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We introduce Parametric Linear Dynamic Logic (PLDL), which extends Linear Dynamic Logic

(LDL) by temporal operators equipped with parameters that bound their scope. LDL was proposed

as an extension of Linear Temporal Logic (LTL) that is able to express all ω-regular specifications

while still maintaining many of LTL’s desirable properties like an intuitive syntax and a translation

into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express

timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to ex-

press all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric

LTL and PROMPT-LTL.

Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi

word automata of exponential size via alternating automata. This yields a PSPACE model checking

algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give

tight upper and lower bounds on optimal parameter values for both problems. These results show that

PLDL model checking and realizability are not harder than LTL model checking and realizability.

1 Introduction

Linear temporal logic (LTL) is a popular specification language for the verification and synthesis of re-

active systems. It provides semantic foundations for industrial logics like PSL [5]. LTL has a number of

desirable properties contributing to its ongoing popularity: it does not rely on the use of variables, it has

an intuitive syntax and thus gives a way for practitioners to write declarative and concise specifications.

Furthermore, it is expressively equivalent to first-order logic over the natural numbers with successor

and order [10] and enjoys an exponential compilation property: one can efficiently construct a language-

equivalent non-deterministic Büchi automaton of exponential size in the size of the specification. The

exponential compilation property yields a PSPACE model checking algorithm and a 2EXPTIME algo-

rithm for realizability. Both problems are complete for the respective classes.

Model checking of properties described in LTL or its practical descendants is routinely applied in

industrial-sized applications, especially for hardware systems [2, 5]. Due to its complexity, the real-

izability problem has not reached industrial acceptance (yet). First approaches used a determinization

procedure for ω-automata, which is notoriously hard to implement efficiently [16]. More recent algo-

rithms for realizability follow a safraless construction [6, 7], which avoids explicitly constructing the

deterministic automaton, and are showing promise on small examples.

Despite the desirable properties, two drawbacks of LTL remain and are tackled by different ap-

proaches in the literature: first, LTL is not able to express all ω-regular properties. For example, the

property “p holds on every even step” (but may or may not hold on odd steps) is not expressible in LTL,

but easily expressible as an ω-regular expression. This drawback is a serious one, since the combination

of regular properties and linear-time operators is common in hardware verification languages. Several
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extensions of LTL [12, 20, 21] with regular expressions, finite automata, or grammar operators have been

proposed as a remedy.

A second drawback of classic temporal logics like LTL is the inability to natively express timing

constraints. The standard semantics are unable to enforce the fulfillment of eventualities within finite

time bounds, e.g., it is impossible to require that requests are granted within a fixed, but arbitrary, amount

of time. While it is possible to unroll an a-priori fixed bound for an eventuality into LTL, this requires

prior knowledge of the system’s granularity and incurs a blow-up when translated to automata, and is

thus considered impractical. A more practical way of fixing this drawback has been the purpose of a

long line of work in parametric temporal logics, such as parametric LTL [1], PROMPT–LTL [11] and

parametric metric interval temporal logic [9]. All of them add parameters to the temporal operators to

express time bounds, and either test the existence of a global time bound, like PROMPT–LTL, or of

individual bounds on the parameters, like parametric LTL.

Recently, the first drawback was revisited by De Giacomo and Vardi [4, 19] by introducing an

extension of LTL called linear dynamic logic (LDL), which is as expressive as ω-regular languages.

The syntax of LDL is inspired by propositional dynamic logic (PDL) [8], but the semantics follow

linear-time logics. In PDL and LDL, programs are expressed by regular expressions with tests, and

temporal requirements are specified by two basic modalities: 〈r〉ϕ and [r]ϕ , stating that ϕ should hold

at some position where r matches, or at all positions where r matches, respectively. The operators to

specify regular expressions from propositional formulas are as follows: sequential composition (r1 ;r2),

nondeterministic choice (r1 + r2), repetition (r∗), and test (ϕ?) of a temporal formula. On the level

of the temporal operators, conjunction and disjunction are allowed. The tests allow to check temporal

properties within programs, and are needed to encode LTL into LDL.

As an example, the program “while q do a” with property p holding after the execution of the loop

is expressed in PDL/LDL as follows: [(q?;a)∗ ;¬q?]p. Intuitively, the loop condition q is tested on every

loop entry, the loop body a is executed/consumed until ¬q holds, and then the post-condition p has to

hold. A request-response property (i.e., every request should eventually be followed by a response) can

be formalized as follows: [tt∗](req → 〈tt∗〉resp).
Both aforementioned drawbacks of LTL, the inability to express all ω-regular properties and the

missing capability to specify timing constraints, have been tackled individually in a successful way in

previous work, but not at the same time. Here, we propose a logic called PLDL that combines the

expressivity of LDL with the parametricity of PLTL on infinite traces.

In PLDL, we are for example able to parameterize the eventuality of the request-response condition,

denoted as [tt∗](req → 〈tt∗〉≤xresp), which states that every request has to be followed by a response

within x steps. In the PLDL model checking problem, we determine whether there exists a valuation

α(x) for x such that all paths of the system respond to requests within α(x) steps. If we take the property

as a specification for the PLDL realizability problem, and define req as input, resp as output, we compute

whether there exists a winning strategy that adheres to a valuation α(x) and is able to ensure the delivery

of responses to requests in a timely manner.

The main result of this paper is the translation of PLDL to alternating Büchi automata. By an exten-

sion of the alternating color technique of [11], and by very similar algorithms, we obtain the following

results: PLDL model checking is PSPACE-complete and realizability is 2EXPTIME-complete. Thus,

both problems are no harder than their corresponding variants for LTL. Finally, we give tight exponen-

tial and doubly-exponential bounds on satisfying valuations for model checking and realizability.

Our translation might also be of use for LDL on infinite traces, since De Giacomo and Vardi [4] only

considered LDL on finite traces. Unlike the translation from logic into automata presented there, which

is a top-down construction of an alternating automaton, we present a bottom-up approach.
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2 PLDL

Let V be an infinite set of variables and let us fix a finite1 set P of atomic propositions which we use to

build our formulas and to label transition systems in which we evaluate them. For a subset A ∈ 2P and a

propositional formula φ over P, we write A |= φ , if the variable valuation mapping elements in A to true

and elements not in A to false satisfies φ . The formulas of PLDL are given by the grammar

ϕ ::= p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ | 〈r〉ϕ | [r]ϕ | 〈r〉≤zϕ | [r]≤zϕ

r ::=φ | ϕ? | r+ r | r ;r | r∗

where p ∈ P, z ∈ V , and where φ stands for arbitrary propositional formulas over P. We use the abbre-

viations tt= p∨¬p and ff= p∧¬p for some atomic proposition p. The regular expressions have two

types of atoms: propositional formulas φ over the atomic propositions and tests ϕ?, where ϕ is again

a PLDL formula. Note that the semantics of the propositional atom φ differ from the semantics of the

test φ?: the former consumes an input letter, while tests do not make progress on the word. This is why

both types of atoms are allowed.

The set of subformulas of ϕ is denoted by cl(ϕ). Note that regular expressions are not subformulas,

but the formulas appearing in the tests are, e.g., we have cl(〈p?;q〉≤xr) = {p,r,〈p?;q〉≤xr}. The size |ϕ |
of ϕ is the sum of |cl(ϕ)| and the sum of the lengths of the regular expressions appearing in ϕ (counted

with multiplicity). We define var♦(ϕ) = {z ∈ V | 〈r〉≤zψ ∈ cl(ϕ)} to be the set of variables parameteriz-

ing diamond operators in ϕ , var�(ϕ) = {z ∈V | [r]≤zψ ∈ cl(ϕ)} to be the set of variables parameterizing

box operators in ϕ , and set var(ϕ) = var♦(ϕ)∪var�(ϕ). Usually, we will denote variables in var♦(ϕ) by

x and variables in var�(ϕ) by y, if ϕ is clear from the context. A formula ϕ is variable-free, if var(ϕ)= /0.

The semantics of PLDL are defined inductively with respect to an ω-word w = w0w1w2 · · · ∈ (2P)ω ,

a position n ∈N, and a variable valuation α : V → N via

• (w,n,α) |= p if p ∈ wn and dually for ¬p,

• (w,n,α) |= ψ0 ∧ψ1 if (w,n,α) |= ψ0 and (w,n,α) |= ψ1,

• (w,n,α) |= ψ0 ∨ψ1 if (w,n,α) |= ψ0 or (w,n,α) |= ψ1,

• (w,n,α) |= 〈r〉ψ if there exists j ∈ N s.t. (n,n+ j) ∈ R(r,w,α) and (w,n+ j,α) |= ψ ,

• (w,n,α) |= [r]ψ if for all j ∈ N with (n,n+ j) ∈ R(r,w,α) we have (w,n+ j,α) |= ψ ,

• (w,n,α) |= 〈r〉≤zψ if there exists 0 ≤ j ≤ α(z) s.t. (n,n+ j) ∈ R(r,w,α) and (w,n+ j,α) |= ψ ,

• (w,n,α) |= [r]≤zψ if for all 0 ≤ j ≤ α(z) with (n,n+ j) ∈ R(r,w,α) we have (w,n+ j,α) |= ψ .

Here, the relation R(r,w,α) ⊆ N×N contains all pairs (m,n) such that wm · · ·wn−1 matches r (α is

needed to evaluate tests in r, which might have parameterized subformulas) and is defined inductively by

• R(φ ,w,α) = {(n,n+1) | wn |= φ} for propositional φ ,

• R(ψ?,w,α) = {(n,n) | (w,n,α) |= ψ},

• R(r0 + r1,w,α) = R(r0,w,α)∪R(r1,w,α),

• R(r0 ;r1,w,α) = {(n0,n2) | ∃n1 s.t. (n0,n1) ∈ R(r0,w,α) and (n1,n2) ∈ R(r1,w,α)}, and

• R(r∗,w,α) = {(n,n) | n ∈N}∪{(n0,nk+1) | ∃n1, . . . ,nk s.t. (n j,n j+1) ∈ R(r,w,α) for all j ≤ k}.

We write (w,α) |= ϕ for (w,0,α) |= ϕ and say that w is a model of ϕ with respect to α .

1This greatly simplifies our notation and exposition when we translate formulas into automata, but is not essential.
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Example 1.

• The formula θ∞p :=[tt∗]〈tt∗〉p expresses that p holds true infinitely often.

• In general, every PLTL formula [1] (and thus every LTL formula) can be translated into PLDL,

e.g., F≤x p is expressible as 〈tt∗〉≤x p and p U q as 〈p∗〉q or 〈p∗q〉tt.

• The formula [tt∗](q → 〈(tt ;tt)∗p〉) requires that every request (a position where q holds) is

followed by a response (a position where p holds) after an even number of steps.

As usual for parameterized temporal logics, the use of variables has to be restricted: bounding dia-

mond and box operators by the same variable leads to an undecidable satisfiability problem (cp. [1]).

Definition 1. A PLDL formula ϕ is well-formed, if var♦(ϕ)∩var�(ϕ) = /0.

In the following, we only consider well-formed formulas and drop the qualifier “well-formed”. We

consider the following fragments of PLDL. Let ϕ be a PLDL formula: ϕ is an LDL formula [4], if ϕ

is variable-free, ϕ is a PLDL♦ formula, if var�(ϕ) = /0, and ϕ is a PLDL� formula, if var♦(ϕ) = /0.

Every LDL, PLDL♦, and every PLDL� formula is well-formed by definition. As satisfaction of LDL

formulas is independent of variable valuations, we write (w,n) |= ϕ and w |= ϕ instead of (w,n,α) |= ϕ

and (w,α) |= ϕ , respectively, if ϕ is an LDL formula.

LDL is as expressive as ω-regular languages, which can be proven by a straightforward translation

of ETL f [20], which expresses exactly the ω-regular languages, into LDL.

Theorem 1 ([19]). For every ω-regular language L ⊆ (2P)ω there exists an effectively constructible LDL

formula ϕ such that L = {w ∈ (2P)ω | w |= ϕ}.

Note that we define PLDL formulas to be in negation normal form. Nevertheless, a negation can be

pushed to the atomic propositions using dualities allowing us to define the negation of a formula.

Lemma 1. For every PLDL formula ϕ there exists an efficiently constructible PLDL formula ¬ϕ s.t.

1. (w,n,α) |= ϕ if and only if (w,n,α) 6|= ¬ϕ ,

2. |¬ϕ |= |ϕ |.

3. If ϕ is well-formed, then so is ¬ϕ . and vice versa.

Proof. We construct ¬ϕ by structural induction over ϕ using the dualities of the operators:

• ¬(p) = ¬p

• ¬(ϕ ∧ψ) = (¬ϕ)∨ (¬ψ)

• ¬(〈r〉ϕ) = [r]¬ϕ

• ¬(〈r〉≤xϕ) = [r]≤x¬ϕ

• ¬(¬p) = p

• ¬(ϕ ∨ψ) = (¬ϕ)∧ (¬ψ)

• ¬([r]ϕ) = 〈r〉¬ϕ

• ¬([r]≤yϕ) = 〈r〉≤y¬ϕ

The latter two claims of Lemma 1 follow from the definition of ¬ϕ while the first one can be shown

by a straightforward structural induction over ϕ .

A simple, but very useful property of PLDL is the monotonicity of the parameterized operators: in-

creasing (decreasing) the values of parameters bounding diamond (box) operators preserves satisfaction.

Lemma 2. Let ϕ be a PLDL formula and let α and β be variable valuations satisfying β (x)≥ α(x) for

every x ∈ var♦(ϕ) and β (y)≤ α(y) for every y ∈ var�(ϕ). If (w,α) |= ϕ , then (w,β ) |= ϕ .

The previous lemma allows us to eliminate parameterized box operators when asking for the exis-

tence of a variable valuation satisfying a formula.
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Lemma 3. For every PLDL formula ϕ there is an efficiently constructible PLDL♦ formula ϕ ′ of the

same size as ϕ such that

1. for every α there is an α ′ such that for all w: if (w,α) |= ϕ then (w,α ′) |= ϕ ′, and

2. for every α ′ there is an α such that for all w: if (w,α ′) |= ϕ ′ then (w,α) |= ϕ .

Proof. We construct a single test r̂ such that R(r,w,α)∩{(n,n) | n ∈ N} = R(r̂,w,α) for every w and

every α , which suffices to prove the equivalence of [r]≤yψ and [r̂]ψ provided we have α(y) = 0, which

is sufficient due to monotonicity. We apply the following rewriting rules (in the given order) to r:

1. Replace every subexpression of the form r′∗ by tt?, until no longer applicable.

2. Replace every subexpression of the form φ ;r′ or r′ ;φ by ff? and replace every subexpression of

the form φ + r′ or r′+φ by r′, where φ is a propositional formula, until no longer applicable.

3. Replace every subexpression of the form ψ0?+ψ1? by (ψ0∨ψ1)? and replace every subexpression

of the form ψ0?;ψ1? by (ψ0 ∧ψ1)?, until no longer applicable.

After step 2, r contains no iterations and no propositional atoms unless the expression itself is one. In

the former case, applying the last two rules yields a regular expression which is a single test, which we

denote by r̂. In the latter case, we define r̂ = ff?.

Each rewriting step preserves the intersection R(r,w,α)∩{(n,n) | n∈N}. As r̂ is a test, we conclude

R(r,w,α)∩{(n,n) | n∈N}=R(r̂,w,α) for every w and every α . Note that r̂ can be efficiently computed

from r and is of the same size as r. Now, replace every subformula [r]≤yψ of ϕ by [r̂]ψ and denote the

formula obtained by ϕ ′, which is a PLDL♦ formula that is efficiently constructible and of the same size.

Given an α , we define α0 by α0(z) = α(z), if z ∈ var♦(ϕ) and α0(z) = 0 otherwise. If (w,α) |= ϕ ,

then (w,α0) |= ϕ due to monotonicity. By construction of ϕ ′, we also have (w,α0) |= ϕ ′. On the other

hand, if (w,α ′) |= ϕ ′, then (w,α ′
0) |= ϕ ′ as well, where α ′

0 is defined as above. By construction of ϕ ′, we

conclude (w,α0) |= ϕ .

2.1 The Alternating Color Technique and LDLcp

In this subsection, we repeat the alternating color technique, which was introduced by Kupferman et

al. to solve the model checking and the realizability problem for PROMPT–LTL, amongst others. Let

p /∈ P be a fresh proposition and define P′ = 2P∪{p}. We think of words in (2P′
)ω as colorings of words

in (2P)ω , i.e., w′ ∈ (2P′
)ω is a coloring of w ∈ (2P)ω , if we have wn

′ ∩P = wn for every position n.

Furthermore, n is a changepoint, if n = 0 or if the truth value of p differs at positions n− 1 and n. A

block is a maximal infix that has exactly one changepoint, which is at the first position of the infix. By

maximality, this implies that the first position after a block is a changepoint. Let k ≥ 1. We say that w′ is

k-bounded, if every block has length at most k, which implies that w′ has infinitely many changepoints.

Dually, w′ is k-spaced, if it has infinitely many changepoints and every block has length at least k.

The alternating color technique replaces a parameterized diamond operator 〈r〉≤xψ by an unparam-

eterized one that requires the formula ψ to be satisfied within at most one color change. To this end,

we introduce a changepoint-bounded variant 〈·〉cp of the diamond operator. Since we need the dual

operator [·]cp to allow for negation via dualization, we introduce it here as well. We define

• (w,n,α) |= 〈r〉cpψ ′ if there exists a j ∈N s.t. (n,n+ j) ∈R(r,w,α), wn · · ·wn+ j−1 contains at most

one changepoint, and (w,n+ j,α) |= ψ , and

• (w,n,α) |= [r]cpψ ′ if for all j ∈ N with (n,n+ j) ∈ R(r,w,α) and where wn · · ·wn+ j−1 contains at

most one changepoint we have (w,n+ j,α) |= ψ .
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We denote the logic obtained by disallowing parameterized operators, but allowing changepoint-

bounded operators, by LDLcp. Note that the semantics of LDLcp formulas are independent of vari-

able valuations. Hence, we drop them from our notation for the satisfaction relations |= and R. Also,

Lemma 1 can be extended to LDLcp by adding the rules ¬(〈r〉cpψ) = [r]cp¬ψ and ¬([r]cpψ) = 〈r〉cp¬ψ

to the proof.

Now, we are ready to introduce the alternating color technique. Given a PLDL♦ formula ϕ , let rel(ϕ)
be the formula obtained by inductively replacing every subformula 〈r〉≤xψ by 〈rel(r)〉cprel(ψ), i.e., we

replace the parameterized diamond operator by a changepoint-bounded one. Note that this replacement

is also performed in the regular expressions, i.e., rel(r) is the regular expression obtained by applying

the replacement to every test ψ ′? in r.

Given a PLDL♦ formula ϕ let c(ϕ) = rel(ϕ)∧ θ∞p ∧ θ∞¬p (cf. Example 1), which is an LDLcp for-

mula and only linearly larger than ϕ . On k-bounded and k-spaced colorings of w there is an equivalence

between ϕ and c(ϕ). The proof is similar to the original one [11].

Lemma 4 (cp. Lemma 2.1 of [11]). Let ϕ be a PLDL♦ formula and let w ∈ (2P)ω .

1. If (w,α) |= ϕ , then w′ |= c(ϕ) for every k-spaced coloring w′ of w, where k = maxx∈var(ϕ) α(x).

2. Let k ∈ N. If w′ is a k-bounded coloring of w with w′ |= c(ϕ), then (w,α) |= ϕ , where α(x) = 2k

for every x.

3 From LDLcp to Alternating Büchi Automata

In this section, we show how to translate LDLcp formulas into alternating Büchi word automata of

linear size using an inductive bottom-up approach. These automata allow us to use automata-based

constructions to solve the model checking and the realizability problem for PLDL via the alternating

color technique which links PLDL and LDLcp.

An alternating Büchi automaton A= (Q,Σ,q0,δ ,F) consists of a finite set Q of states, an alphabet Σ,

an initial state q0 ∈ Q, a transition function δ : Q×Σ → B+(Q), and a set F ⊆ Q of accepting states.

Here, B+(Q) denotes the set of positive boolean combinations over Q, which contains in particular the

formulas tt (true) and ff (false). A run of A on w = w0w1w2 · · · ∈ Σω is a directed graph ρ = (V,E)
with V ⊆ Q×N and ((q,n),(q′,n′)) ∈ E implies n′ = n+ 1 such that the following two conditions are

satisfied: (q0,0) ∈V and for all (q,n) ∈V : Succρ(q,n) |= δ (q,wn). Here Succρ(q,n) denotes the set of

successors of (q,n) in ρ projected to Q. A run ρ is accepting if all infinite paths (projected to Q) through

ρ visit F infinitely often. The language L(A) contains all w ∈ Σω that have an accepting run of A.

Theorem 2. For every LDLcp formula ϕ , there is an alternating Büchi automaton Aϕ with linearly many

states (in |ϕ |) such that L(Aϕ) = {w ∈ (2P′
)ω | w |= ϕ}.

To prove the theorem, we inductively construct automata Aψ for every subformula ψ ∈ cl(ϕ) satisfy-

ing L(Aψ) = {w ∈ (2P′
)ω | w |= ψ}. The automata for atomic formulas are straightforward and depicted

in Figure 1(a) and (b). To improve readability, we allow propositional formulas over P′ as transition

labels: the formula φ stands for all sets A ∈ 2P′
with A |= φ . Furthermore, given automata Aψ0

and Aψ1
,

using a standard construction, we can build the automaton Aψ0∨ψ1
by taking the disjoint union of the two

automata, adding a new initial state q0 with δ (q0,A) = δ 0(q0
0,A)∨δ 1(q1

0,A). Here, qi
0 is the initial state

and δ i is the transition function of Aψi
. The automaton Aψ0∧ψ1

is defined similarly, the only difference

being δ (q0,A) = δ 0(q0
0,A)∧δ 1(q1

0,A).
It remains to consider temporal formulas, e.g., 〈r〉ψ . First, we turn the regular expression r into

an automaton Ar. Recall that tests do not process input letters. Hence, we disregard the tests when
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(a) (b) (c)

φ

¬φ

tt

tt

¬φ

φ

tt

tt

p

¬p

p ¬p

¬p

p

p¬p

¬p

p
tt

Figure 1: The automata Ap (a), A¬p (b), and Acp (c), which tracks color changepoints.

defining the transition function, but we label states at which the test has to be executed by this test.

We use the Thompson construction [18] to turn r into Ar, i.e., we obtain an ε-NFA. Then, we show

how to combine Ar with the automaton Aψ and the automata Aψ1
, . . . ,Aψk

, where ψ1?, . . . ,ψk? are the

test occurring in r. The ε-transitions introduced by the Thompson construction are then removed, since

alternating automata do not allow them. During this process, we also ensure that the transition relation

takes tests into account by introducing universal transitions that lead from a state marked with ψ j? into

the corresponding automaton Aψ j
.

Formally, an ε-NFA with markings A = (Q,Σ,q0,δ ,C,m) consists of a finite set Q of states, an

alphabet Σ, an initial state q0 ∈ Q, a transition function δ : Q×Σ∪{ε} → 2Q, a set C of final states (C,

since we use them to concatenate automata), and a partial marking function m, which assigns to some

states q ∈ Q an LDLcp formula m(q). We write q
a
−→ q′, if q′ ∈ δ (q,a) for a ∈ Σ∪{ε}. An ε-path π from

q to q′ in Ar is a sequence π = q1 · · ·qk of k ≥ 1 states with q = q1
ε
−→ ·· ·

ε
−→ qk = q′. The set of all ε-paths

from q to q′ is denoted by Π(q,q′). Let m(π) = {m(qi) | 1 ≤ i ≤ k} be the set of markings visited by π .

A run of A on w0 · · ·wn−1 ∈ Σ∗ is a sequence q0q1 · · ·qn such that for every i in the range 0 ≤ i ≤ n−1

there is a state q′i reachable from qi via an ε-path πi and with qi+1 ∈ δ (q′i,wi). The run is accepting if

there is a q′n ∈C reachable via an ε-path πn from qn. This slightly unusual definition (but equivalent to

the standard one) simplifies our reasoning below. Also, the definition is oblivious to the marking.

We begin by defining the automaton Ar by induction over the structure of r as depicted in Figure 2.

Note that the automata we construct have no outgoing edges leaving the unique final state and that we

mark some states with tests ψ j? (denoted by labeling states with the test).

Lemma 5. Let w = w0w1w2 · · · ∈ (2P′
)ω and let w0 · · ·wn−1 be a (possibly empty, if n = 0) prefix of w.

The following two statements are equivalent:

1. Ar has an accepting run q0q1 · · ·qn on w0 · · ·wn−1 with ε-paths πi for i in the range 0 ≤ i ≤ n such

that wiwi+1wi+2 · · · |=
∧

m(πi) for every i.

2. (0,n) ∈ R(r,w).

Fix ψ and r (with tests ψ1?, . . . ,ψk?) and let Ar = (Qr,2P′
,qr

0,δ
r,Cr,m), Aψ = (Q′,2P′

,q′0,δ
′,F ′),

and Aψ j
= (Q j,2P′

,q
j
0,δ

j,F j) for j = 1, . . . ,k be the corresponding automata, which we assume to have

pairwise disjoint sets of states. Next, we show how to construct A〈r〉ψ , A[r]ψ , A〈r〉cpψ , and A[r]cpψ .

We begin with 〈r〉ψ : we define A〈r〉ψ = (Qr ∪Q′∪Q1 ∪ ·· ·∪Qk,2
P′
,qr

0,δ ,F1 ∪ ·· ·∪Fk) with

δ (q,A) =































δ ′(q,A) if q ∈ Q′,

δ j(q,A) if q ∈ Q j,
∨

q′∈Qr\Cr

∨

π∈Π(q,q′)

∨

p∈δ r(q′,A)(p∧
∧

ψ j∈m(π) δ j(q j
0,A))

∨ if q ∈ Qr.
∨

q′∈Cr

∨

π∈Π(q,q′)(δ
′(q′0,A)∧

∧

ψ j∈m(π) δ j(q j
0,A))
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Aφ :

Aψ?:

Ar0+r1
:

Ar0 ;r1
:

Ar∗0
:

φ

ψ?
ε

Ar0

Ar1

ε

ε

ε

ε

Ar0

Ar1

ε

ε

ε

Ar0

ε

ε

ε ε

Figure 2: The inductive definition of Ar via the Thompson construction.

So, A〈r〉ψ is the union of the automata for the regular expression, the tests, and for ψ with a modified

transition function. The transitions of the automata Aψ and Aψ j
are left unchanged and the transition

function for states in Qr is obtained by removing ε-transitions. First consider the upper disjunct: it

ranges disjunctively over all non-final states p that are reachable via an initial ε-path and an A-transition

in the end. To account for the tests visited during the ε-path (but not the test at p), we add conjunctively

transitions that lead into the corresponding automata. The lower disjunct is similar, but ranges over paths

that end in a final state. Since we concatenate the automaton Ar with the automaton Aψ , all edges leading

into final states of Ar are rerouted to the initial state of Aψ . The tests along the ε-path are accounted for as

in the first case. Finally, note that Qr does not contain any (Büchi) accepting states, i.e., every accepting

run on w has to leave Qr after a finite number of transitions. Since this is only possible via transitions

that would lead Ar into a final state, this ensures the existence of a position n such that (0,n) ∈ R(r,w).
The definition of A[r]ψ is dual, i.e., we have to use automata A¬ψ j

= (Q j,2P′
,q j

0,δ
j,F j) for j =

1, . . . ,k for the negated tests and ε-transitions are removed in a universal manner. Formally, we define

A[r]ψ = (Qr ∪Q′∪Q1 ∪ ·· ·∪Qk,2
P′
,qr

0,δ ,Q
r ∪F1∪ ·· ·∪Fk) where

δ (q,A) =































δ ′(q,A) if q ∈ Q′,

δ j(q,A) if q ∈ Q j,
∧

q′∈Qr\Cr

∧

π∈Π(q,q′)

∧

p∈δ r(q′,A)(p∨
∨

ψ j∈m(π) δ j(q j
0,A))

∧ if q ∈ Qr.
∧

q′∈Cr

∧

π∈Π(q,q′)(δ
′(q′0,A)∨

∨

ψ j∈m(π) δ j(q j
0,A))

Note that we add Qr to the (Büchi) accepting states, since a run on w might stay in Qr forever, as it has

to consider all positions n with (0,n) ∈ R(r,w).
For the changepoint-bounded operators, we have to modify Ar to make it count color changes. Let

Acp = (Qcp,2P′
,qcp

0 ,δ cp,Ccp) be the DFA depicted in Figure 1(c). We define the product of Ar and Acp

as Âr = (Q̂r,2P′
, q̂r

0, δ̂
r,Ĉr,m̂) where Q̂r = Qr ×Qcp, q̂r

0 = (qr
0,q

cp
0 ),

δ ((q,q′),A) =

{

{(p,δ cp(q′,A)) | p ∈ δ r(q,A)} if A 6= ε,

{(p,q′) | p ∈ δ r(q,A)} if A = ε,
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Ĉr = Cr ×Ccp, and m̂(q,q′) = m(q). Using this, we define A〈r〉cpψ as we defined A〈r〉ψ , but using Âr

instead of Ar. Similarly, A[r]cpψ is defined as A[r]ψ , but using Âr instead of Ar.

Proof of Theorem 2. First, we consider the size of Aϕ . Boolean operations add one state while a temporal

operator with regular expression r adds a number of states that is linear in the size of r (which is its

length), even when we take the intersection with the automaton checking for color changes. Note that

we do not need to complement the automata Aψ j
to obtain A¬ψ j

, instead we rely on Lemma 1. Hence,

the size of Aϕ is linear in the size of ϕ . It remains to prove L(Aϕ) = {w ∈ (2P′
)ω | w |= ϕ} by induction

over the structure of ϕ . The induction start for atomic formulas and the induction step for disjunction

and conjunction are trivial, hence it remains to consider the temporal operators.

Consider 〈r〉ψ . If w |= 〈r〉ψ , then there exists a position n such that wnwn+1wn+2 · · · |= ψ and (0,n) ∈
R(r,w). Hence, there is a run of Ar on w0 · · ·wn−1 such that the tests visited during the run are satisfied

by the appropriate suffixes of w. Thus, applying the induction hypothesis yields accepting runs of the

test automata on these suffixes. Furthermore, there is an accepting run of Aψ on wnwn+1wn+2 · · · , again

by induction hypothesis. These runs can be “glued” together to build an accepting run of A〈r〉ψ on w.

For the other direction, consider an accepting run ρ of A〈r〉ψ on w. Let n ≥ 0 be the last level of

ρ that contains a state from Qr. Such a level has to exist since states in Qr are not accepting and they

have no incoming edges from states of the automata Aψ and Aψ j
, but the initial state of A〈r〉ψ is in

Qr. Furthermore, A〈r〉ψ is non-deterministic and complete when restricted to states in Qr \Cr. Hence,

we can extract an accepting run of Ar from ρ on w0 · · ·wn−1 that satisfies additionally the requirements

formulated in Statement 1 of Lemma 5, due to the transitions into the test automata and an application

of the induction hypothesis. Hence, we have (0,n) ∈ R(r,w). Furthermore, from the remainder of

ρ (levels greater or equal to n) we can extract an accepting run of Aψ on wnwn+1wn+2 · · · . Hence,

wnwn+1wn+2 · · · |= ψ by induction hypothesis. Altogether, we conclude w |= 〈r〉ψ .

The case for [r]ψ is dual, while the cases for the changepoint-bounded operators 〈r〉cpψ and [r]cpψ

are analogous, using the fact that Acp only accepts words which have at most one changepoint.

Note that the size of Aϕ is linear in |ϕ |, but it is not clear that it can be computed in polynomial time

in |ϕ |, since the transition functions of subautomata of the form A〈r〉ψ contain disjunctions that range

over the set of ε-paths. Here, it suffices to consider paths that do not contain a state twice, but even

this restriction still allows for an exponential number of different paths. Fortunately, we do not need

to compute Aϕ in polynomial time. It suffices to do it in polynomial space, which is sufficient for the

applications in the next sections, which is clearly possible.

Furthermore, using standard constructions (e.g., [13, 15]), we can turn the alternating Büchi au-

tomaton Aϕ into a non-deterministic Büchi automaton of exponential size and a deterministic parity

automaton2 of doubly-exponential size with linearly many colors.

4 Model Checking

In this section, we consider the PLDL model checking problem. A (P-labeled) transition system S =
(S,s0,E, ℓ) consists of a finite set S of states, an initial state s0, a (left-)total edge relation E ⊆ S× S,

and a labeling ℓ : S → 2P. An initial path through S is a sequence π = s0s1s2 · · · of states satisfying

(sn,sn+1) ∈ E for every n. Its trace is defined as tr(π) = ℓ(s0)ℓ(s1)ℓ(s2) · · · . We say that S satisfies a

2The states of a parity automaton are colored by Ω : Q → N. It accepts a word w, if it has a run q0q1q2 · · · on w such that

max{Ω(q) | qi = q for infinitely many i} is even.
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PLDL formula ϕ with respect to a variable valuation α , if we have (tr(π),α) |= ϕ for every initial path π

of S . The model checking problem asks, given a transition system S and a formula ϕ , to determine

whether S satisfies ϕ with respect to some variable valuation α .

Theorem 3. The PLDL model checking problem is PSPACE-complete.

To solve the PLDL model checking problem, we first notice that we can restrict ourselves to PLDL♦

formulas. Let ϕ and ϕ ′ be due defined as in Lemma 3. Then, S satisfies ϕ with respect to some α if

and only if S satisfies ϕ ′ with respect to some α ′.

Our algorithm is similar to the one presented for PROMPT–LTL in [11] and uses the alternating color

technique. Recall that p /∈ P is the fresh atomic proposition used to specify the coloring and induces the

blocks, maximal infixes with its unique changepoint at the first position. Let G = (V,E,v0, ℓ,F) denote

a colored Büchi graph consisting of a finite directed graph (V,E), an initial vertex v0, a labeling func-

tion ℓ : V → 2{p} labeling vertices by p or not, and a set F ⊆ V of accepting states. A path v0v1v2 · · ·
through G is pumpable, if all its blocks have at least one state that appears twice in this block. Further-

more, the path is fair, if it visits F infinitely often. The pumpable non-emptiness problem asks, given a

colored Büchi graph G, whether it has a pumpable fair path starting in the initial state.

Theorem 4 ([11]). The pumpable non-emptiness problem for colored Büchi graphs is NLOGSPACE-

complete and can be solved in linear time.

The following lemma reduces the PLDL♦ model checking problem to the pumpable non-emptiness

problem for colored Büchi graphs of exponential size. Given a non-deterministic Büchi automaton A=
(Q,2P∪{p},q0,∆,F) recognizing the models of ¬rel(ϕ)∧ θ∞p ∧ θ∞¬p (note that rel(ϕ) is negated) and a

transition system S = (S,s0,E, ℓ), we define the product A×S to be the colored Büchi graph

A×S = (Q×S×2{p},E ′,(q0,s0, /0), ℓ′,F ×S×2{p})

where ((q,s,C),(q′ ,s′,C′))∈E ′ if and only if (s,s′)∈E and q′ ∈ δ (q, ℓ(s)∪C), and where ℓ′(q,s,C) =C.

Each initial path (q0,s0,C0)(q1,s1,C1)(q2,s2,C2) · · · through the product A×S induces a coloring

(L(s0)∪C0)(L(s1)∪C1)(L(s2)∪C2) · · · of the trace of the path s0s1s2 · · · through S . Furthermore,

q0q1q2 · · · is a run of A on the coloring.

Lemma 6 (cp. Lemma 4.2 of [11]). S does not satisfy ϕ with respect to any α if and only if A×S has

a pumpable fair path.

Proof. Let ϕ not be satisfied by S with respect to any α , i.e., for every α there exists an initial path π

through S such that (tr(π),α) 6|= ϕ . Pick α∗ such that α∗(x) = 2 · |Q| · |S|+ 1 and let π∗ be the cor-

responding path. Applying Lemma 4.2 yields w 6|= c(ϕ) for every |Q| · |S|-bounded coloring of tr(π∗).
Now, consider the unique |Q| · |S|-bounded and |Q| · |S|-spaced coloring w of tr(π∗) that starts with p

not holding true in the first position. As argued above, w 6|= c(ϕ), and we have w |= θ∞p ∧θ∞¬p, as w is

bounded. Hence, w |= ¬rel(ϕ)∧θ∞p∧θ∞¬p, i.e., there is an accepting run q0q1q2 · · · of A in w. This suf-

fices to show that (q0,π0,w0∩{p})(q1,π1,w1∩{p})(q1,π1,w2∩{p}) · · · is a pumpable fair path through

A×S , since every block has length greater than |Q| · |S|. This implies the existence of a repeated state

in every block, since there are exactly |Q| · |S| vertices of each color.

Now, let A×S contain a pumpable fair path (q0,s0,C0)(q1,s1,C1)(q2,s2,C2) · · · , fix some arbitrary

α , and define k = maxx∈var♦ϕ α(x). There is a repetition of a vertex of A×S in every block, each of

which can be pumped k times. This path is still fair and induces a coloring w′
k of a trace wk of an initial

path of S . Since the run encoded in the first components is an accepting one on w′
k, we conclude that

the coloring w′
k satisfies ¬c(ϕ). Furthermore, w′

k is k-spaced, since we pumped each repetition k times.
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Towards a contradiction assume we have (w,α) |= ϕ . Applying Lemma 4.1 yields w′ |= c(ϕ), which

contradicts ¬c(ϕ). Hence, for every α we have constructed a path of S whose trace does not satisfy ϕ

with respect to α , i.e., S does not satisfy ϕ with respect to any α .

We can deduce an upper bound on valuations that satisfy a formula in a given transition system.

Corollary 1. If there is a variable valuation such that S satisfies ϕ , then there is also one that is

bounded exponentially in |ϕ | and linearly in the number of states of S .

Proof. Let S satisfy ϕ with respect to α , but not with the valuation α∗ with α∗(x) = 2 · |Q| · |S|+ 1.

In the preceding proof, we constructed a pumpable fair path in A×S starting from this assumption.

This contradicts Lemma 6, since S satisfying ϕ with respect to α is equivalent to A×S not having a

pumpable fair path. Since 2 · |Q| · |S|+1 is exponential in |ϕ | and linear in |S|, the result follows.

A matching lower bound of 2n can be proven by implementing a binary counter with n bits using a

formula of polynomial size in n. This holds already true for PROMPT–LTL, as noted in [11].

It remains to prove the main result of this section: PLDL model checking is PSPACE-complete.

Proof of Theorem 3. PSPACE-hardness follows directly from the PSPACE-hardness of the LTL model

checking problem [17], as LTL is a fragment of PLDL.

The following is a PSPACE algorithm: construct A×S and check whether it contains a pumpable

fair path, which is correct due to Lemma 6. Since the search for such a path can be implemented on-the-

fly without having to construct the full product [11], it can be implemented using polynomial space.

5 Realizability

In this section, we consider the realizability problem for PLDL. Throughout the section, we fix a parti-

tion (I,O) of the set of atomic propositions P. An instance of the PLDL realizability problem is given

by a PLDL formula ϕ (over P) and the problem is to decide whether Player O has a winning strategy

in the following game, played in rounds n ∈ N: in each round n, Player I picks a subset in ⊆ I and

then Player O picks a subset on ⊆ O. Player O wins the play with respect to a variable valuation α , if

((i0 ∪o0)(i1 ∪o1)(i2 ∪o2) · · · ,α) |= ϕ .

Formally, a strategy for Player O is a mapping σ : (2I)∗ → 2O and a play ρ = i0o0i1o1i2o2 · · · is

consistent with σ , if we have on = σ(i0 · · · in) for every n. We call (i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) · · · the

outcome of ρ , denoted by outcome(ρ). We say that a strategy σ for Player I is winning with respect to

a variable valuation α , if we have (outcome(ρ),α) |= ϕ for every play ρ that is consistent with σ . The

PLDL realizability problem asks for a given PLDL formula ϕ , whether Player O has a winning strategy

with respect to some variable valuation, i.e., there is a single α such that every outcome satisfies ϕ with

respect to α . If this is the case, then we say that σ realizes ϕ and thus that ϕ is realizable.

We show the PLDL realizability problem to be 2EXPTIME-complete: hardness follows easily from

the 2EXPTIME-completeness of the LTL realizability problem, which is a special case of the PLDL

realizability problem. Membership in 2EXPTIME on the other hand is shown by a reduction to the

realizability problem for ω-regular specifications.

It is well-known that ω-regular specifications are realizable by finite-state transducers (if they are

realizable at all) [3]. A transducer T = (Q,Σ,Γ,q0,δ ,τ) consists of a finite set Q of states, an input

alphabet Σ, an output alphabet Γ, an initial state q0, a transition function δ : Q×Σ → Q, and a output

function τ : Q → Γ. The function fT : Σ∗ → Γ implemented by T is defined as fT (w) = τ(δ ∗(w)),
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where δ ∗ is defined as usual: δ ∗(ε) = q0 and δ ∗(wv) = δ (δ ∗(w),v). To implement a strategy by a

transducer, we use Σ = 2I and Γ = 2O. Then, we say that the strategy σ = fT is finite-state. The size of

σ is the number of states of T . The following proof is analogous to the one for PROMPT–LTL [11].

Theorem 5. The PLDL realizability problem is 2EXPTIME-complete.

When proving membership in 2EXPTIME, we restrict ourselves without loss of generality to PLDL♦

formulas, as this special case is sufficient as shown in Lemma 3. First, we use the alternating color tech-

nique to show that the PLDL♦ realizability problem is reducible to the realizability problem for speci-

fications in LDLcp. When considering the LDLcp realizability problem, we add the fresh proposition p

used to specify the coloring to O, i.e., Player O is in charge of determining the color of each position.

Lemma 7 (cp. Lemma 3.1 of [11]). A PLDL♦ formula ϕ over I and O is realizable if and only if the

LDLcp formula c(ϕ) over I and O∪{p} is realizable.

Proof. Let ϕ be realizable, i.e., there is a winning strategy σ : (2I)+ → 2O for Player O with respect to

some α . Now, consider the strategy σ ′ : (2I)+ → 2O∪{p} defined by

σ ′(i0 · · · in−1) =

{

σ(i0 · · · in−1) if n mod 2k < k,

σ(i0 · · · in−1)∪{p} otherwise,

where k = maxx∈var♦(ϕ) α(x). We show that σ ′ realizes c(ϕ). To this end, let ρ ′ = i0o0i1o1i2o2 · · · be

a play that is consistent with σ ′. Then, ρ = i0(o0 \ {p})i1(o1 \ {p})i2(o2 \ {p}) · · · is by construction

consistent with σ , i.e., (outcome(ρ),α) |= ϕ . As ρ ′ is a k-spaced p-coloring of ρ , we deduce ρ ′ |= c(ϕ)
by applying Lemma 4.1. Hence, σ ′ realizes c(ϕ).

Now, assume c(ϕ) is realized by σ ′ : (2I)+ → 2O∪{p}, which we can assume to be finite-state, say

it is implemented by T with n states. We first show that every outcome that is consistent with σ ′ is

n+ 1-bounded. Such an outcome satisfies c(ϕ) and has therefore infinitely many changepoints. Now,

assume it has a block of length strictly greater than n+1, say between changepoints at positions i and j.

Let q0q1q2 · · · be the states reached during the run of T on the projection of ρ to 2I . Then, there are two

positions i′ and j′ satisfying i≤ i′ < j′ < j in the block such that qi′ = q j′ . Hence, q0 · · ·qi′−1(qi′ · · ·q j′−1)
ω

is also a run of T . However, the output generated by this run has only finitely many changepoints, since

the output at the states qi′ , . . . ,q j′−1 coincides when restricted to {p}. This contradicts the fact that

T implements a winning strategy, which implies in particular that every output has infinitely many

changepoints, as required by the conjunct θ∞p ∧θ∞¬p of c(ϕ). Hence, ρ is (n+1)-bounded.

Now, consider the strategy σ : (2I)+ → 2O defined by σ(i0 · · · in−1) = σ ′(i0 · · · in−1)∩O. By defini-

tion, for every play ρ consistent with σ , there is a (n+ 1)-bounded p-coloring of ρ that is consistent

with σ ′. Hence, applying Lemma 4.2 yields (ρ ,β ) |= ρ , where β (x) = 2n+2. Hence, σ realizes ϕ with

respect to β . Note that σ is also finite-state and of the same size as σ ′.

Proof of Theorem 5. As already mentioned above, 2EXPTIME-hardness of the LDL realizability prob-

lem follows immediately from the 2EXPTIME-hardness of the LTL realizability problem [14], as LTL is

a fragment of PLDL.

Now, consider membership and recall that we have argued that it is sufficient to consider PLDL♦.

Thus, let ϕ be a PLDL♦ formula. By Lemma 7 we know that it is sufficient to consider the realizability

of c(ϕ). Let A = (Q,2I∪O∪{p},q0,δ ,Ω) be a deterministic parity automaton recognizing the models of

c(ϕ). We turn A into a parity game G such that Player 1 wins G from some dedicated initial vertex if and

only if c(ϕ) is realizable. To this end, we define the arena (V,V0,V1,E) with V = Q∪ (Q×2I), V0 = Q,

V1 = Q×2I , and E = {(q,(q, i)) | i ⊆ I}∪{(q, i),δ (q, i∪o) | o ⊆ O∪{p}}, i.e., Player 0 picks a subset
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i ⊆ I and Player O picks a subset o ⊆ O, which in turn triggers the (deterministic) update of the state

stored in the vertices. Finally, we define the coloring ΩA of the arena via ΩA (q) = ΩA (q, i) = Ω(q).

It is straightforward to show that Player O has a winning strategy from q0 in the parity game (A ,ΩA )
if and only if c(ϕ) (and thus ϕ) is realizable. Furthermore, if Player 1 has a winning strategy, then A

can be turned into a transducer implementing a strategy that realizes c(ϕ) using V as set of states. Note

that |V | is doubly-exponential in |ϕ |, if we assume that I and O are restricted to propositions appearing

in ϕ . As the parity game is of doubly-exponential size and has linearly many colors, we can solve it in

doubly-exponential time in the size of ϕ . This concludes the proof.

Also, we obtain a doubly-exponential upper bound on a variable valuation that allows to realize a

given formula. A matching lower bound already holds for PLTL [22].

Corollary 2. If a PLDL♦ formula ϕ is realizable with respect to some α , then it is realizable with respect

to some α that is bounded doubly-exponentially in |ϕ |.

Proof. If ϕ is realizable, then so is c(ϕ). Using the construction proving the right-to-left implication of

Lemma 7, we obtain that ϕ is realizable with respect to some α that is bounded by 2n+2, where n is the

size of a transducer implementing the strategy that realizes c(ϕ). We have seen in the proof of Theorem 5

that the size of such a transducer is at most doubly-exponential in |c(ϕ)|, which is only linearly larger

than |ϕ |. The result follows.

6 Conclusion

We introduced Parametric Linear Dynamic Logic, which extends Linear Dynamic Logic by temporal

operators equipped with parameters that bound their scope, similarly to Parametric Linear Temporal

Logic, which extends Linear Temporal Logic by parameterized temporal operators. Here, the model

checking problem asks for a valuation of the parameters such that the formula is satisfied with respect to

this valuation on every path of the transition system. Realizability is defined in the same spirit.

We showed PLDL model checking to be complete for PSPACE and the realizability problem to be

complete for 2EXPTIME, just as for LTL. Thus, in a sense, PLDL is not harder than LTL. Finally, we

were able to give tight exponential respectively doubly-exponential bounds on the optimal valuations for

model checking and realizability.

We did not consider the assume-guarantee model checking problem here, but the algorithm solving

the problem for PROMPT–LTL presented in [11] should be adaptable to PLDL as well. Another open

problem concerns the computation of optimal valuations for PLDL♦ and PLDL� formulas. By exhaus-

tive search within the bounds mentioned above, one can determine the optima. We expect this to be

possible in polynomial space for model checking and in triply exponential space for realizability, which

is similar to the situation for PLTL [1, 22]. Note that it is an open question whether optimal valuations

for PLTL realizability can be determined in doubly-exponential time.

References

[1] Rajeev Alur, Kousha Etessami, Salvatore La Torre & Doron Peled (2001): Parametric Temporal Logic for

“Model Measuring”. ACM Trans. Comput. Log. 2(3), pp. 388–407, doi:10.1145/377978.377990.

[2] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza, Avner Landver, Sela

Mador-Haim, Eli Singerman, Andreas Tiemeyer, Moshe Y. Vardi & Yael Zbar (2002): The ForSpec Temporal

http://dx.doi.org/10.1145/377978.377990


14 Parametric Linear Dynamic Logic

Logic: A New Temporal Property-Specification Language. In Joost-Pieter Katoen & Perdita Stevens, editors:

TACAS, LNCS 2280, Springer, pp. 296–211, doi:10.1007/3-540-46002-0_21.
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