimmermann 34:11

need to impose some additional effectiveness requirements: we require that each game GU

and the rigged game Grig can be effectively solved. Also, we first assume that Player 0 has
positional winning strategies for each of these games, which have to be effectively computable
as well. We discuss the severity of these requirements in Section 4.

I Theorem 9. Let G satisfy all the above requirements. Then, the resilience of G’s vertices
and a positional optimally resilient strategy can be effectively computed.

To prove this result, we refine the following standard technique that combines positional
winning strategies for games with prefix-independent winning conditions.

Assume we have a positional strategy σv for every vertex v in some set W ⊆ V such that
σv is winning from v. Furthermore, let Rv be the set of vertices visited by plays that start in
v and are consistent with σv. Also, let m(v) = min≺{v′ ∈ V | v ∈ Rv′} for some strict total
ordering ≺ of W . Then, the positional strategy σ defined by σ(v) = σm(v)(v) is winning
from each v ∈ W , as along every play that starts in some v ∈ W and is consistent with
σ, the value of the function m only decreases. Thus, after it has stabilized, the remaining
suffix is consistent with some strategy σv′ . Hence, the suffix is winning for Player 0 and
prefix-independence implies that the whole play is winning for her as well.

Here, we have to adapt this reasoning to respect the resilience of the vertices and to
handle disturbance edges. Also, we have to pay attention to vertices of resilience ω + 1, as
plays starting in such vertices have to be winning under infinitely many disturbances.

Proof of Theorem 9. The effective computability of the resilience follows from the effective-
ness requirements on G: to compute the ranking r∗, it suffices to compute the disturbance
and risk updates. The former are trivially effective while the effectiveness of the latter ones
follows from our assumption. Lemma 5 shows that r∗ correctly determines the resilience
of all vertices with finite resilience. Finally by solving the rigged game, we also determine
the resilience of the remaining vertices (Lemma 7). Again, this game can be solved by
our assumption. Thus, it remains to show how to compute a positional optimally resilient
strategy. To this end, we compute a positional strategy σv for every v satisfying the following:

For every v ∈ V with rG(v) ∈ ω \ {0}, the strategy σv is winning for Player 0 from v for
the game (A,Win ∩ Safety({v′ ∈ V | rG(v′) < rG(v)})). The existence of such a strategy
has been shown in the proof of Item 1 of Lemma 5.
For every v ∈ V with rG(v) = ω, the strategy σv is winning for Player 0 from v for the
game (A,Win∩Safety({v′ ∈ V | rG(v′) ∈ ω})). The existence of such a strategy has been
shown in the proof of Item 2 of Lemma 5.
For every v ∈ V with rG(v) = ω + 1, the strategy σv is (ω + 1)-resilient from v. The
existence of such a strategy follows from Corollary 8, as we assume Player 0 to win Grig
with positional strategies.
For every v ∈ V with rG(v) = 0, we fix an arbitrary positional strategy σv for Player 0.

Furthermore, we fix a strict linear order ≺ on V such that v ≺ v′ implies rG(v) ≤ rG(v′),
i.e., we order the vertices by ascending resilience. For v ∈ V with rG(v) 6= ω + 1, let Rv be
the vertices reachable via disturbance-free plays that start in v and are consistent with σv.
On the other hand, for v ∈ V with rG(v) = ω + 1, let Rv be the set of vertices reachable via
plays with arbitrarily many disturbances that start in v and are consistent with σv.

We claim Rv ⊆ {v′ ∈ V | rG(v′) ≥ rG(v)} for every v ∈ V (∗). For v with rG(v) 6= ω + 1
this follows immediately from the choice of σv. Thus, let v with rG(v) = ω + 1. Assume σv

reaches a vertex v′ of resilience rG(v′) 6= ω + 1. Then, there exists a play ρ′ starting in v′
that is consistent with σv, has less than ω + 1 many disturbances and is losing for Player 0.

CSL 2018

34:12 Synthesizing Optimally Resilient Controllers

Thus the play obtained by first taking the play prefix to v′ and then appending ρ′ without
its first vertex yields a play starting in v, consistent with σv, but losing for Player 0. This
play witnesses that σv is not (ω + 1)-resilient from v, which yields the desired contradiction.

Let m : V → V be given as m(v) = min≺{v′ ∈ V | v ∈ Rv′} and define the positional
strategy σ as σ(v) = σm(v)(v). By our assumptions, σ can be effectively computed. It
remains to show that it is optimally resilient.

To this end, we apply the following two properties of edges (v, v′) that may appear during
a play that is consistent with σ, i.e., we either have v ∈ V0 and σ(v) = v′ (which implies
(v, v′) ∈ E), or v ∈ V1 and (v, v′) ∈ E, or v ∈ V0 and (v, v′) ∈ D:
1. If (v, v′) ∈ E, then we have rG(v) ≤ rG(v′) and m(v) ≥ m(v′). The first property follows

from minimality of m(v) and (∗) while the second follows from the definition of Rv.
2. If (v, v′) ∈ D, then we distinguish several subcases, which all follow immediately from

the definition of resilience:
If rG(v) ∈ ω, then rG(v′) ≥ rG(v)− 1.
If rG(v) = ω, then rG(v′) = ω, and
If rG(v) = ω + 1, then rG(v′) = ω + 1 and m(v) ≥ m(v′) (here, the second property
follows from the definition of Rv for v with rG(v) = ω + 1, which takes disturbance
edges into account).

Now, consider a play ρ = (v0, b0)(v1, b1)(v2, b2) · · · that is consistent with σ. If rG(v0) = 0
then we have nothing to show, as every strategy is 0-resilient from v.

Now, assume rG(v0) ∈ ω\{0}. We have to show that if ρ has less than rG(v0) disturbances,
then it is winning for Player 0. An inductive application of the above properties shows that
in that case the last disturbance edge leads to a vertex of non-zero resilience. Furthermore,
as the values m(vj) are only decreasing afterwards, they have to stabilize at some later point.
Hence, there is some suffix of ρ that starts in some v′ with non-zero resilience and that is
consistent with the strategy σv′ . Thus, the suffix is winning for Player 0 by the choice of σv′

and prefix-independence implies that ρ is winning for her as well.
Next, assume rG(v0) = ω. We have to show that if ρ has a finite number of disturbances,

then it is winning for Player 0. Again, an inductive application of the above properties
shows that in that case the last disturbance edge leads to a vertex of resilience ω or ω + 1.
Afterwards, the values m(vj) stabilize again. Hence, there is some suffix of ρ that starts in
some v′ with non-zero resilience and that is consistent with the strategy σv′ . Thus, the suffix
is winning for Player 0 by the choice of σv′ and prefix-independence implies that ρ is winning
for her as well.

Finally, assume rG(v0) = ω + 1. Then, the above properties imply that ρ only visits
vertices with resilience ω + 1 and that the values m(vj) eventually stabilize. Hence, there
is a suffix of ρ that is consistent with some (ω + 1)-resilient strategy σv′ , where v′ is the
first vertex of the suffix. Hence, the suffix is winning for Player 0, no matter how many
disturbances occurred. This again implies that ρ is winning for her as well. J

The algorithm determining the vertices’ resilience and a positional optimally resilient
strategy first computes r∗ and the winner of the rigged game. This yields the resilience of
G’s vertices. Furthermore, the strategy is obtained by combining winning strategies for the
games GU and for the rigged game as explained above.

Next, we analyze the complexity of the algorithm sketched above in some more detail. The
inductive definition of the rj can be turned into an algorithm computing r∗ (using the results
of Lemma 3 to optimize the naive implementation), which has to solve O(|V |) many games
(and compute winning strategies for some of them) with winning condition Win ∩ Safety(U).

D. Neider, A. Weinert, and M. Zimmermann 34:13

Furthermore, the rigged game, which is of size O(|V |), has to be solved and winning strategies
have to be determined. Thus, the overall complexity is in general dominated by the complexity
of solving these tasks.

We explicitly state one complexity result for the important case of parity games, using the
fact that each of these games is then a parity game as well. Also, we use a quasipolynomial
time algorithms for solving parity games [8] to solve the games GU and Grig.

I Theorem 10. Optimally resilient strategies in parity games are positional and can be
computed in quasipolynomial time.

Using similar arguments, one can also analyze games where positional strategies do not
suffice. As above, assume G satisfies the same assumptions on determinacy and effectiveness,
but only require that Player 0 has finite-state winning strategies4 for each game with winning
condition (A,Win ∩ Safety(U)) and for the rigged game Grig. Then, one can show that she
has a finite-state optimally resilient strategy. In fact, by reusing memory states, one can
construct an optimally resilient strategy that it is not larger than any constituent strategy.

4 Discussion

In this section, we discuss the assumptions required to be able to compute positional (finite-
state) optimally resilient strategies with the algorithm presented in Section 3. To this end, fix
a game G = (A,Win) with vertex set V and recall that Grig is the corresponding rigged game
and that we defined GU = (A,Win ∩ Safety(U)) for U ⊆ V . Now, the assumptions on G
for Theorem 9 to hold are as follows: (1) Every game GU is determined. (2) Player 0 has a
positional winning strategy from every vertex in her winning regions in the GU and in the
game Grig. (3) Each GU and the game Grig can be effectively solved and positional winning
strategies can be effectively computed for each such game. (4) Win is prefix-independent.

First, consider the determinacy assumption. It is straightforward to show W0(GU) =
W0(A\W,Win∩ (V \W)ω) with W =W1(A,Safety(U)). Thus, one can first determine and
then remove the winning region of Player 1 in the safety game and then solve the subgame
of G played in Player 0’s winning region of the safety game. Thus, all subgames of G being
determined suffices for our determinacy requirement being satisfied. The winning conditions
one typically studies, e.g., parity and in fact all Borel ones [17], satisfy this property.

The next requirement concerns the existence of positional (finite-state) winning strategies
for the games GU and Grig. For the GU , this requirement is satisfied if Player 0 has positional
(finite-state) winning strategies for all subgames of G. As every positional (finite-state)
optimally resilient strategy is also a winning strategy in a certain subgame, this condition is
necessary. Now, consider Grig, whose winning condition can be written as h−1(Win) for the
homomorphism h from Subsection 3.2. The winning conditions one typically studies, e.g., the
Borel ones, are closed w.r.t. such supersequences. If G is from a class of winning conditions
that allows for positional (finite-state) winning strategies for Player 0, then this class typically
also contains Grig. Also, the assumption on the effective solvability and computability of
positional (finite-state) strategies is obviously necessary, as we solve a more general problem
when determining optimally resilient strategies.

Finally, let us consider prefix-independence. If the winning condition is not prefix-
independent, the algorithm presented in Section 3 does not compute the resilience of vertices
correctly anymore. As an example, consider the family Gk = (A,Wink) of games shown

4 A finite state strategy is implemented by a finite automaton that processes play prefixes and outputs
vertices to move to. See the full version [18] for a formal definition.

CSL 2018

34:14 Synthesizing Optimally Resilient Controllers

W0 W1W0v v′

Wink = {v0v1v2 · · · ∈ V ω |
|{j | vj = v}| ≤ k}

v0/0 v1/1

v2/1

v′
2/1

v3/0

Figure 3 Left: Counterexample to the correctness of the computation of resilience for games
with prefix-dependent winning conditions. Right: Intuitively, moving from v1 to v′

2 is preferable for
Player 0, as it allows her to possibly “recover” from a first fault with the “help” of a second one.

on the left-hand side of Figure 3. In Gk, it is Player 0’s goal to avoid more than k visits
to v. Such a visit only occurs via a disturbance or if the initial vertex is v. Hence, we
have rGk

(v) = k and rGk
(v′) = k + 1. Applying the algorithm from Section 3, however, the

initial ranking function r0 has an empty domain, since we have W1(Gk) = ∅. Thus, the
computation of the rj immediately stabilizes, yielding r∗ with empty domain. This is a
counterexample to the generalization of Lemma 5 to prefix-dependent winning conditions.

Nevertheless, one can still leverage the algorithm from Section 3 in order to compute the
resilience of a wide range of games with prefix-dependent winning conditions. To this end,
we extend the framework of game reductions to games with disturbances, in such a way that
the existence of α-resilient strategies is preserved. Using this framework shows that Player 0
has a finite-state optimally resilient strategy in every game with ω-regular winning condition.
Due to space restrictions, the details are spelled out in the full version [18]. Here, we just
state the main result.

I Theorem 11. Let a game G be reducible to a game G′ with prefix-independent winning
condition, which can be effectively computed from G, and satisfies the assumptions from
Section 3 (with finite-state strategies). Then, the resilience of G’s vertices and an optimally
resilient finite-state strategy can be effectively computed.

5 Outlook

We have developed a fine-grained view on the quality of strategies: instead of evaluating
whether or not a strategy is winning, we compute its resilience against intermittent dis-
turbances. While this measure of quality allows constructing “better” strategies than the
distinction between winning and losing strategies, there remain aspects of optimality that
are not captured in our notion of resilience. In this section we discuss these aspects and give
examples of games in which there are crucial differences between optimally resilient strategies.
In further research, we aim to synthesize optimal strategies with respect to these criteria.

As a first example, consider the parity game shown on the right-hand side of Figure 3.
Vertices v0 and v3 have resilience 1 and ω+ 1, respectively, while vertices v1, v2, and v′2 have
resilience 0. Player 0’s only choice consists of moving to v2 or to v′2 from v1. Let σ and σ′ be
strategies for Player 0 that always move to v2 and v′2 from v1, respectively. Both strategies
are optimally resilient. Hence, the algorithm from Section 3 may yield either one, depending
on the underlying parity game solver used. Intuitively, however, σ′ is preferable for Player 0,
as a play prefix ending in v′2 may proceed to her winning region if a single disturbance
occurs. All plays encountering v2 at some point, however, are losing for her. Hence, another
interesting avenue for further research is to study how to recover from losing, i.e., how
to construct strategies that leverage disturbances in order to leave Player 1’s winning region.
For safety games, this has been addressed by Dallal, Neider, and Tabuada [10].

D. Neider, A. Weinert, and M. Zimmermann 34:15

W0

W1

W0

v0/0

v1/0 v2/0 v3/0

v′
1/0 v′

2/0 v′
3/1 v0/1

v2/2v1/1

Figure 4 Left: Moving to v1 from v0 allows Player 0 to minimize visits to odd colors, while
moving to v′

1 allows her to minimize the occurrence of disturbances. Right: Additional memory
allows Player 0 to remain in v1 longer and longer, thus decreasing the potential for disturbances.

The previous example shows that Player 0 can still make “meaningful” choices even if
the play has moved outside her winning region. The game G shown in the left-hand side of
Figure 4 demonstrates that she can do so as well when remaining in vertices of resilience ω.
Every vertex in G has resilience ω, since every play with finitely many disturbances eventually
remains in vertices of color 0. Moreover, the only choice to be made by Player 0 is whether
to move to vertex v1 or to vertex v′1 from vertex v0. Let σ and σ′ be positional strategies
that implement the former and the latter choice, respectively.

First consider a scenario in which visiting an odd color models the occurrence of some
undesirable event, e.g., that a request has not been answered. In this case, Player 0 should
aim to prevent visits to v′3 in G, the only vertex of odd color. Hence, the strategy σ should
be more desirable for her, as it requires two disturbances in direct succession in order to visit
to v′3. When playing consistently with σ′, however, a single disturbance suffices to visit v′3.

On the other hand, consider a setting in which Player 0’s goal is to avoid the occurrence
of disturbances. In that case, σ′ is preferable over σ, as it allows for fewer situations in which
disturbances may occur, since no disturbances are possible from vertices v2 and v3.

Note that the goals of minimizing visits to vertices of odd color and minimizing the
occurrence of disturbances are not contradictory: if both events are undesirable, it may be
optimal for Player 0 to combine the strategies σ and σ′. In general, it is interesting to study
how to how to best brace for a finite number of disturbances.

Recall that, due to Theorem 10, optimally resilient strategies for parity games do not
require memory. In contrast, the game shown on the right-hand side of Figure 4 demonstrates
that additional memory can serve to further improve such strategies. Any strategy for
Player 0 that does not stay in v1 from some point onwards is optimally resilient. However,
every visit to v2 risks a disturbance occurring, which would lead the play into a losing sink for
Player 0. Hence, it is in her best interest to remain in vertex v1 for as long as possible, thus
minimizing the possibility for disturbances to occur. This behavior does, however, require
memory to implement, as Player 0 needs to count the visits to v1 in order to not remain in
that state ad infinitum. Thus, for each optimally resilient strategy σ with finite memory there
exists another optimally resilient strategy that uses more memory, but visits v2 more rarely
than σ, reducing the possibilities for disturbances to occur. Hence, it is interesting to study
how to balance avoiding disturbances with satisfying the winning condition. This
is particularly interesting if there is some cost assigned to disturbances.

Finally, another important and interesting aspect, which falls outside the scope of this
paper, is to provide general guidelines and best practices on how to model synthesis problems
by games with disturbances. We will address these problems in future research.

CSL 2018

34:16 Synthesizing Optimally Resilient Controllers

6 Conclusion

We presented an algorithm for computing optimally resilient strategies in games with
disturbances to any game that satisfies some mild (and necessary) assumptions. Thereby, we
have vastly generalized the work of Dallal, Neider, and Tabuada, who only considered safety
games. Furthermore, we showed that optimally resilient strategies are typically of the same
size as classical winning strategies. Finally, we have illustrated numerous novel phenomena
that appear in the setting with disturbances but not in the classical one. Studying these
phenomena is a very promising direction of future work.

References

1 Paul C. Attie, Anish Arora, and E. Allen Emerson. Synthesis of fault-tolerant concurrent
programs. ACM Trans. Program. Lang. Syst., 26(1):125–185, 2004. doi:10.1145/963778.
963782.

2 Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games
to safety games. ITA, 36(3):261–275, 2002. doi:10.1051/ita:2002013.

3 Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, Georg
Hofferek, Barbara Jobstmann, Bettina Könighofer, and Robert Könighofer. Synthesizing
robust systems. Acta Inf., 51(3-4):193–220, 2014. doi:10.1007/s00236-013-0191-5.

4 Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In Ahmed Bouajjani and Oded
Maler, editors, CAV 2009, volume 5643 of LNCS, pages 140–156. Springer, 2009. doi:
10.1007/978-3-642-02658-4_14.

5 Roderick Bloem, Rüdiger Ehlers, Swen Jacobs, and Robert Könighofer. How to handle
assumptions in synthesis. In Krishnendu Chatterjee, Rüdiger Ehlers, and Susmit Jha,
editors, SYNT 2014, volume 157 of EPTCS, pages 34–50, 2014. doi:10.4204/EPTCS.157.
7.

6 Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Syn-
thesis of Reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012. doi:10.1016/j.
jcss.2011.08.007.

7 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Benjamin Monmege, Guillermo A. Pérez,
and Gabriel Renault. Quantitative games under failures. In FSTTCS 2015, volume 45 of
LIPIcs, pages 293–306. Schloss Dagstuhl - LZI, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.
293.

8 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Decid-
ing parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, STOC 2017, pages 252–263. ACM, 2017. doi:10.1145/3055399.3055409.

9 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor. Comput. Sci.,
458:49–60, 2012. doi:10.1016/j.tcs.2012.07.038.

10 Eric Dallal, Daniel Neider, and Paulo Tabuada. Synthesis of safety controllers robust
to unmodeled intermittent disturbances. In CDC 2016, pages 7425–7430. IEEE, 2016.
doi:10.1109/CDC.2016.7799416.

11 Ali Ebnenasir, Sandeep S. Kulkarni, and Anish Arora. FTSyn: a framework for
automatic synthesis of fault-tolerance. STTT, 10(5):455–471, 2008. doi:10.1007/
s10009-008-0083-0.

12 Rüdiger Ehlers and Ufuk Topcu. Resilience to intermittent assumption violations in reactive
synthesis. In Martin Fränzle and John Lygeros, editors, HSCC 2014, pages 203–212. ACM,
2014. doi:10.1145/2562059.2562128.

http://dx.doi.org/10.1145/963778.963782
http://dx.doi.org/10.1145/963778.963782
http://dx.doi.org/10.1051/ita:2002013
http://dx.doi.org/10.1007/s00236-013-0191-5
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.4204/EPTCS.157.7
http://dx.doi.org/10.4204/EPTCS.157.7
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.293
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.293
http://dx.doi.org/10.1145/3055399.3055409
http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://dx.doi.org/10.1109/CDC.2016.7799416
http://dx.doi.org/10.1007/s10009-008-0083-0
http://dx.doi.org/10.1007/s10009-008-0083-0
http://dx.doi.org/10.1145/2562059.2562128

D. Neider, A. Weinert, and M. Zimmermann 34:17

13 Alain Girault and Éric Rutten. Automating the addition of fault tolerance with dis-
crete controller synthesis. Form. Meth. in Sys. Des., 35(2):190–225, 2009. doi:10.1007/
s10703-009-0084-y.

14 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002. doi:
10.1007/3-540-36387-4.

15 Chung-Hao Huang, Doron A. Peled, Sven Schewe, and Farn Wang. A game-theoretic
foundation for the maximum software resilience against dense errors. IEEE Trans. Software
Eng., 42(7):605–622, 2016. doi:10.1109/TSE.2015.2510001.

16 Rupak Majumdar, Elaine Render, and Paulo Tabuada. A theory of robust omega-regular
software synthesis. ACM Trans. Embedded Comput. Syst., 13(3):48:1–48:27, 2013. doi:
10.1145/2539036.2539044.

17 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
18 Daniel Neider, Alexander Weinert, and Martin Zimmermann. Synthesizing optimally re-

silient controllers. arXiv, 1709.04854, 2017. URL: https://arxiv.org/abs/1709.04854.
19 Paulo Tabuada, Sina Yamac Caliskan, Matthias Rungger, and Rupak Majumdar. Towards

robustness for cyber-physical systems. IEEE Trans. Automat. Contr., 59(12):3151–3163,
2014. doi:10.1109/TAC.2014.2351632.

20 Paulo Tabuada and Daniel Neider. Robust linear temporal logic. In CSL 2016, volume 62 of
LIPIcs, pages 10:1–10:21. Schloss Dagstuhl - LZI, 2016. doi:10.4230/LIPIcs.CSL.2016.
10.

21 Ufuk Topcu, Necmiye Ozay, Jun Liu, and Richard M. Murray. On synthesizing robust
discrete controllers under modeling uncertainty. In Thao Dang and Ian M. Mitchell, editors,
HSCC 2012, pages 85–94. ACM, 2012. doi:10.1145/2185632.2185648.

22 Johan van Benthem. An essay on sabotage and obstruction. In Mechanizing Mathematical
Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday,
volume 2605 of LNCS, pages 268–276. Springer, 2005. doi:10.1007/978-3-540-32254-2_
16.

CSL 2018

http://dx.doi.org/10.1007/s10703-009-0084-y
http://dx.doi.org/10.1007/s10703-009-0084-y
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1109/TSE.2015.2510001
http://dx.doi.org/10.1145/2539036.2539044
http://dx.doi.org/10.1145/2539036.2539044
https://arxiv.org/abs/1709.04854
http://dx.doi.org/10.1109/TAC.2014.2351632
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.10
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.10
http://dx.doi.org/10.1145/2185632.2185648
http://dx.doi.org/10.1007/978-3-540-32254-2_16
http://dx.doi.org/10.1007/978-3-540-32254-2_16

	Introduction
	Preliminaries
	Computing Optimally Resilient Strategies
	Characterizing Vertices of Finite Resilience
	Characterizing Vertices of Resilience omega+1
	Computing Optimally Resilient Strategies

	Discussion
	Outlook
	Conclusion

