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Abstract
We give a direct polynomial-time reduction from parity games played over the configuration
graphs of collapsible pushdown systems to safety games played over the same class of graphs.
That a polynomial-time reduction would exist was known since both problems are complete for
the same complexity class. Coming up with a direct reduction, however, has been an open
problem. Our solution to the puzzle brings together a number of techniques for pushdown
games and adds three new ones. This work contributes to a recent trend of liveness to safety
reductions which allow the advanced state-of-the-art in safety checking to be used for more
expressive specifications.
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57:2 Parity to Safety in Polynomial Time

1 Introduction

Model-checking games ask whether there is a strategy (or implementation) of a system that
can satisfy required properties against an adversary (or environment). They give a natural
method for reasoning about systems wrt. popular specification logics such as LTL, CTL, and
the µ-calculus. The simplest specifications are reachability or safety properties, where the
system either needs to reach a given good state or avoid a bad state (such as a null-pointer
dereference). The most expressive logic typically studied is the µ-calculus, which subsumes
LTL, CTL, and CTL∗ [22]. One can reduce µ-calculus model checking in polynomial time to
the analysis of parity games (op cit.) via a quite natural product of system and formula.

In the finite-state setting, while reachability and safety games can be solved in linear
time and space, the best known algorithms for parity games are quasi-polynomial time [8]
or quasi-linear space [18, 13]. For infinite-state games described by pushdown systems, or
more generally, collapsible pushdown systems, the complexities match: EXPTIME-complete
for solving reachability, safety [5, 32], and parity games [32] over pushdown systems, and
n-EXPTIME-complete for order-n collapsible pushdown systems [11, 7, 24, 17].

Pushdown systems are an operational model for programs with (recursive) function calls.
In such systems, a configuration has a control state from a finite set and a stack of characters
from a finite alphabet (modeling the call stack). Collapsible pushdown systems [17] are
an operational model for higher-order recursion as found in most languages (incl. Haskell,
JavaScript, Python, C++, Java, . . . ). They have a nested stack-of-stacks (e.g. an order-2
stack is a stack of stacks) and collapse links which provide access to calling contexts.

Given that safety and parity games over collapsible pushdown systems are complete
for the same complexity classes, the problems must be inter-reducible in polynomial-time.
However, a direct (without a detour via Turing machines) polynomial-time reduction from
parity to safety has been an open problem [14]. To see why the reduction is difficult to find,
note that a safety game is lost based on a finite prefix of a play while determining the winner
of a parity game requires access to the infinitely many elements of a play. Complexity theory
tells us that this gap can be bridged by access to the stack, with only polynomial overhead.

Our contribution is such a polynomial-time reduction from parity to safety. From
a theoretical standpoint, it explains the matching complexities despite the difference in
expressible properties. From a practical standpoint, it may help building model-checking tools
for µ-calculus specifications. Indeed, competitive and highly optimized tools exist for analysing
reachability and safety properties of higher-order recursion schemes (HorSat [6, 31, 20] and
Preface [28] being the current state-of-the-art), but implementing efficient tools for parity
games remains a problem [15, 23]. Having the reduction at hand can allow the use of safety
tools for checking parity conditions, suggest the transfer of techniques and optimizations from
safety to parity, and inspire new algorithms for parity games. Still, a complexity-theoretic
result should only be considered a first step towards practical developments.

Reductions from parity to safety have been explored for the finite-state case by Ber-
net et al. [1], and for pushdown systems by Fridman and Zimmermann [14]. We will refer
to them as counter reductions, as they use counters to track the occurrences of odd ranks.
These existing reductions are not polynomial. Berwanger and Doyen [2] showed that counter
reductions can be made polynomial in the case of finite-state imperfect-information games.

Our solution to the puzzle brings together a number of techniques for pushdown games and
contributes three new ones. We first show how to lift the existing counter reductions [1, 14]
from first order to higher orders. For this we exploit a rank-awareness property of collapsible
pushdown systems [17]. Secondly, we prove the correctness of this lifting by showing that it
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commutes with a reduction from order-n to order-(n−1) games [32, 17]. The polynomial-time
reduction is then a compact encoding of the lifted counter reduction. It uses the ability of
higher-order stacks to encode large numbers [7] and the insight that rank counters have a
stack-like behavior, even in their compact encoding.

Much recent work verifies liveness properties via reductions to safety [25, 10, 26, 27, 12]
or reachability [21, 4] with promising results. For finite-state generalized parity games, Sohail
and Somenzi show that pre-processing via a safety property can reduce the state space that
a full parity algorithm needs to explore, giving competitive synthesis results for LTL [30]. In
the case of infinite-state systems (including pushdowns), reductions from liveness (but not
parity games) have been explored by Biere et al. [3] and Schuppan and Biere [29].

2 Preliminaries

We define games over collapsible pushdown systems (CPDS). For a full introduction see [17].
CPDS are an operational model of functional programs that is equivalent to higher-order
recursion schemes (HORS) [17]. Without collapse, they correspond to safe HORS [19].

In the following, let N be the set of natural numbers (including 0) and [i, j] denote the
set {i, i+ 1, . . . , j}.

2.1 Higher-Order Collapsible Stacks
Higher-order stacks are a nested stack-of-stacks structure whose stack characters are annotated
by collapse links that point to a position in the stack. Intuitively, this position is the context
in which the character was created. We describe the purpose of collapse links after some
basic definitions.

I Definition 2.1 (Order-n Collapsible Stacks). For n ≥ 1, let Σ be a finite set of stack
characters Σ together with a partition function3 λ : Σ→ [1, n]. An order-0 stack with up-to
order-n collapse links is an annotated character ai ∈ Σ× N. An order-k stack with up-to
order-n collapse links is a non-empty sequence w = [w1 . . . w`]k (with ` > 0) such that each
wi is an order-(k − 1) stack with up-to order-n collapse links. By Stacksn we denote the set
of order-n stacks with up-to order-n links.

In the sequel, we will refer to stacks in Stacksn as order-n stacks. By order-k stack we will
mean an order-k stack with up-to order-n links, where n will be clear from the context.

Given an order-k stack with up-to order-n links w = [w1 . . . w`]k, we define below the
operation topk′ to return the topmost element of the topmost order-k′ stack. Note that this
element is of order-(k′− 1). The top of a stack appears leftmost. The operation botik removes
all but the last i elements from the topmost order-k stack. It does not change the order of
the stack and requires i ∈ [1, `].

topk(w) = w1 botik(w) = [w`−i+1 . . . w`]k
topk′(w) = topk′(w1) (k′ < k) botik′(w) = [botik′(w1)w2 . . . w`]k (k′ < k).

For technical convenience, we will also define

topn+1(w) = w

which, we note, does not extend to topn+2 or beyond.

3 Readers familiar with CPDS may expect links to be pairs (k, i) and the alphabet Σ not to be partitioned
by link order. The partition assumption is oft-used. It is always possible to tag each character with its
link order using Σ× [1, n]. Such a partition becomes crucial in Section 4.

MFCS 2018



57:4 Parity to Safety in Polynomial Time

The destination of a collapse link i on a with λ(a) = k in a stack w is botik(w), when
defined. When i = 0, the link is considered null. We often omit irrelevant collapse links from
characters to improve readability.

When u is a (k − 1)-stack and v = [v1 . . . v`]n is an n-stack with k ∈ [1, n], we define
u :k v as the stack obtained by adding u on top of the topmost k-stack of v. Formally,

u :k v = [uv1 . . . v`]n (k = n) and u :k v = [(u :k v1)v2 . . . v`]n (k < n).

I Example 2.2. When λ(a) = 3 and λ(b) = 2 let w = [[[a1b1]1[b1]1]2[[b0]1]2]3 be an order-3
collapsible stack. The destination of the topmost link is bot13(w) = [[[b0]1]2]3. Furthermore,
bot12(w) = [[[b1]1]2[[b0]1]2]3 and top2(w) = [a1b1]1. Here, top2(w) :2 bot12(w) = w.

Operations on Order-n Collapsible Stacks

CPDS are programs with a finite control acting on collapsible stacks via the operations:

On = {push2, . . . , pushn} ∪ {pusha, rewa | a ∈ Σ} ∪ {pop1, . . . , popn} ∪ {collapse} .

Operations pushk of order k > 1 copy the topmost element of the topmost order-k stack.
Order-1 push operations pusha push a onto the topmost order-1 stack and annotate it with
an order-λ(a) collapse link. When executed on a stack w, the link destination is popλ(a)(w).
A popk removes the topmost element from the topmost order-k stack. The rewrite rewa
modifies the topmost stack character while maintaining the link (rewrite must respect the
link order). Collapse, when executed on ai with λ(a) = k, pops the topmost order-k stack
down to the last i elements, captured by botik. Formally, for an order-n stack w:

1. pushk(w) = topk(w) :k w.
2. pusha(w) = a`−1 :1 w when topk+1(w) = [w1 . . . w`]k, where k = λ(a) is the link order,
3. popk(w) = v when w = u :k v,
4. collapse(w) = botik(w) when top1(w) = ai and λ(a) = k, and
5. rewb(w) = bi :1 v when w = ai :1 v and λ(a) = λ(b).
Note that since our definition of stacks does not permit empty stacks, popk is undefined if v
is empty and collapse is undefined when i = 0. Thus, the empty stack cannot be reached
using CPDS operations; instead, the offending operation will simply be unavailable. Likewise
if a rewrite operation would change the order of the link.

I Example 2.3. Recall Example 2.2 and that w = [[[a1b1]1[b1]1]2[[b0]1]2]3. Given the order-3
link 1 of the topmost stack character a, a collapse operation yields u = [[[b0]1]2]3. Now
push3(u) = [[[b0]1]2[[b0]1]2]3. A pusha on this stack results in v = [[[a1b0]1]2[[b0]1]2]3. We
have pop3(v) = u = collapse(v).

There is a subtlety in the interplay of collapse links and higher-order pushes. For a pushk,
links pointing outside of u = topk(w) have the same destination in both copies of u, while
links pointing within u point to different sub-stacks.

I Remark (nop). For convenience we use an operation nop which has no effect on the stack.
We can simulate it by rewa where a is the topmost character (by the format of rules, below,
we will always know the topmost character when applying an operation). Hence, it is not a
proof case.
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2.2 Collapsible Pushdown Systems and Games
I Definition 2.4 (CPDS). An order-n collapsible pushdown system is a tuple C given by
(P,Σ, λ,R, pI , aI , ρ) with P a finite set of control states with initial control state pI , Σ a finite
stack alphabet with initial stack character aI and order function λ, ρ : P → N a function
assigning ranks to P, and R ⊆ (P × Σ×On × P) a set of rules. The size is |C| = |P|+ |Σ|.
The remaining entries polynomially depend on P and Σ (note that n is fixed).

We attach ranks to CPDS instead of games as we later need the notion of rank-aware CPDS.
A configuration of a CPDS is a pair c = 〈p, w〉 with p ∈ P and a stack w ∈ Stacksn.

We have a transition 〈p, w〉 −→ 〈p′, w′〉 if there is a rule (p, a, o, p′) ∈ R with top1(w) = a

and w′ = o(w). The initial configuration is 〈pI , wI〉 where wI = [. . . [a0
I ]1 . . .]n. To begin

from another configuration, one can adjust the CPDS rules to build the required stack from
the initial configuration. A computation is a sequence of configurations c0, c1, . . . where
c0 = 〈pI , wI〉 and ci −→ ci+1 for all i ∈ N. Recall, transitions cannot empty a stack or
rewrite the order of a link.

I Definition 2.5 (Games over CPDS). A game over a CPDS is a tuple G = (C,O,W), where
C is a CPDS, O : P → {A,E} is a division of the control states of C by owner Elvis (E) or
Agnetha (A), and W ⊆ Nω is a winning condition. The size of the game is |G| = |C|.

We call G a safety game if ρ(p) ∈ {1, 2} for all p ∈ P and W = 2ω. It is a parity game if
W is the set of all sequences such that the smallest infinitely occurring rank is even.

We refer to computations as plays and require them to be infinite. This means every
configuration 〈p, w〉 has some successor 〈p′, w′〉. This does not lose generality as we can add to
the CPDS transitions to a losing (as defined next) sink state (with self-loop) for O(p) from any
configuration 〈p, w〉. A play 〈p0, w0〉 , 〈p1, w1〉 , 〈p2, w2〉 , . . . is won by Elvis, if its sequence of
ranks satisfies the winning condition, i.e. ρ(p0)ρ(p1)ρ(p2) . . . ∈ W. Otherwise, Agnetha wins.
When a play reaches (p, w), then the owner of p chooses the rule to apply. A strategy for player
Υ ∈ {E,A} is a function σ : (P × Stacksn)∗ → R that returns an appropriate rule based on
the prefix of the play seen so far. A play 〈p0, w0〉 , 〈p1, w1〉 , 〈p2, w2〉 , . . . is according to σ if
for all i with O(pi) = Υ we have 〈pi, wi〉 −→ 〈pi+1, wi+1〉 via rule σ(〈p0, w0〉 , . . . , 〈pi, wi〉).
The strategy is winning if all plays according to σ are won by Υ. We say a player wins a
game if they have a winning strategy from the initial configuration.

2.3 Rank-Aware Collapsible Pushdown Systems
We will often need to access the smallest rank that was seen in a play since some stack was
created. Rank-aware CPDS record precisely this information [17]. We first define k-ancestors
which, intuitively, give the position in the play where the top order-(k− 1) stack was pushed.
Note, in the definition below, the integer j is unrelated to the collapse links.

I Definition 2.6 (k-Ancestor). Let k ∈ [2, n] (resp. k = 1). Given a play c0, c1, . . . we attach
an integer j to every order-(k−1) stack as follows. In c0 all order-(k−1) stacks are annotated
by 0. Suppose ci+1 was obtained from ci using operation pushk (resp. pusha). Then the new
topmost order-(k− 1) stack in ci+1 is annotated with i. If ci+1 is obtained via a pushk′′ with
k′′ > k, then all annotations on the order-(k − 1) stacks in the copied stack are also copied.

The k-ancestor with k ∈ [1, n] of ci is the configuration cj where j is the annotation of
the topmost order-(k − 1) stack in ci. Let top1(ci) = a` and λ(a) = k′. The link ancestor of
ci is the k′-ancestor of the 1-ancestor of ci.

MFCS 2018



57:6 Parity to Safety in Polynomial Time

Applying a popk operation will expose (a copy of) the topmost (k−1)-stack of the k-ancestor.
To understand the notion of a link ancestor, remember that collapse executed on a stack
whose topmost order-0 stack is a` with λ(a) = k′ has the effect of executing popk′ several
times. The newly exposed topmost (k′ − 1)-stack is the same that would be exposed if popk′
were applied at the moment the a character was pushed. This exposed stack is the same stack
as is topmost on the k′-ancestor of the 1-ancestor of a. We illustrate this with an example.

I Example 2.7. Assume some c0. Now take some c1 containing the stack w1 = [[[b0]1]2]3.
Apply a push3 operation to obtain c2 with stack w2 = [[[b0]1]2[[b0]1]2]3. Note, the topmost
[[b0]1]2 has 3-ancestor c1.

Now, let λ(a) = 3 and obtain c3 with pusha, which thus contains the stack w3 =
[[[a1b0]1]2[[b0]1]2]3 where the a1 has the 1-ancestor c2.

We can now apply push3 again to reach c4 with stack w4 = [[[a1b0]1]2[[a1b0]1]2[[b0]1]2]3.
Note that both copies of a1 have the 1-ancestor c2. Moreover, the link ancestor of both is
c1. That is, the 3-ancestor of the topmost stack of c2. In particular, applying collapse at c4
results in a configuration with stack [[[b0]1]2]3, which is the same stack contained in c1.

In the below, intuitively, the level-k rank is the smallest rank seen since the topmost
(k − 1) stack was created. Similarly for the link-level rank. Our rank-awareness definition is
from [17] but includes level-k ranks as well.

I Definition 2.8 (Level Rank). For a given play c0, c1, . . . the level-k rank with k ∈ [1, n]
(resp. link-level rank) at a configuration ci is the smallest rank of a control state in the
sequence cj+1, . . . , ci where j is the k-ancestor (link ancestor) of ci.

In the following definition, ` is a special symbol to be read as link.

I Definition 2.9 (Rank-Aware). A rank-aware CPDS is a CPDS C over stack characters
(a,Rk), where a is taken from a finite set and function Rk has type Rk : [1, n] ∪· {`} → [0,m]
(with m the highest rank of a state in C). The requirement is that in all computations
c0, c1, . . . of the CPDS all configurations ci = (p, w) with top-of-stack character (a,Rk) satisfy

Rk(k) = the level-k rank at ci, k ∈ [1, n], and Rk(`) = the link-level rank at ci.

Below, we slightly generalize a lemma from [17] to include safety games and level-k ranks.
Intuitively, we can obtain rank-awareness by keeping track of the required information in the
stack characters and control states.

I Lemma 2.10 (Rank-Aware). Given a parity (resp. safety) game over CPDS C of order-n,
one can construct in polynomial time a rank-aware CPDS C′ of the same order and a parity
(resp. safety) game over C′ such that Elvis wins the game over C iff he wins the game over C′.

Note, the number of functions Rk is exponential in n. However, since n is fixed the
construction is polynomial. In the sequel, we will assume that all CPDS are rank-aware.

3 Main Result and Proof Outline

In the following sections, we define a reduction Poly which takes a parity game G over a
CPDS and returns a safety game Poly(G) of the same order. The main result follows.

I Theorem 3.1 (From Parity to Safety, Efficient). Given a parity game G, Elvis wins G iff
he wins Poly(G). Poly(G) is polynomially large and computable in time polynomial in the
size of G.
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We outline how to define Poly and prove it correct. First, we give a function CounterB
reducing an order-n parity game to an equivalent order-n safety game. It extends Fridman
and Zimmermann’s reduction [14] from first order to higher orders. In the finite-state setting,
a related reduction appeared already in [1]. The idea is to count in the stack characters the
occurrences of odd ranks. Elvis has to keep the counter values below B, a threshold that is a
parameter of the reduction. For completeness, this threshold has to be n-fold exponential in
the size of G. Let Exp0(f) = f and Expn(f) = 2Expn−1(f). We have the following lemma.

I Lemma 3.2 (From Parity to Safety, Inefficient). Given a parity game G played over an
order-n CPDS, there is a bound B(G) = Expn(f(|G|)) for some polynomial f so that for all
B ≥ B(G) Elvis wins G iff he wins the safety game CounterB(G).

The size of CounterB(G) is not polynomial, even for constant B. The next step is to give an
efficient reduction PolyB producing a safety game equivalent to CounterB(G). In particular
PolyB(G)(G) can be computed in time polynomial only in the size of G, not in B(G). Thus,
we can define Poly from the main theorem to be Poly(G) = PolyB(G)(G).

Technically, Poly relies on the insight that counter increments as performed by CounterB
follow a stack discipline. Incrementing the rth counter resets all counters for r′ > r to zero.
The upper bound combines this with the fact that collapsible pushdown systems can encode
large counters [7]. The second step is summarized as follows.

I Lemma 3.3 (From Inefficient to Efficient). Elvis wins CounterB(G) iff he wins PolyB(G).
Moreover, Poly(G) = PolyB(G)(G) is polynomial-time computable.

It should be clear that the above lemmas, once proven, yield the main theorem. For
the equivalence stated there, note that Poly(G) = PolyB(G)(G) is equivalent to the game
CounterB(G)(G) by Lemma 3.3. This game, in turn, is equivalent to G by Lemma 3.2.

The proof of Lemma 3.3 will be direct and is given in Section 7. We explain the proof of
Lemma 3.2 here, which relies on a third reduction. We define a function called Order that
takes an order-n parity or safety game and produces an equivalent order-(n− 1) parity or
safety game. The reduction already appears in [17], and generalizes the one from [32]. Let

GO = Order(G), GCB
= CounterB(G),

GO,CB
= CounterB(Order(G)), GCB ,O = Order(CounterB(G)) .

The proof of Lemma 3.2 chases the diagram below. We rely on the observation that the games
CounterB(Order(G)) and Order(CounterB(G)) are equivalent, as stated in Lemma 3.4. The
proof of Lemma 3.4 needs the reductions and can be found in Section 6. The commutativity
argument yields the following proof, almost in category-theoretic style.

G GCB

GO GO,CB
GCB ,O

CounterB

Order

CounterB

Order

I Lemma 3.4 (GO,CB
vs. GCB ,O). Given B ∈ N and a parity game G over an order-n CPDS,

Elvis wins CounterB(Order(G)) iff Elvis wins Order(CounterB(G)).

Proof of Lemma 3.2. We induct on the order. At order-1, the result is due to Fridman and
Zimmerman [14]. For the induction, without the bound, at order-n, take a winning strategy
for Elvis in G. By [17], he has a winning strategy in GO. By induction, Elvis has a winning

MFCS 2018



57:8 Parity to Safety in Polynomial Time

strategy in GO,CB
and by Lemma 3.4 also in GCB ,O when B is suitably large. Finally, again

by [17], Elvis can win GCB
. I.e., we chase the diagram above from G to GO to GO,CB

to GCB ,O

and then up to GCB
. To prove the opposite direction, simply follow the path in reverse.

To obtain the required bound, we argue as follows: Intuitively, we have an exponential
bound at order-1 by Fridman and Zimmerman. Thus, assume by induction we have a
(n − 1)-fold exponential bound for order-(n − 1). From an order-n system we obtain an
exponentially large order-(n− 1) system for which an n-fold exponential bound is therefore
needed. J

In Sections 4 and 5, we define Order and CounterB , and show Lemma 3.4 in Section 6. The
reduction Poly is defined in Section 7, which also sketches the proof of Lemma 3.3.

4 Order Reduction

We recall the reduction of [17] from order-n to order-(n− 1) parity games. This reduction
also works for safety games. It is a natural extension of Carayol et al. [9] for higher-order
pushdown systems without collapse, which extended Walukiewicz’s reduction of pushdown
parity games to finite-state parity games [32]. Due to space constraints, we only give the
intuition here. It is useful when explaining the motivation behind the constructions in our
parity to safety reduction.

Given an order-n CPDS C and a game G = (C,O,W) we define an order-(n− 1) game
Order(G) over a CPDS C′. The order-(n − 1) CPDS C′ simulates C. The key operations
are pushn, popn, pusha with λ(a) = n, and collapse when the link is order-n. We say these
operations are order-n. The remaining operations are simulated directly on the stack of C′.

There is no pushn on an order-(n− 1) stack. Instead, observe that if the stack is w before
the pushn operation, it will return to w after the corresponding popn (should it occur). Thus,
we simulate pushn by splitting the play into two branches. The first simulates the play
between the pushn and corresponding popn. The second simulates the play after the popn.

Instead of applying a pushn operation, Elvis makes a claim about the control states the
play may pop to. Also necessary is information about the smallest rank seen in the play to
the pop. This claim is recorded as a vector of sets of control states ~P = (P0, . . . , Pm) which
is held in the current control state. Each p ∈ Pr is a potential future of the play, meaning
that the pushed stack may be popped to p and the minimum rank seen since the push could
be r. Because Elvis does not have full control of the game, he cannot give a single control
state and rank: Agnetha may force him to any of a number of situations.

Once this guess has been made, Agnetha chooses whether to simulate the first play
(between the push and the pop) or the second (after the pop). In the first case, ~P is stored
in the control state. Then, when the pop occurs, Elvis wins if the destination control state is
in Pr where r is the minimum rank seen (his claim was correct). In the second case, Agnetha
picks a rank r and moves the play directly to some control state in Pr. This move has rank r
(as the minimum rank seen needs to contribute to the parity/safety condition). In both cases,
the topmost order-(n− 1) stack does not change (as it would be the same in both plays).

To simulate a pusha with λ(a) = n and a corresponding collapse we observe that the
stack reached after the collapse is the same as that after a popn applied directly. Thus, the
simulation is similar. To simulate the play up to the collapse, the current target set ~P is
stored with the new stack character a. Then Elvis wins if a move performs a collapse to a
control state p ∈ Pr, where r is the smallest rank seen since the order-(n − 1) stack, that
was topmost at the moment of the original pusha, was pushed. To simulate the play after
the collapse, we can simulate a popn as above.
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5 Counter Reduction

We reduce parity to safety games, generalizing Fridman and Zimmermann [14] which extended
Bernet et al. [1]. This reduction is not polynomial and we show in Section 7 how to achieve
the desired complexity. Correctness is Lemma 3.2 (From Parity to Safety, Inefficient) .

We give the intuition here. The reduction maintains a counter for each odd rank, which
can take any value between 0 and B. We also detail the counters below as they are needed
in Section 7.

The insight of Bernet et al. is that, in a finite-state parity game of ` states, if Agnetha
can force the play to pass through some odd rank r for `+ 1 times without visiting a state
of lower rank in between, then some state p of rank r is visited twice. Since parity games
permit positional winning strategies, Agnetha can repeat the play from p ad infinitum. Thus,
the smallest infinitely occurring rank must be r, and Agnetha wins the game.

Thus, Elvis plays a safety game: he must avoid visiting an odd rank too many times
without a smaller rank being seen. In the safety game, counters

~α = (α1, α3, . . . , αm)

are added to the states, one for each odd rank. When a rank r is seen, then, if it is odd, αr
is incremented. Moreover, whether r is odd or even, all counters αr′ for r′ > r are reset to 0.

As the number of configurations is infinite, Bernet’s insight does not immediately gen-
eralize to pushdown games. However, Fridman and Zimmermann observed that, from
Walukiewicz [32], a pushdown parity game can be reduced to a finite-state parity game (of
exponential size) as described in the previous section. This finite-state parity game can be
further reduced to a safety game with the addition of counters. Their contribution is then to
transfer back the counters to the pushdown game, with the following reasoning.

Recall, a push move at (p, [aw]1) is translated into a branch from a corresponding state
(p, a, ~P ) in the finite-state game. There are several moves from (p, a, ~P ), some of them
simulate the push, the remaining moves simulate the play after the corresponding pop. When
augmented with counters the states take the form (p, a, ~P , ~α). We see that, when simulating
the pop in the finite-state game, the counter values are the same as in the moment when the
push is simulated. That is, if we lift the counter construction to the pushdown game, after
each pop move we need to reset the counters to their values at the corresponding push. Thus
we store the counter values on the stack. For example, for a configuration (p, [(a, ~α)(b, ~α′)]1)
where the current top of stack is a and the current counter values are ~α, the counter values
at the moment when a was first pushed are stored on the stack as ~α′.

This reasoning generalizes to any order n. We store the counter values on the stack so that,
when a popk operation occurs, we can retrieve the counter values at the corresponding pushk,
and similarly for collapse. Note also that, when reducing from order-n to order-(n− 1), any
branch corresponding to a play after a pop passes through a rank r which is the smallest
rank seen between the push and pop. Thus, in the safety game, after each pop or collapse
we need to update the counter values using r. Hence we require a rank-aware CPDS.

Let m be the maximum rank, and, for convenience, assume it is odd. We maintain a
vector of counters ~α = (α1, α3, . . . , αm), one for each odd rank, stored in the stack alphabet
as described above. We update these counters with operations ⊕r that exist for all r ∈ [0,m]
(including the even ranks). Operation ⊕r resets the counters αr′ with r′ > r to zero. If r
is odd, it moreover increments αr. If the bound is exceeded, an overflow occurs. Formally,
⊕r(~α) = NaN if r is odd and αr + 1 > B. Otherwise, ⊕r(~α) = ~α′ where for each r̃

α′r̃ = αr̃ (if r̃ < r), α′r̃ = αr + 1 (if r̃ = r), and α′r̃ = 0 (if r̃ > r).
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6 Equivalence Result

We need equivalence of GO,CB
= CounterB(Order(G)) and GCB ,O = Order(CounterB(G)) for

Lemma 3.4. The argument is that the two CPDS only differ in order of the components
of their control states and stack characters. A subtlety is that when CounterB is applied
first, the contents of ~P are not control states of G, but control states of GCB

. However, the
additional information in the control states after CounterB has to be consistent with ~P ,
which means we can directly translate between guesses over states in the original CPDS, and
those over states of the CPDS after the counter reduction.

7 Polynomial Reduction

For a game G over an order-n CPDS, the counters in the game CounterB(G)(G) blow up G by
an n-fold exponential factor. To avoid this we use the stack-like behaviour of the counters
and a result due to Cachat and Walukiewicz [7], showing how to encode large counter values
into the stack of a CPDS with only polynomial overhead (in fact, collapse is not needed).

7.1 Counter Encoding

Cachat and Walukiewicz propose a binary encoding that is nested in the sense that a bit is
augmented by its position, and the position is (recursively) encoded in the same way. For
example, number 5 stored with 16 bits is represented by (0, 1).(1, 0).(2, 1).(3, 0).(4, 0) . . . (15, 0).
Since four bits are required to index 16 bits, we encode position 4 as (0, 0′).(1, 0′).(2, 1′).(3, 0′).
Finally, position 2 of this encoding stored as (0, 0′′).(1, 1′′). The players compete to (dis)prove
that the indexing is done properly.

Formally we introduce distinct alphabets to encode counters for all odd ranks r:

Γr = Γ̂r ∪ {0r, 1r} .

Here, Γ̂r is a polynomially-large set of characters for the indexing. The set {0r, 1r} are the
bits to encode numbers. Let Γ be the union of all Γr.

The values of the counters are stored on the order-1 stack, with the least-significant bit
topmost. The indices appear before each bit character. E.g., value 16 for counter r stored
with five bits yields a sequence from Γ̂∗r . 0r . Γ̂∗r . 0r . Γ̂∗r . 0r . Γ̂∗r . 0r . Γ̂∗r . 1r. Actually,
the encoding will always use all bits, which means its length will be (n− 1)-fold exponential.

Cachat and Walukiewicz provide game constructions to assert properties of the counter
encodings. For this, play moves to a dedicated control state, from which Elvis wins iff
the counters have the specified property. In [7], Elvis plays a reachability game from the
dedicated state. We need the dual, with inverted state ownership and a safety winning
condition, where the target state of the (former) reachability game has rank 1. Elvis’s goal
will be to prove the encoding wrong (it violates a property) by means of safety, Agnetha tries
to build up the counters correctly and, if asked, demonstrate correctness using reachability.

For all properties, the counter to be checked must appear directly on the top of the stack
(topmost on the topmost order-1 stack). If any character outside Γr is found, Agnetha loses.
When two counters are compared, the first counter must appear directly at the top of the
stack, while the second may be separated from the first by any sequence of characters from
outside Γr (these can be popped away). The first character found from Γr begins the next
encoding. Agnetha loses the game if none is found. The required properties are listed below.
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Encoding Check (encodingr): For each rank r, we have a control state encodingr. Agnetha
can win the safety game from 〈encodingr, w〉 only if the topmost sequence of characters
from Γr is a correct encoding of a counter, in that all indices are present and correct.
Equals Check (equalr): For each r, we have a control state equalr, from which Agnetha
can win only if the topmost sequence of characters from Γr is identical to the next topmost
sequence of Γr-characters. I.e., the two topmost rth counter encodings are equal.
Counter Increment: Cachat and Walukiewicz do not define increment but it can be done
via the basic rules of binary addition. We force Agnetha to increment the counter by first
using pop1 to remove characters from Γ̂r ∪ {1r} until 0r is found. Then, Agnetha must
rewrite the 0r to 1r. Agnetha then performs as many pusha operations as she wishes,
where a ∈ Γ̂r ∪ {0r}. Next, Elvis can accept this rewriting by continuing with the game,
or challenge it by moving to encodingr. This ensures that Agnetha has put enough 0r
characters on the stack (with correct indexing) to restore the number to its full length.

In this encoding one can only increment the topmost counter on the stack. That is, to
increment a counter, all counters above it must be erased. Fortunately, ⊕r resets to zero all
counters for ranks r′ > r, meaning the counter updates follow a stack-like discipline. This
enables the encoding to work. To store a character with counter values from the counter
reduction (a, ~α) with ~α = α1, . . . , αm we store the character a on top and beneath we encode
αm, then αm−2 and so on down to α1.

7.2 The Simulation
The following definition is completed in the following sections. Correctness is stated in
Lemma 3.3 (From Inefficient to Efficient) .

I Definition 7.1 (PolyB). Given a parity game G = (C,O,W) over the order-n CPDS
C = (P,Σ, λ,R, pI , aI , ρ) and a bound B n-fold exponential in the size of the game, we define
the safety game PolyB(G) = (C′,O′, 2ω) where C′ = (Q,Σ′, λ′,R′, p′I , a′I , ρ′). The missing
components are defined below.

We aim to simulate CounterB(G) compactly. This simulation is move-by-move, as follows.
A push(a,~α) of a character with counter values (a, ~α) with ~α = α1, . . . , αm (where the

max-rank is m) is simulated by first pushing a special character `k to save the link (with
push`k

). Then, since the counter values are a copy of the preceding counter values on the
stack, Agnetha pushes an encoding for α1 using Γ1 after which Elvis can accept the encoding,
check that it is a proper encoding using encoding1, or check that it is a faithful copy of the
preceding value of α1 using equal1. We do this for all odd ranks through to m. Then the
only move is to push a with pusha.

Each pushk and popk, with k ∈ [2, n], is simulated directly by the same operation. For a
pop1 we (deterministically) remove all topmost characters (using pop1) up to and including
the first `k′ (for some k′). We simulate collapse like pop1, but we apply collapse to `k′ .

A rew(a,~α) that does not change the counters can be simulated by rewriting the topmost
character. If ⊕r is applied, we force Agnetha to play as follows. If r is even, Agnetha removes
the counters for r′ > r. She replaces them with zero values by pushing characters from
Γ̂r′ ∪ {0r′}. After each counter is rewritten, Elvis can accept the encoding, or challenge it
with encodingr′ . Finally, a is pushed onto the stack. If r is odd, the counters for r′ are
removed as before. Then we do an increment as described above, with Elvis losing if the
increment fails. Note, it fails only if there is no 0r in the encoding, which means the counter
is at its maximum value and there is an overflow (indicating Elvis loses the parity game). If
it succeeds, zero values for the counters r′ > r and a are pushed to the stack as before.
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Control States and Alphabet
We define the control states Q with O′ and ρ′ as well as the alphabet. First,

Q = P ∪ (P × [0,m]) ∪ {#, $} ∪ PCW ∪ POP .

where m is the maximum rank. The set PCW is the control states of the Cachat-Walukiewicz
games implementing encodingr and equalr. The size is polynomial in G. We have POP ={

(inc, r, p), (copy, r, a, p), (zero, r, a, p), (pop1, Υ, r, p),
(inc, r, a, p), (cchk, r, a, p), (zchk, r, a, p), (collapse, Υ, r, p)

∣∣∣∣ r ∈ [0, m] ∧ a ∈ Σ ∧
p ∈ P ∧Υ ∈ {A, E}

}
to control the simulation of the operations as sketched above. We describe the states below.

The states in PCW have the same rank and owner as in the Cachat-Walukiewicz games
(more precisely the dual, see above). All other states have rank 2 except # which has rank 1.
It (resp. $) is the losing sink for Elvis (resp. Agnetha). The states in P ∪ (P × [0,m]) ∪ {#}
are used as in CounterB(G) to directly simulate G. The owners are as in G.

A state (inc, r, p) begins an application of ⊕r. The top-of-stack character is saved by
moving to (inc, r, a, p). The owner of these states does not matter, we give them to Agnetha.
In (inc, r, a, p), the stack is popped down to the counter for r. If r is odd, the least significant
zero is set to one. Then, control moves to (zero, r, a, p). In (zero, r, a, p), zero counters for
ranks r and above are pushed to the stack, followed by a push of a and a return to control
state p. The state is owned by Agnetha. The state (zchk, r, a, p) is used by Elvis to accept
or challenge that the encoding has been re-established completely. It is owned by Elvis.

The controls (copy, r, a, p) copy the counters for ranks r and above (the current values)
and push the copies to the stack, followed by a push of a and a return to control state p. The
state is owned by Agnetha. After this phase, the play moves to (cchk, r, a, p) where Elvis
can accept or test whether the copy has been done correctly. This state is owned by Elvis.

The controls (pop1,Υ, r, p) and (collapse,Υ, r, p) where Υ ∈ {A,E} are used to execute a
pop1 or collapse. For the latter, we pop to the next `k character, perform the collapse and
record that the rth counter needs to be incremented. In case the collapse is not possible
(because it would empty the stack) play may also move to a sink state that is losing for the
player Υ who instigated the collapse. The case of pop1 pops `k. The owner in each case is Υ
as they will avoid moving to their (losing) sink state if the pop1 or collapse is possible.

The alphabet and initial control state and stack character are

Σ′ = Σ ∪ Γ ∪∆ and p′I = (zero, 1, aI , pI) and a′I = `k where λ(aI) = k .

The alphabet is extended by the characters required for the counter and link encodings.
Recall that Γ is the union of the counter alphabets, which are of polynomial size. We use
∆ = {`1, . . . , `m} for the link characters. We assign λ′(`k) = k and λ′(a) = 1 for all other a.

The task of the initial state and initial stack character is to establish the encoding of
(aI , (0, . . . , 0)) in CounterB(G) and then move to the initial state of G. With the above
description, (zero, 1, aI , pI) will establish zeros in all counters (from 1 to m), push the initial
character aI of the given game, and move to state pI . The initial character `k is the correct
bottom element for the encoding of (aI , (0, . . . , 0)).

Rules
The rules of C′ follow C and maintain the counters. R′ contains (only) the following rules.
First, we haveRCW which are the (dual of the) rules of Cachat and Walukiewicz implementing
encodingr and equalr. The rules simulating the operations appear below. Note, pop and
collapse use rank-awareness. We give the increment and copy rules after the basic operations.
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Order-k push: (p, a, pushk, (inc, ρ(p′), p′)) when (p, a, pushk, p′) ∈ R.
Character push: (p, a, push`k

, (copy, 1, b, p′)) when (p, a, pushb, p′) ∈ R and λ(b) = k.
Rewrite: (p, a, rewb, (inc, ρ(p′), p′)) when (p, a, rewb, p′) ∈ R.
Pop (> 1): (p, a, popk, (inc, r, p′)) when (p, a, popk, p′) ∈ R and r = min(ρ(p′),Rk(k)).
Pop (= 1) and Collapse: (p, a, pop1, (o,Υ, r, p′)) when (p, a, o, p′) ∈ R with O(p) = Υ,
operation o being pop1 or collapse, and r = min(ρ(p′), r′). Here, if o = pop1 then
r′ = Rk(1). Otherwise, if o = collapse then r′ = Rk(`).
Then, we have all rules ((o,Υ, r, p′), a′, pop1, (o,Υ, r, p′)) for a′ ∈ Γ. We perform the
operation with ((o,Υ, r, p′), `k′ , o, (inc, r, p′)). To allow for the case where the pop or
collapse cannot be performed (because the stack would empty), we also have the rules
((o,A, r, p′), `k′ ,nop, $) and ((o,E, r, p′), `k′ ,nop,#).
Sink states: ($, a,nop, $) and (#, a,nop,#).

To copy counters, for each odd r and b ∈ Γr we have ((copy, r, a, p), ∗, pushb, (copy, r, a, p)).
We use ∗ to indicate that the transition exists for all stack symbols. When a counter has
been pushed, like in the case of pushing zeros, Agnetha hands over the control to Elvis
to check the result: ((copy, r, a, p), ∗,nop, (cchk, r, a, p)). Elvis can challenge the copied
counter or accept it was copied correctly. To challenge, we use ((cchk, r, a, p), ∗,nop, equalr).
To accept, the behavior depends on r. If r < m, we move to copying the next counter
((cchk, r, a, p), ∗,nop, (copy, r + 2, a, p)). When r = m, we finish copying and move to incre-
menting with rules of the form ((cchk, r, a, p), ∗,nop, (inc, ρ(p), a, p)).

To increment a counter, we first pop and store the topmost stack character with the rule
((inc, r, p), a, pop1, (inc, r, a, p)). Agnetha then removes all counters for ranks higher than the
given r with the following rules, where b ∈ Γr′ with r′ > r: ((inc, r, a, p), b, pop1, (inc, r, a, p)).

When r is even we add back 0 counters once enough have been removed using (with
b ∈ Γr−1 if r > 1 else b ∈ ∆) the rules ((inc, r, a, p), b,nop, (zero, r + 1, a, p)). If r is odd, we
start incrementing the rth counter with ((inc, r, a, p), b, pop1, (inc, r, a, p)) for all b ∈ Γ̂r∪{1r}.

When 0r is found, we use ((inc, r, a, p), 0r, rew1r , (zero, r, a, p)). If no zero bit is found,
we have an overflow and move to the sink state with ((inc, r, a, p), b,nop,#) for b ∈ Γr−2
if r > 2 and b ∈ ∆ otherwise. With ((zero, r, a, p), ∗, pushb, (zero, r, a, p)) for b ∈ Γ̂r ∪ {0r}
we add back zeros to the incremented counter and reset all erased counters. To finish
the phase that adds zeros for the rth counter, Agnetha hands over the control to Elvis,
((zero, r, a, p), ∗,nop, (zchk, r, a, p)).

Elvis can now check if all bits of the counter are present or accept the result. To challenge
the encoding, he uses ((zchk, r, a, p), ∗,nop, encodingr). When accepting it, if r < m, more
counters need to be reset. We move to the next using ((zchk, r, a, p), ∗,nop, (zero, r + 2, a, p)).
If r = m, there are no more counters to handle and with the rule ((zchk, r, a, p), ∗, pusha, p)
Elvis re-establishes the control state and stack character.

8 Conclusion

We gave a polynomial-time reduction from parity games played over order-n CPDS to safety
games over order-n CPDS. Such a reduction has been an open problem [14] (related are also
[1, 2]). It builds counters into the stack to count occurrences of odd ranks at the current
stack level (without seeing a smaller rank). If this number grows large then Elvis would lose
the parity game (if play continued). To obtain a polynomial reduction we use the insight
that the counters follow a stack discipline. For correctness, we use a commutativity argument
for the rank counter and order reductions. As a theoretical interest, the result explains the
matching complexities of parity and safety games over CPDS. From a practical standpoint,
the reduction may inspire the use of advanced safety checking tools for, and the transfer of
technology from safety to, the empirically harder problem of parity game analysis.
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