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Abstract. We investigate the satisfaction of specifications in Prompt
Linear Temporal Logic (Prompt-LTL) by concurrent systems. Prompt-LTL
is an extension of LTL that allows to specify parametric bounds on the
satisfaction of eventualities, thereby adding a quantitative aspect to the
specification language. We establish a connection between bounded fair-
ness, bounded stutter equivalence, and the satisfaction of Prompt-LTL\X
formulas. Based on this connection, we prove the first cutoff results for
different classes of systems with a parametric number of components
and quantitative specifications, thereby identifying previously unknown
decidable fragments of the parameterized model checking problem.

1 Introduction

Concurrent systems are notoriously hard to get correct, and are therefore a
promising application area for formal methods like model checking or synthesis.
However, these methods usually give correctness guarantees only for systems
with a given, fixed number of components, and the state explosion problem
prevents us from using them for systems with a large number of components.
To ensure that desired properties hold for systems with a very large or even
an arbitrary number of components, methods for parameterized model checking
and synthesis have been devised.

While parameterized model checking is undecidable even for simple safety
properties and systems with uniform finite-state components [32], there ex-
ist a number of methods that decide the problem for specific classes of sys-
tems [2, 9, 11–14, 16, 19, 28], some of which have been collected in surveys of
the literature recently [7, 15]. Additionally, there are semi-decision procedures
that are successful in many interesting cases [8, 10, 23, 27, 29]. However, most of
these approaches only support safety properties, or their support for progress
or liveness properties is limited, e.g., because global fairness properties are not
considered and cannot be expressed in the supported logic (cp. Außerlechner et
al. [5]).
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In this paper, we investigate cases in which we can guarantee that a system
with an arbitrary number of components satisfies strong liveness properties, in-
cluding a quantitative version of liveness called promptness. The idea of prompt-
ness is that a desired event should not only happen at some time in the future,
but there should exist a bound on the time that can pass before it happens. We
consider specifications in Prompt-LTL, an extension of LTL with an operator
that expresses prompt eventualities [26], i.e., the logic puts a symbolic bound on
the satisfaction of the eventuality, and the model checking problem asks if there
is a value for this symbolic bound such that the property is guaranteed to be
satisfied with respect to this value. In many settings, adding promptness comes
for free in terms of asymptotic complexity [26], e.g., model checking and synthe-
sis [22].4 Hence, here we study parameterized model checking for Prompt-LTL
and show that in many cases adding promptness is also free for this problem.

More precisely, as is common in the analysis of concurrent systems, we ab-
stract concurrency by an interleaving semantics and consider the satisfaction
of a specification up to stuttering. Therefore, we limit our specifications to
Prompt-LTL\X, an extension of the stutter-insensitive logic LTL\X that does
not have the next-time operator. Determining satisfaction of Prompt-LTL\X
specifications by concurrent systems brings new challenges and has not been
investigated in detail before.
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∀¬w

w
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∀¬{w, r}

Motivating Example. For instance,
consider the reader-writer protocol on the
right which models access to shared data
between processes. If a process wants to
“read”, it enters the state tr (“try-read”)
that has a direct transition to the read-
ing state r. However, this transition is
guarded by ∀¬w, which stands for the set
of all states except w, the “writing” state.
That is, the transition is only enabled if
no other process is currently in state w.
Likewise, if a process wants to enter w it has to go through tw, but the transi-
tion to w is enabled only if no other process is reading or writing.

For such systems, previous results [5, 13] provide cutoff results for parame-
terized verification of properties from LTL\X, e.g.,

∀i.G ((tri → Fri) ∧ (twi → Fwi)) ,

In this paper we investigate whether the same cutoffs still hold if consider spec-
ifications in Prompt-LTL\X, e.g., if we substitute the LTL eventually operator
F above with the prompt-eventually operator Fp, while imposing a bounded
fairness assumption on the scheduler.

4 Prompt-LTL can be seen as a fragment of parametric LTL, a logic introduced by Alur
et al. [1]. However, since most decision problems for parametric LTL, including model
checking, can be reduced to those for Prompt-LTL, we can restrict our attention to
the simpler logic.
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Contributions. As a first step, we note that Prompt-LTL\X is not a stutter-
insensitive logic, since unbounded stuttering could invalidate a promptness prop-
erty. This leads us to define the notion of bounded stutter equivalence, and proving
that Prompt-LTL\X is bounded stutter insensitive.

This observation is then used in an investigation of existing approaches that
solve parameterized model checking by the cutoff method, which reduces prob-
lems from systems with an arbitrary number of components to systems with a
fixed number of components. More precisely, these approaches prove that for ev-
ery trace in a large system, a stutter-equivalent trace in the cutoff system exists,
and vice versa. We show that in many cases, modifications of these construc-
tions allow us to obtain traces that are bounded stutter equivalent, and therefore
the cutoff results extend to specifications in Prompt-LTL\X. The types of sys-
tems for which we prove these results include guarded protocols, as introduced by
Emerson and Kahlon [13], and token-passing systems, as introduced by Emerson
and Namjoshi [12] for uni-directional rings, and by Clarke et al. [9] for arbitrary
topologies. Parameterized model checking for both of these system classes has
recently been further investigated [2,3,5,21,30,31], but thus far not in a context
that includes promptness properties.

2 Prompt-LTL\X and Bounded Stutter Equivalence

We assume that the reader is aware of standard notions such as finite-state
transition systems and linear temporal logic (LTL) [6].

We consider concurrent systems that are represented as an interleaving com-
position of finite-state transition systems, possibly with synchronizing transitions
where multiple processes take a step at the same time. In such systems, a process
may stay in the same state for many global transitions while other processes are
moving. From the perspective of that process, these are stuttering steps.

Stuttering is a well-known phenomenon, and temporal languages that include
the next-time operator X are stutter sensitive: they can require some atomic
proposition to hold at the next moment in time, and the insertion of a stuttering
step may change whether the formula is satisfied or not. On the other hand,
LTL\X, which does not have the X operator, is stutter-insensitive: two words
that only differ in stuttering steps cannot be distinguished by the logic [6].

In the following, we introduce Prompt-LTL\X, an extension of LTL\X, and
investigate its properties with respect to stuttering.

2.1 Prompt-LTL\X

Let AP be the set of atomic propositions. The syntax of Prompt-LTL\X formu-
las over AP is given by the following grammar:

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | Fpϕ | ϕUϕ | ϕRϕ, where a ∈ AP

The semantics of Prompt-LTL\X formulas is defined over infinite words w =
w0w1 . . . ∈ (2AP )ω, positions i ∈ N, and bounds k ∈ N. The prompt-eventually

3



operator Fp is defined as follows:

(w, i, k) |= Fpϕ iff there exists j such that i ≤ j ≤ i+ k and (w, j, k) |= ϕ.

All other operators ignore the bound k and have the same semantics as in LTL,
moreover we define F and G in terms of U and R as usual.

2.2 Prompt-LTL and Stuttering

Our first observation is that Prompt-LTL\X is stutter sensitive: to satisfy the
formula ϕ = GFpq with respect to a bound k, q has to appear at least once in
every k steps. Given a word w that satisfies ϕ for some bound k, we can construct
a word that does not satisfy ϕ for any bound k by introducing an increasing (and
unbounded) number of stuttering steps between every two appearances of q. In
the following, we show that Prompt-LTL\X is stutter insensitive if and only if
there is a bound on the number of consecutive stuttering steps.

Bounded Stutter Equivalence. A finite word w ∈ (2AP )+ is a block if ∃α ⊆
AP such that w = α|w|. Two blocks w,w′ ∈ (2AP )+ are d-compatible if ∃α ⊆ AP
such that w = α|w|, w′ = α|w

′|, |w| ≤ d · |w′| and |w′| ≤ d · |w|. Two infinite
sequences of blocks w0w1w2 . . ., w

′
0w
′
1w
′
2 . . . are d-compatible if wi, w

′
i are d-

compatible for all i.
Two words w,w′ ∈ (2AP )ω are d-stutter equivalent, denoted w ≡d w

′, if they
can be written as d-compatible sequences of blocks. They are bounded stutter
equivalent if they are d-stutter equivalent for some d. We denote by ŵ a sequence
of blocks that corresponds to a word w.

Given an infinite sequence of blocks ŵ = w0, w1, w2 . . ., letN ŵ
i = {

∑i−1
l=0 |wl|, . . . ,

∑i−1
l=0 |wl|+

|wi| − 1} be the set of positions of the ith block. Given a position n, there is a
unique i such that n ∈ N ŵ

i .
To prove that Prompt-LTL\X is bounded stutter insensitive, i.e., it cannot

distinguish two words that are bounded stutter equivalent, we define a function
that maps between positions in two d-compatible sequences of blocks: given two
infinite d-stutter equivalent words w,w′ such that ŵ, ŵ′ are d-compatible, define
the function f : N → 2N where: f(j) = N ŵ′

i ⇔ j ∈ N ŵ
i . Note that ∀j′ ∈ f(j)

we have w(j) = w′(j′), where w(i) denotes the ith symbol in w. For an infinite
word w, let w[i,∞) denote its suffix starting at position i, and w[i : j] its infix
starting at i and ending at j. Then we can state the following.

Remark 1. Given two words w and w′, if w ≡d w
′, then ∀j ∈ N ∀j′ ∈ f(j) :

w[j,∞) ≡d w
′[j′,∞).

Now, we can state our first theorem.

Theorem 1 (Prompt-LTL\X is Bounded Stutter Insensitive). Let w,w′

be d-stutter equivalent words, ϕ a Prompt-LTL\X formula ϕ, and f as defined
above. Then ∀i, k ∈ N:

if (w, i, k) |= ϕ then ∀j ∈ f(i) : (w′, j, d · k) |= ϕ.
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Proof. The proof works inductively over the structure of ϕ. Let ŵ = w0, w1, w2, . . .
and ŵ′ = w′0, w

′
1, w

′
2, . . . be two d-compatible sequences of w and w′. We denote

by ni,mi the number of elements inside Nw
i , N

w′

i respectively. We consider two
cases, the other cases are trivial or similar to Case 2:

Case 1: ϕ = Fpϕ. (w, i, k) |= Fpϕ ⇔ ∃e, x : i ≤ e ≤ i + k, e ∈ N ŵ
x , and

(w, e, k) |= ϕ where (
∑x−1

l=0 nl) ≤ e < (
∑x

l=0 nl). Then by induction hypothesis
we have: ∀j ∈ f(e) (w′, j, d · k) |= ϕ. Let s be the smallest position in f(e), then

s =
∑x−1

l=0 ml. There exists y ∈ N s.t. i ∈ N ŵ
y then s =

∑y−1
l=0 ml +

∑x−1
l=y ml

≤
∑y−1

l=0 ml +
∑x−1

l=y nl.d ≤
∑y−1

l=0 ml +d.(
∑x−1

l=y nl) ≤
∑y−1

l=0 ml +k ·d (note that

i ∈ N ŵ
y and (w, i, k) |= Fpϕ). As

∑y−1
l=0 ml is the smallest position in f(i), then

∀j ∈ f(i) : (w′, j, d · k) |= Fpϕ.

Case 2: ϕ = ϕ1Uϕ2. (w, i, k) |= ϕ1Uϕ2 ⇔ ∃j ≥ i : (w, j, k) |= ϕ2 and
∀e < j : (w, e, k) |= ϕ1. Then, by induction hypothesis we have: ∀e < j ∀l ∈
f(e) : (w′, l, d · k) |= ϕ1 and ∀l ∈ f(j) : (w′, l, d · k) |= ϕ2, therefore ∀j ∈ f(i) :
(w′, j, d · k) |= ϕ1Uϕ2. ut

Our later proofs will be based on the existence of counterexamples to a given
property, and will use the following consequence of Theorem 1.

Corollary 1 Let w,w′ be d-stutter equivalent words, ϕ a Prompt-LTL\X for-
mula, and f as defined above. Then ∀k ∈ N:

if (w, i, k) 6|= ϕ then ∀j ∈ f(i) : (w′, j, k/d) 6|= ϕ

3 Guarded Protocols and Parameterized Model Checking

In the following, we introduce a system model for concurrent systems, called
guarded protocols. However, we will see that some of our results are of interest
for other classes of concurrent and parameterized systems, e.g., the token-passing
systems that we investigate in Section 6.

3.1 System Model: Guarded Protocols

We consider systems of the form A‖Bn, consisting of one copy of a process
template A and n copies of a process template B, in an interleaving parallel
composition. We distinguish objects that belong to different templates by index-
ing them with the template. E.g., for process template U ∈ {A,B}, QU is the
set of states of U . For this section, fix a finite set of states Q = QA ∪̇QB and a
positive integer n, and let G = {∃,∀} × 2Q be the set of guards.

Processes. A process template is a transition system U = (QU , initU , δU ) where

– QU ⊆ Q is a finite set of states including the initial state initU ,
– δU ⊆ QU × G ×QU is a guarded transition relation.
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Guarded Protocols. The semantics of A‖Bn is given by the transition system
(S, inits, ∆), where 5

– S = QA × (QB)n is the set of (global) states,
– initS = (initA, initB , . . . , initB) is the global initial state, and
– ∆ ⊆ S×S is the global transition relation. ∆ will be defined by local guarded

transitions of the process templates A and B in the following.

We distinguish different copies of process template B in A‖Bn by subscript,
and each Bi is called a B-process. We denote the set {A,B1, . . . , Bn} as P, and
a process in P as p. For a global state s ∈ S and p ∈ P, let the local state of p
in s be the projection of s onto that process, denoted s(p).

Then a local transition (q, g, q′) of process p ∈ P is enabled in global state s
if s(p) = q and either

– g = (∃, G) and ∃p′ ∈ P \ {p} : s(p′) ∈ G, or
– g = (∀, G) and ∀p′ ∈ P \ {p} : s(p′) ∈ G.

Finally, (s, s′) ∈ ∆ if there exists p ∈ P such that (s(p), g, s′(p)) ∈ δp is
enabled in s, and s(p′) = s′(p′) for all p′ ∈ P \ {p}. We say that the transition
(s, s′) is based on the local transition (s(p), g, s′(p)) of p.

Disjunctive and Conjunctive Systems. We distinguish disjunctive and con-
junctive systems, as defined by Emerson and Kahlon [13]. In a disjunctive process
template, every guard is of the form (∃, G) for some G ⊆ Q. In a conjunctive
process template, every guard is of the form (∀, G), and {initA, initB} ⊆ G, i.e.,
initial states act as neutral states for all transitions. A disjunctive (conjuctive)
system consists of only disjunctive (conjunctive) process templates. For con-
junctive systems we additionally assume that processes are initializing, i.e., any
process that moves infinitely often visits its initial state infinitely often.6

Runs. A path of a system A‖Bn is a sequence x = s0s1 . . . of global states such
that for all i < |x| there is a transition (si, si+1) ∈ ∆ based on a local transition
of some process p ∈ P. We say that p moves at moment i. A path can be finite
or infinite, and a maximal path is a path that cannot be extended, i.e., it is either
infinite or ends in a global state where no local transition is enabled, also called
a deadlock. A run is a maximal path starting in initS . We write x ∈ A‖Bn to
denote that x is a run of A‖Bn.

Given a path x = s0s1 . . . and a process p, the local path of p in x is
the projection x(p) = s0(p)s1(p) . . . of x onto local states of p. It is a local
run of p if x is a run. Additionally we denote by x(p1, . . . , pk) the projection
s0(p1, . . . , pk)s1(p1, . . . , pk) . . . of x onto the processes p1, . . . , pk ∈ P.

5 By similar arguments as in Emerson and Kahlon [13], our results can be extended
to systems with an arbitrary (but fixed) number of process templates. The same
holds for open process templates that can receive inputs from an environment, as
considered by Außerlechner et al. [5].

6 This restriction has already been considered by Außerlechner et al. [5], and was
necessary to support global fairness assumptions.
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Fairness. We say a process p is enabled in global state s if at least one of its
transitions is enabled in s, otherwise it is disabled. Then, an infinite run x of a
system A‖Bn is

– strongly fair if for every process p, if p is enabled infinitely often, then p
moves infinitely often.

– unconditionally fair, denoted u-fair(x), if every process moves infinitely often.
– globally b-bounded fair, denoted b-gfair(x), for some b ∈ N, if

∀p ∈ P ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m+ b and p moves at moment j.

– locally b-bounded fair for E ⊆ P, denoted b-lfair(x,E), if it is unconditionally
fair and

∀p ∈ E ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m+ b and p moves at moment j.

Bounded-fair System. We consider systems that explicitly keep track of bounded
fairness by running in parallel to A‖Bn one counter for each process. In a step of
the system where process p moves, the counter of p is reset, and all other counters
are incremented. If one of the counters exceeds the bound b, the counter goes
into a failure state from which no transition is enabled. We call such a system a
bounded-fair system, and denote it A‖bBn.

A path of a bounded-fair system A‖bBn is given as x = (s0, b0)(s1, b1) . . ., and
extends a path of A‖Bn by valuations bi ∈ {0, . . . , b}n+1 of the counters. Note
that a run (i.e., a maximal path) of A‖bBn is finite iff either it is deadlocked
(in which case also its projection to a run of A‖Bn is deadlocked) or a failure
state is reached. Thus, the projection of all infinite runs of A‖bBn to A‖Bn are
exactly the globally b-bounded fair runs of A‖Bn.

3.2 Parameterized Model Checking and Cutoffs

Prompt-LTL\X Specifications. Given a system A‖Bn, we consider specifi-
cations over AP = QA ∪ (QB × {1, . . . , n}), i.e., states of processes are used as
atomic propositions. For i1, . . . , ic ∈ {1, . . . , n}, we write ϕ(A,Bi1 , . . . , Bic) for
a formula that contains only atomic propositions from QA ∪ (QB ×{i1, . . . , ic}).

In the absence of fairness considerations, we say that A‖Bn satisfies ϕ if

∃k ∈ N ∀x ∈ A‖Bn : (x, 0, k) |= ϕ.

Furthermore, we say thatA‖Bn satisfies ϕ(A,B1, . . . , Bc) under global bounded
fairness, written A‖Bn |=gb ϕ(A,B1, . . . , Bc), if

∀b ∈ N ∃k ∈ N ∀x ∈ A‖Bn : b-gfair(x)⇒ (x, 0, k) |= ϕ(A,B1, . . . , Bc).

Finally, for local bounded fairness we usually require bounded fairness for
all processes that appear in the formula ϕ(A,B1, . . . , Bc). Thus, we say that
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A‖Bn satisfies ϕ(A,B1, . . . , Bc) under local bounded fairness, written A‖Bn |=lb

ϕ(A,B1, . . . , Bc), if

∀b ∈ N ∃k ∈ N ∀x ∈ A‖Bn : b-lfair(x, {1, . . . , c})⇒ (x, 0, k) |= ϕ(A,B1, . . . , Bc).

Parameterized Specifications. A parameterized specification is a Prompt-LTL\X
formula with quantification over the indices of atomic propositions. A h-indexed
formula is of the form ∀i1, . . . ,∀ih.ϕ(A,Bi1 , . . . , Bih). Let f ∈ {gb, lb}, then for
given n ≥ h,

A‖Bn |=f ∀i1, . . .,∀ih.ϕ(A,Bi1 , . . ., Bih)

iff

for all j1 6= . . . 6= jh ∈ {1, . . . , n} : A‖Bn |=f ϕ(A,Bj1 , . . ., Bjh).

By symmetry of guarded protocols, this is equivalent (cp. [13]) to A‖Bn |=f

ϕ(A,B1, . . . , Bh). The latter formula is denoted by ϕ(A,B(h)), and we often use
it instead of the original ∀i1, . . . ,∀ih.ϕ(A,Bi1 , ..., Bih).

(Parameterized) Model Checking Problems. For n ∈ N, a specification
ϕ(A,B(h)) with n ≥ h, and f ∈ {gb, lb}:
– the model checking problem is to decide whether A‖Bn |=f ϕ(A,B(h)),
– the parameterized model checking problem (PMCP) is to decide whether
∀m ≥ n : A‖Bm |=f ϕ(A,B(h))

Cutoffs and Decidability. We define cutoffs with respect to a class of systems
(either disjunctive or conjunctive), a class of process templates P , e.g., tem-
plates of bounded size, and a class of properties, e.g. satisfaction of h-indexed
Prompt-LTL\X formulas under a given fairness notion.

A cutoff for a given class of systems with processes from P , a fairness notion
f ∈ {lb, gb} and a set of Prompt-LTL\X formulas Φ is a number c ∈ N such that

∀A,B ∈ P ∀ϕ ∈ Φ ∀n ≥ c : A‖Bn |=f ϕ ⇔ A‖Bc |=f ϕ.

Note that the existence of a cutoff implies that the PMCP is decidable iff
the model checking problem for the cutoff system A‖Bc is decidable. Decid-
ability of model checking for finite transition systems with specifications in
Prompt-LTL\X and bounded fairness follows from the fact that bounded fair-
ness can be expressed in Prompt-LTL\X, and from results on decidability of
assume-guarantee model checking for Prompt-LTL (cf. Kupferman et al. [26]
and Faymonville and Zimmermann [18][Lemmas 8, 9]).

4 Cutoffs for Disjunctive Systems

In this section, we prove cutoff results for disjunctive systems under bounded
fairness and stutter-insensitive specifications with or without promptness. To
this end, in Section 4.1 we prove two lemmas that show how to simulate, up to
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bounded stuttering, local runs from a system of given size n in a smaller or larger
disjunctive system. We then use these two lemmas in Subsections 4.2 and 4.3 to
obtain cutoffs for specifications in LTL\X and Prompt-LTL\X, respectively.

Moreover for the proofs of these two lemmas we utilize the same construction
techniques that were used in [4, 5, 13], but in addition we analyze their effects
on bounded fairness and bounded stutter equivalence. Note that we will only
consider formulas of the form ϕ(A,B(1)), however, as in previous work [4, 13],
our results extend to specifications over an arbitrary number h of B-processes.

Table 1 summarizes the results of this section: for specifications in LTL\X
and Prompt-LTL\X we obtain a cutoff that depends on the size of process tem-
plate B, as well as on the number h of quantified index variables. The table states

r

∃nw

nr

∃nw

Fig. 1:
Reader

w

∃r

nw

Fig. 2:
Writer

generalizations of Theorems 2 and 3 from the 2-
indexed case to the h-indexed case for arbitrary h ∈ N.
Note that we did not obtain a cutoff result for one of
the cases, as explained at the end of this section.

Simple Reader-Writer Example. Consider the
disjunctive system W‖Rn, where W is a writer pro-
cess (Figure 2), and R is a reader process (Figure 1).
Let the specification ϕ be ∀iG(w → Fp[(w ∧ nri)]),
i.e., if process W is in state w, then eventually all
the R processes will be in state nr, while W is in w.
According to Table 1, the cutoff for checking whether
W‖Rn |=lb ϕ is 5.

Table 1: Cutoffs for Disjunctive Systems

Local Bounded Fairness Global Bounded Fairness

h-indexed LTL\X 2|QB |+ h 2|QB |+ h
h-indexed Prompt-LTL\X 2|QB |+ h -

4.1 Simulation up to Bounded Stutter Equivalence

Definitions. Fix a run x = x0x1... of the disjunctive system A‖Bn. Our con-
structions are based on the following definitions, where q ∈ QB :

– appearsBi(q) is the set of all moments in x where process Bi is in state q:
appearsBi(q) = {m ∈ N | xm(Bi) = q}.

– appears(q) is the set of all moments in x where at least one B-process is in
state q: appears(q) = {m ∈ N | ∃i ∈ {1, . . . , n} : xm(Bi) = q}.

– fq is the first moment in x where q appears: fq = min(appears(q)), and
firstq ∈ {1, . . . , n} is the index of a B-process where q appears first, i.e., with
xfq (Bfirstq ) = q.

– if appears(q) is finite, lq is the last moment where q appears: lq = max(appears(q)),
and lastq ∈ {1, . . . , n} is a process index with xlq (Blastq ) = q
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– let Visitedinf = {q ∈ QB | ∃Bi ∈ {B2, . . . , Bn} : appearsBi(q) is infinite}
and Visitedfin = {q ∈ QB | ∀Bi ∈ {B2, . . . , Bn} : appearsBi(q) is finite}.

– Set(xi) is the set of all state that are visited by some process at moment i:
Set(xi) = {q|q ∈ (QA ∪QB) and ∃p ∈ P : xi(p) = q}.
Our first lemma states that any behavior of processes A and B1 in a system

A‖Bn can be simulated up to bounded stuttering in a system A‖Bn+1. This
type of lemma is called a monotonicity lemma.

Lemma 1 (Monotonicity Lemma for Bounded Stutter Equivalence).
Let A,B be disjunctive process templates, n ≥ 2, b ∈ N and x ∈ A‖Bn with
b-lfair(x, {A,B1}). Then there exists y ∈ A‖Bn+1 with 2b-lfair(y, {A,B1}) and
x(A,B1) ≡2 y(A,B1).

Proof. Let x be a run of A‖Bn where b-lfair(x, {A,B1}). Let y(A) = x(A) and
y(Bj) = x(Bj) for all Bj ∈ {B1, . . . , Bn} and let the new process Bn+1 copy one
of the B-processes of A‖Bn, i.e., y(Bn+1) = x(Bi) for some i ∈ {1, . . . , n}. Copy-
ing a local run violates the interleaving semantics as two processes will be moving
at the same time. To solve this problem, we split every transition (yl, yl+1) where
the interleaving semantics is violated by Bi and Bn+1 executing local transitions
(qi, g, q

′
i) and (qn+1, g, q

′
n+1), respectively. To do this, replace (yl, yl+1) with two

consecutive transitions (yl, u)(u, yl+1), where (yl, u) is based on the local transi-
tion (qi, g, q

′
i) and (u, yl+1) is based on the local transition (qn+1, g, q

′
n+1). Note

that both of these local transitions are enabled in the constructed run y since
the transition (qi, g, q

′
i) is enabled in the original run x. Moreover, run y inher-

its unconditional fairness from x. Finally, it is easy to see that for every local
transition of process Bi in x, establishing interleaving semantics has added one
additional stuttering step to every local run in y including processes A and B1.
Therefore we have that 2b-lfair(y, {A,B1}) and x(A,B1) ≡2 y(A,B1). ut
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Fig. 3: Run: W ||R2
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Fig. 4: Run: W ||R3

Reader-Writer Example. Con-
sider the run x of the system W ||R2

in Figure 3 where W and R are as
defined in Figures 1 and 2,. We con-
struct a run y of the system W ||R3

(see Figure 4) such that x(W,R1) ≡2

y(W,R1). The local run of process R3

is obtained by (i) copying the run
of R2, and (ii) establishing the inter-
leaving semantics as in the proof of
Lemma 1.

As mentioned in the above construction, if a local run of x is d-bounded fair
for some d ∈ N, then it will be 2d-bounded fair in the constructed run y. This
observation leads to the following corollary.

Corollary 2 Let A, B be disjunctive process templates, n ≥ 2, b ∈ N and
x ∈ A‖Bn with b-gfair(x). Then there exists y ∈ A‖Bn+1 with 2b-gfair(y) and
x(A,B1) ≡2 y(A,B1).
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Our second lemma is a bounding lemma which states that any behavior of pro-
cesses A and B1 in a disjunctive system A‖Bn can be simulated up to bounded
stuttering in a system A‖Bc, if c is chosen to be sufficiently large and n ≥ c.

Lemma 2 (Bounding Lemma for Bounded Stutter Equivalence). Let
A,B be disjunctive process templates, c = 2|QB |+1, n ≥ c, b ∈ N and x ∈ A‖Bn

with b-lfair(x, {A,B1}). Then there exists y ∈ A‖Bc with (b · c)-lfair(y, {A,B1})
and x(A,B1) ≡c y(A,B1).

Proof. Let x be a run of A‖Bn where b-lfair(x, {A,B1}). We show how to con-
struct a run y of A‖Bc where (b · c)-lfair(y, {A,B1}) and x(A,B1) ≡c y(A,B1).

The basic idea is that, in order to ensure that all transitions in y are enabled
at the time they are taken, we “flood” every state q that is visited in x with
one or more processes that enter q and stay there. Additionally, we need to take
care of fairness, which requires a more complicated construction that allows
every such process to move infinitely often. Therefore, some processes have to
leave the state they have flooded (if that state only appears finitely often in the
original run), and every process needs to eventually enter a loop that allows it
to move infinitely often. In the following, we construct such runs formally.

Construction:

1. (Flooding with evacuation): To every q ∈ Visitedfin(x), devote one pro-
cess Biq that copies Bfirstq until the time fq, then stutters in q until time lq
where it starts copying Blastq forever. Formally:

y(Biq ) = x(Bfirstq )[0 : fq].(q)lq−fq .x(Blastq )[lq + 1 :∞]

2. (Flooding with fair extension): For every q ∈ Visitedinf(x), let Binf
q be a

process that visits q infinitely often in x. We devote to q two processes Biq1
and Biq2

that both copy Bfirstq until the time fq, and then stutter in q until

Binf
q reaches q for the first time. After that, let Biq1

and Biq2
copy Binf

q in

turns as follows: Biq1
copies Binf

q until it reaches q while Biq2
stutters in q,

then Biq2
copies Binf

q until it reaches q while Biq1
stutters in q and so on.

3. Establish interleaving semantics as in the proof of Lemma 1.

After steps 1 and 2, the following property holds: at any time t we have that
Set(xt) ⊆ Set(yt), which guarantees that every transition along the run is en-
abled. Note that establishing the interleaving semantics preserves this property.

Finally, establishing interleaving semantics could introduce additional stut-
tering steps to the local runs of processes A and B1 whenever steps 1 or 2 of the
construction use the same local run from x more than once (e.g. if ∃qi, qj ∈ QB

with firstqi = firstqj ). A local run of x can be used in the above construction at
most 2|QB | times, therefore we have x(A,B1) ≡c y(A,B1). Moreover, since the
upper bound of consecutive stuttering steps in A or B1 is (2|QB |+ 1) · b, we get
(b · c)-lfair(y, {A,B1}). ut

Reader-Writer Example. Consider again the reader-writer system in Fig-
ures 1 and 2. For any run x of W‖Rn, we can construct a run y of W‖R5 with
x(W,R1) ≡5 y(W,R1).
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4.2 Cutoffs for Specifications in LTL\X under Bounded Fairness

The PMCP for disjunctive systems with specifications from LTL\X has been
considered in several previous works [5,13,21]. In the following we extend these
results by proving cutoff results under bounded fairness.

Theorem 2 (Cutoff for LTL\X under Global Bounded Fairness). Let
A, B be disjunctive process templates, c = 2|QB | + 1, n ≥ c, and ϕ(A,B(1)) a
specification with ϕ ∈ LTL\X. Then:(

∀b ∈ N : A‖bBn |= ϕ(A,B(1))
)
⇔
(
∀b′ ∈ N : A‖b′B

c |= ϕ(A,B(1))
)

We prove the theorem by proving two lemmas, one for each direction of the
equivalence.

Lemma 3 (Monotonicity Lemma for LTL\X). Let A, B be disjunctive
process templates, n ≥ 1, and ϕ(A,B(1)) a specification with ϕ ∈ LTL\X. Then:(
∃b ∈ N : A‖bBn 6|= ϕ(A,B(1))

)
=⇒

(
∃b′ ∈ N : A‖b′B

n+1 6|= ϕ(A,B(1))
)

Proof. Assume ∃b ∈ N : A‖bBn 6|= ϕ(A,B(1)). Then there exists a run x of A‖Bn

where x is b-gfair(x) and x 6|= ϕ(A,B(1)). According to Corollary 2 there exists
y of A‖Bn+1 where 2b-gfair(y) and x(A,B1) ≡2 y(A,B1), which guarantees that
y 6|= ϕ(A,B(1)). ut

For the corresponding bounding lemma, our construction is based on that of
Lemma 2. However, the local runs resulting from that construction might stutter
in some local states for an unbounded time (e.g. local runs devoted for states in

Visitedfin
F ). To bound stuttering in such constructions, given an arbitrary run of

a system A‖Bn, we first show that whenever there exists a bounded-fair run that
violates a specification in LTL\X, then there also exists an ultimately periodic
run with the same property.

A (non-deterministic) Büchi automaton is a tuple A = (Σ,QA, δ, a0, α),
where Σ is a finite alphabet, QA is a finite set of states, δ : QA × Σ → 2QA

is a transition function, a0 ∈ QA is an initial state, and α ⊆ QA is a Büchi
acceptance condition. Given an LTL specification ϕ, we denote by Aϕ the Büchi
automaton that accepts exactly all words that satisfy ϕ [33].

Lemma 4 (Ultimately Periodic Counter-Example). Let ϕ ∈ LTL and
b ∈ N. If A‖bBn 6|= ϕ then there exists a run x = uvω of A‖Bn with b-gfair(x),
and x 6|= ϕ, where u, v are finite paths, and |u|, |v| ≤ 2 · |QA| · |QB |n ·bn+1 · |QA¬ϕ |.

Now, we have all the ingredients to prove the bounding lemma for the case
of LTL\X specifications and (global) bounded fairness.

Lemma 5 (Bounding Lemma for LTL\X). Let A, B be disjunctive process
templates, c = 2|QB |+1, n ≥ c, and ϕ(A,B(1)) a specification with ϕ ∈ LTL\X.
Then:(

∃b ∈ N : A‖bBn 6|= ϕ(A,B(1))
)

=⇒
(
∃b′ ∈ N : A‖b′B

c 6|= ϕ(A,B(1))
)

12



Proof. Assume ∃b ∈ N : A‖bBn 6|= ϕ(A,B(1)). Then by Lemma 4 there is a run
x = uvω of A‖Bn, where b-gfair(x) and |u|, |v| ≤ 2 · |QA| · |QB |n · bn+1 · |QA¬ϕ |.
According to Lemma 2, we can construct out of x a run y of A‖Bc where
b′′-lfair(y, {A,B1}), and x(A,B1) ≡d y(A,B1) with d = 2|QB |+ 1 and b′′ = b ·d.
The latter guarantees that y 6|= ϕ(A,B(1)). We still need to show that b′-gfair(y)
for some b′ ∈ N. As x = uvω, we observe that the construction of Lemma 2
ensures the following:

– The number of consecutive stuttering steps per process introduced in step 1
is bounded by |u|.

– The number of consecutive stuttering steps introduced in step 2 for a given
process is bounded by |u|+ 2|v| because Binf

q needs up to |u|+ |v| steps to
reach q, and one of the processes has to wait for up to |v| additional global
steps before it can move.

In addition to the stuttering steps introduced in step 1 and 2, if more than
one of the constructed processes simulate the same local run of x then estab-
lishing the interleaving semantics would be required, which in turn introduces
additional stuttering steps. Therefore the upper bound of consecutive stutter-
ing steps introduced in step 3 of the construction is (2|QB | + 1) · b. Therefore
b′-gfair(y) where b′ = (2|QB |+ 1) · b+ 6 · |QA| · |QB |n · bn+1 · |QA¬ϕ |. ut

Remark 2. With a more complex construction that uses a stutter-insensitive
automaton A [17] to represent the specification and considers runs of the com-
position of system and automaton, we can obtain a much smaller b′ that is also
independent of n. This is based on the observation that if in y some process is
consecutively stuttering for more than |A‖Bc × A| steps, then there must be a
repetition of states from the product in this time, and we can simply cut the
infix between the repeating states from the constructed run y.

4.3 Cutoffs for Specifications in Prompt-LTL\X

LTL specifications cannot enforce boundedness of the time that elapses before a
liveness property is satisfied. Prompt-LTL solves this problem by introducing the
prompt-eventually operator explained in Section 2.1. Since we consider concur-
rent asynchronous systems, the satisfaction of a Prompt-LTL formula can also
depend on the scheduling of processes. If scheduling can introduce unbounded
delays for a process, then promptness can in general not be guaranteed. Hence,
non-trivial Prompt-LTL specifications can only be satisfied under the assump-
tion of bounded fairness, and therefore this is the only case we consider here.

Theorem 3 (Cutoff for Prompt-LTL\X under Local Bounded Fair-
ness). Let A, B be disjunctive process templates, c = 2|QB | + 1 n ≥ c, and
ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bc |=lb ϕ(A,B(1)) ⇔ A‖Bn |=lb ϕ(A,B(1)).

Again, we prove the theorem by proving a monotonicity and a bounding lemma.
Note thatA‖Bn 6|=lb ϕ(A,B(1)) iff ∃b ∈ N ∀k ∈ N ∃x ∈ A‖Bn : b-lfair(x, {A,B(1)})∧
(x, 0, k) 6|= ϕ(A,B(1)).
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Lemma 6 (Monotonicity Lemma for Prompt-LTL\X). Let A, B be dis-
junctive process templates, n ≥ 2, and ϕ(A,B(1)) a specification with ϕ ∈
Prompt-LTL\X. Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-lfair(x, {A,B(1)}), and (x, 0, 2·k) 6|= ϕ(A,B(1)).
Then according to Lemma 1 there exists y of A‖Bn+1 where 2b-lfair(y, {A,B(1)})
and x(A,B1) ≡2 y(A,B1), which guarantees, according to Corollary 1, that
(y, 0, k) 6|= ϕ(A,B(1)). As a consequence there exists b ∈ N such that ∀k ∈ N
there is a run y of A‖Bc where 2b-lfair(y, {A,B(1)}) and (y, 0, k) 6|= ϕ(A,B(1)),
thus A‖Bc 6|=lb ϕ(A,B(1)). ut

Using the same argument of the above proof but by using Corollary 2 instead
of Lemma 1 to construct the globally bounded fair counter example, we obtain
the following:

Corollary 3 Let A, B be disjunctive process templates, n ≥ 2, and ϕ(A,B(1))
a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=gb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=gb ϕ(A,B(1)).

Lemma 7 (Bounding Lemma for Prompt-LTL\X). Let A, B be disjunc-
tive process templates, c = 2|QB |+1, n ≥ c, and ϕ(A,B(1)) with ϕ ∈ Prompt-LTL\X.
Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖Bc 6|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-lfair(x, {A,B(1)}) and (x, 0, d ·k) 6|= ϕ(A,B(1))
with d = (2|QB |+1). According to Lemma 2 we can construct for every such x a
run y of A‖Bc where (d · b)-lfair(y, {A,B(1)}), and x(A,B1) ≡d y(A,B1), which
guarantees that (y, 0, k) 6|= ϕ(A,B(1)) (see Corollary 1). Thus, there exists b ∈ N
such that ∀k ∈ N there is a run y of A‖Bc where (d · b)-lfair(y, {A,B(1)}) and
(y, 0, k) 6|= ϕ(A,B(1)), thus A‖Bc 6|=lb ϕ(A,B(1)). ut

5 Cutoffs for Conjunctive Systems

In this section we investigate cutoff results for conjunctive systems under bounded
fairness and specifications in Prompt-LTL\X. Table 2 summarizes the results of
this section, as generalizations of Theorems 4 and 5 to h-indexed specifications.
Note that for results marked with a ∗ we require processes to be bounded initial-
izing, i.e., that every cycle in the process template contains the initial state.7

7 This is only slightly more restrictive than the assumption that they are initializing,
as stated in the definition of conjunctive systems in Section 3.1.
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Table 2: Cutoffs for Conjunctive Systems

Local Bounded Fairness Global Bounded Fairness

h-indexed LTL\X h + 1 h + 1∗

h-indexed Prompt-LTL\X h + 1 h + 1∗

5.1 Cutoffs under Local Bounded Fairness

Theorem 4 (Cutoff for Prompt-LTL\X with Local Bounded Fairness).
Let A,B be conjunctive process templates, n ≥ 2, and ϕ(A,B(1)) a specification
with ϕ ∈ Prompt-LTL\X. Then:

A‖B2 |=lb ϕ(A,B(1)) ⇔ A‖Bn |=lb ϕ(A,B(1)).

We prove the theorem by proving two lemmas, one for each direction of
the equivalence. Note that A‖Bn 6|=lb ϕ(A,B(1)) iff ∃b ∈ N ∀k ∈ N ∃x ∈
A‖Bn : b-gfair(x) ∧ (x, 0, k) 6|= ϕ(A,B(1)).

Lemma 8 (Monotonicity Lemma, Prompt-LTL\X with Local Bounded
Fairness). Let A,B be conjunctive process templates, n ≥ 2, and ϕ(A,B(1)) a
specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-gfair(x) and (x, 0, k) 6|= ϕ(A,B(1)). For every
such x, we construct a run y of A‖Bn+1 with b-lfair(y) and (y, 0, k) 6|= ϕ(A,B(1)).
Let y(A) = x(A) and y(Bj) = x(Bj) for all Bj ∈ {B1, . . . , Bn} and let the
new process Bn+1 ”share” a local run x(Bi) with an existing process Bi of
A‖Bn+1 in the following way: one process stutters in initB while the other
makes transitions from x(Bi), and whenever x(Bi) enters initB the roles are
reversed. Since this changes the behavior of Bi, Bi cannot be a process that is
mentioned in the formula, i.e. we need n ≥ 2 for a formula ϕ(A,B(1)). Then
we have b-lfair(y, {A,B1}) as the run of Bn+1 inherits the unconditional fairness
behavior from the local run of the process Bi in x. Note that it is not guaranteed
that the local runs y(Bi) and y(Bn+1) are bounded fair as the time between two
occurrences of initB in x(Bi) is not bounded. Moreover we have x(A,B1) ≡1

y(A,B1), which according to Corollary 1 implies (y(A,B1), k) 6|= ϕ(A,B(1)). ut

Lemma 9 (Bounding Lemma, Prompt-LTL\X with Local Bounded Fair-
ness). Let A,B be conjunctive process templates, n ≥ 1, and ϕ(A,B(1)) a spec-
ification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=lb ϕ(A,B(1)) ⇒ A‖B1 6|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-gfair(x), and (x, 0, b · k) 6|= ϕ(A,B(1)) . For
every such x, we construct a run y in the cutoff system A‖B1 by copying the
local runs of processes A and B1 in x and deleting stuttering steps. It is easy
to see that b-gfair(y) then we have x(A,B1) ≡b y(A,B1), and by Corollary 1
(y(A,B1), k) 6|= ϕ(A,B(1)). ut
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Note that this is the same proof construction as in Außerlechner et al. [5],
and we simply observe that this construction preserves bounded fairness.

5.2 Cutoffs under Global Bounded Fairness

As mentioned before, to obtain a result that preserves global bounded fairness,
we need to restrict process template B to be bounded initializing.

Theorem 5 (Cutoff for Prompt-LTL\X with Global Bounded Fair-
ness). Let A,B be conjunctive process templates, where B is bounded initializing,
n ≥ 2, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖B2 |=gb ϕ(A,B(1)) ⇔ A‖Bn |=gb ϕ(A,B(1)).

Again, the theorem can be separated into two lemmas.

Lemma 10 (Monotonicity Lemma, Prompt-LTL\X with Global Bounded
Fairness). Let A,B be conjunctive process templates, where B is bounded ini-
tializing, n ≥ 2, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=gb ϕ(A,B(1)) ⇒ A‖Bn+1 6|=gb ϕ(A,B(1)).

Proof. Assume A‖Bn 6|=gb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N
there is a run x of A‖Bn where b-gfair(x), and (x, 0, (b+ |QB |) ·k) 6|= ϕ(A,B(1)).
For every such x, we construct a run y of A‖Bn+1 in the same way we did in
the proof of Lemma 8. Then we have b′-gfair(y) with b′ = b+ |QB | as initB is on
every cycle of the process template B. Moreover we have x(A,B1) ≡1 y(A,B1)
which according to Corollary 1 implies that (y(A,B1), k) 6|= ϕ(A,B(1)). ut

Lemma 11 (Bounding Lemma, Prompt-LTL\X with Global Bounded
Fairness). Let A,B be conjunctive process templates, where B is bounded ini-
tializing, n ≥ 1, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn 6|=gb ϕ(A,B(1)) ⇒ A‖B1 6|=gb ϕ(A,B(1)).

Proof. Under the given assumptions, we can observe that the construction from
Lemma 9 also preserves global bounded fairness.

6 Token Passing Systems

In this section, we first introduce a system model for token passing systems and
then show how to obtain cutoff results for this class of systems.
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6.1 System Model

Processes. A token passing process is a transition system T = (QT , IT , ΣT , δ)
where

– QT = QT × {0, 1} is a finite set of states. QT is a finite non-empty set. The
boolean component {0, 1} indicates the possession of the token.

– IT is the set of initial states with IT ∩ (QT ×{0}) 6= ∅ and IT ∩ (QT ×{1}) 6= ∅.
– ΣT = {ε, rcv, snd} is the set of actions, where ε is an asynchronous action,

and {rcv, snd} are the actions to receive and send the token.
– δT = QT ×ΣT ×QT is a transition relation, such that ((q, b), a, (q′, b′)) ∈ δT

iff all of the following hold:

• a = ε ⇒ b = b′.
• a = snd ⇒ b = 1 and b′ = 0
• a = rcv ⇒ b = 0 and b′ = 1

Token Passing System. Let G = (V,E) be a finite directed graph without
self loops where V = {1, . . . , n} is the set of vertices, and E ⊆ V × V is the
set of edges. A token passing system Tn

G is a concurrent system containing n
instances of process T where the only synchronization between the processes
is the sending/receiving of a token according to the graph G. Formally, Tn

G =
(S, initS , ∆) with:

– S = (QT )n.
– initS = {s ∈ (IT )n such that exactly one process holds the token },
– ∆ ⊆ S × S such that ((q1, . . . , qn), (q′1, . . . , q

′
n)) ∈ ∆ iff:

• Asynchronous Transition. ∃i ∈ V such that (qi, ε, q
′
i) ∈ δTi

, and ∀j 6= i
we have qj = q′j .

• Synchronous Transition. ∃(i, j) ∈ E such that (qi, snd, q
′
i) ∈ δTi

,
(qj , rcv, q

′
j) ∈ δTj

, and ∀z ∈ V \ {i, j} we have qz = q′z.

Runs. A configuration of a system Tn
G is a tuple (s, ac) where s ∈ S, and either

ac = ai with a ∈ ΣT , and i ∈ V is a process index, or ac = (sndi, rcvj) where
i, j ∈ V are two process indices with i 6= j. A run is an infinite sequence of
configurations x = (s0, ac0)(s1, ac1) . . . where s0 ∈ initS and si+1 results from
executing action aci in si. Additionally we denote by x(i, . . . , j) the projection
(s0(i, . . . , j), ac0(i, . . . , j))(s1(i, . . . , j), ac1(i, . . . , j)) . . . where se(i, . . . , j) is the
projection of se on the local states of (Ti, . . . , Tj) and

ac(i, . . . , j) =

⊥ if ac = am and m 6∈ {i, . . . , j}
⊥ if ac = (sndm, rcvn) and m,n 6∈ {i, . . . , j}
ac otherwise

Bounded Fairness. A run x of a token passing system Tn
G is b-gfair(x) if for

every moment m and every process Ti, Ti receives the token at least once between
moments m and m+ b.

Cutoffs for Complex Networks. In the presence of different network topolo-
gies, represented by the graph G, we define a cutoff to be a bound on the size of
G that is sufficient to decide the PMCP. Note that, in order to obtain a decision
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procedure for the PMCP, we not only need to know the size of the graphs, but
also which graphs of this size we need to investigate. This is straightforward if
the graph always falls into a simple class, such as rings, cliques, or stars, but is
more challenging if the graph can become more complex with increasing size.

6.2 Cutoff Results for Token Passing Systems

Table 3 summarizes the results of this section, generalizing Theorem 6 to the
case of h-indexed specifications. Similar to previous sections, the specifications
are over states of processes. The results for local bounded fairness follow from
the results for global bounded fairness.

To prove the results of this section, we need some additional definitions.

Table 3: Cutoff Results for Token Passing Systems

Local Bounded Fairness Global Bounded Fairness

h-indexed LTL\X 2h 2h
h-indexed Prompt-LTL\X 2h 2h

Connectivity vector [9]. Given two indices i, j ∈ V in a finite directed
graph G, we define the connectivity vector v(G, i, j) = (u1, u2, u3, u4, u5, u6)
as follows:

– u1 = 1 if there is a non-empty path from i to i that does not contain j.
u1 = 0 otherwise.

– u2 = 1 if there is a path from i to j via vertices different from i and j. u2 = 0
otherwise.

– u3 = 1 if there is a direct edge from i to j. u3 = 0 otherwise.
– u4, u5, u6 are defined like u1, u2, u3, respectively where i is replaced by j and

vice versa.

Immediately Sends. Given a token passing process T , we fix two local states
qsnd and qrcv, such that there is (i) a local path qinit, . . . , qrcv where qinit ∈
IT ∩ (QT × {0}), (ii) a local path qrcv, . . . , qsnd that starts with a receive action,
and (iii) a local path qsnd, . . . , qrcv that starts with a send action.

When constructing a local run for a process Ti that is currently in local state
qrcv, we say that Ti immediately sends the token if and only if:

1. Ti executes consecutively all the actions on a simple path qrcv, . . . , qsnd, then
sends the token, and then executes consecutively all the actions on a simple
path qsnd, . . . , qrcv.

2. All other processes remain idle until Ti reaches qrcv.

Note that, when Ti immediately sends the token, it executes at most |QT | actions,
since the two paths cannot share any states except qrcv and qsnd.
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Theorem 6 (Cutoff for Prompt-LTL\X). Let Tn
G be a token passing system,

g, h ∈ V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X. Then there
exists a system T 4

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that v(G, g, h) =
v(G′, i, j), and

Tn
G |=gb ϕ(Tg, Th)⇔ T 4

G′ |=gb ϕ(Ti, Tj).

We prove the theorem by proving two lemmas, one for each direction of the
equivalence. Note that Tn

G 6|=gb ϕ(Tg, Th) iff ∃b ∈ N ∀k ∈ N ∃x ∈ Tn
G : b-gfair(x)∧

(x, 0, k) 6|= ϕ(Tg, Th).

Lemma 12 (Monotonicity Lemma). Let Tn
G be a system with n ≥ 3 and

g, h ∈ V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X. Then there
exists a system Tn+1

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that v(G, g, h) =
v(G′, i, j) and

Tn
G 6|=gb ϕ(Tg, Th) ⇒ Tn+1

G′ 6|=gb ϕ(Ti, Tj).

Proof. Let a be a vertex of G with a 6∈ {g, h}. Then we construct G′ from G as
follows: Let V ′ = V ∪ {n + 1}, and E′ = (E ∪ {(n + 1,m)|(a,m) ∈ E for some
m ∈ V } ∪ {(a, n + 1)}) \ {(a,m)|(a,m) ∈ E for some m ∈ V }, i.e. we copy all
the outgoing edges of a to the vertex n + 1, and replace all the outgoing edges
of a by one outgoing edge to n+ 1.

Assume Tn
G 6|=gb ϕ(Tg, Th). Then there exists b ∈ N such that ∀k′ ∈ N there

is a run x of Tn
G where b-gfair(x), and (x, 0, |QT | · k′) 6|= ϕ(Tg, Th). Let b′ =

b+ (b− n+ 2) · |QT |, and d = |QT |+ 1. We will construct for every such run x
a run y of Tn+1

G′ where b′-gfair(y), and x(Tg, Th) ≡d y(Ti, Tj) which guarantees
that (y, 0, k′) 6|= ϕ(Ti, Tj) (see Corollary 1).

Construction. The construction is such that we keep the local paths of the n
existing processes up to bounded stuttering, and we add a process Tn+1 that
always immediately sends the token after receiving it, with qrcv, qsnd and the
corresponding paths as defined above. In the following, as a short-hand nota-
tion, if s = (q1, . . . , qn) is a global state of Tn

G and q ∈ QT , we write (s, q) for
(q1, . . . , qn, q).

Let x = (s0, ac0)(s1, ac1) . . . and y′ = ((s0, q
rcv), ac0)((s1, q

rcv), ac1) . . .. Note
that y′ is a sequence of configurations of Tn+1

G′ , but not a run. To obtain a run,
first let y′′ = ((s0, q

init), ε) . . . ((s0, q
rcv), ac0)((s1, q

rcv), ac1) . . .. Finally, replace
every occurrence of a pair of consecutive configurations ((s, qrcv), (snda, rcvz)),
((s′, qrcv), ac′), where s, s′ ∈ Qn

T
, z ∈ V, ac′ ∈ Σ, with the sequence

((s, qrcv), (snda, rcvn+1)) . . . ((s, qsnd), (sndn+1, rcvz)) . . . ((s′, qrcv), ac′).
In other words, instead of sending the token to Tz, Ta sends the token to

Tn+1, and Tn+1 sends the token immediately to Tz. Furthermore, in x between
moments t and t+b, Ta can send the token at most b−n+1 times, and whenever
Tn+1 receives the token, it takes at most |QT | steps before reaching qrcv again.
Finally, note that the number of steps Tn+1 takes to reach qrcv for the first time
is also bounded by |QT |. Therefore we have b′-gfair(y) and x(Tg, Th) ≡d y(Ti, Tj)
(as b′ ≤ b · d) which by Corollary 1 implies that (y, 0, k′) 6|= ϕ(Ti, Tj). ut
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Lemma 13 (Bounding Lemma). Let Tn
G be a system with n ≥ 4 and g, h ∈

V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X. Then there exists a
system T 4

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that v(G, g, h) = v(G′, i, j) and

Tn
G 6|=gb ϕ(Tg, Th) ⇒ T 4

G′ 6|=gb ϕ(Ti, Tj).

Proof (Proof idea). First, note that the existence of G′ and i, j ∈ V ′ with
v(G, g, h) = v(G′, i, j) follows directly from Proposition 1 in Clarke et al. [9].
As usual, assuming that Tn

G 6|=gb ϕ(Tg, Th), we need to construct counterexam-
ple runs of T 4

G′ for some b′ ∈ N and all k′ ∈ N.
The construction is based on the same ideas as in the proof of Lemma 12, with

the following modifications: i) instead of keeping all local runs of a run x ∈ Tn
G,

we only keep the local runs of Tg and Th (now assigned to Ti and Tj), ii) instead
of constructing one local run for the new process, we now construct local runs for
two new processes Tk and Tl (basically, each of them is responsible for passing the
token to Ti or Tj , respectively), and iii) the details of the construction of these
runs depend on the connectivity vector v(G, g, h), which essentially determines
which of the new processes holds the token when neither Ti nor Tj have it.

As usual, the construction ensures that y is globally bounded fair and that
y(Ti, Tj) ≡d x(Tg, Th) for some d, which by Corollary 1 implies that (y, 0, k′) 6|=
ϕ(Ti, Tj). ut

7 Conclusions

We have investigated the behavior of concurrent systems with respect to prompt-
ness properties specified in Prompt-LTL\X. Our first important observation is
that Prompt-LTL\X is not stutter insensitive, so the standard notion of stutter
equivalence is insufficient to compare traces of concurrent systems if we are inter-
ested in promptness. Based on this, we have defined bounded stutter equivalence,
and have shown that Prompt-LTL\X is bounded stutter insensitive.

We have shown how this allows us to obtain cutoff results for guarded pro-
tocols and token-passing systems, and have obtained cutoffs for Prompt-LTL\X
(with locally or globally bounded fairness) that are the same as those that were
previously shown for LTL\X (with unbounded fairness). This implies that, for
the cases where we do obtain cutoffs, the PMCP for Prompt-LTL\X has the
same asymptotic complexity as the PMCP for LTL\X.

One case that we investigated remains open: disjunctive systems with global
bounded fairness. In future work, we will try to solve this open problem, and
investigate whether other cutoff results in the literature can also be lifted from
LTL\X to Prompt-LTL\X.

Finally, we note that together with methods for distributed synthesis from
Prompt-LTL\X specifications, our cutoff results enable the synthesis of param-
eterized systems based on the parameterized synthesis approach [20] that has
been used to solve challenging synthesis benchmarks by reducing them to sys-
tems with a small number of components [24,25].
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