
Time-Optimal Winning Strategies
for Poset Games

Martin Zimmermann?

Lehrstuhl Informatik 7, RWTH Aachen University, Germany
zimmermann@automata.rwth-aachen.de

Abstract. We introduce a novel winning condition for infinite two-
player games on graphs which extends the request-response condition
and better matches concrete applications in scheduling or project plan-
ning. In a poset game, a request has to be responded by multiple events in
an ordering over time that is compatible with a given partial ordering of
the events. Poset games are zero-sum, but there are plays that are more
desirable than others, i.e., those in which the requests are served quickly.
We show that optimal strategies (with respect to long term average ac-
cumulated waiting times) exist. These strategies are implementable with
finite memory and are effectively computable.

1 Introduction

The use of two-player games of infinite duration has a long history in the syn-
thesis of controllers for reactive systems (see [3] for an overview). Classically, the
quality of a winning strategy is measured in the size of the memory needed to
implement it. But often there are other natural quality measures: in many games
(even if they are zero-sum) there are winning plays for Player 0 that are more
desirable than others, often given by notions of waiting that reflect periods of
waiting in the modeled system. In reachability games, this can be the number of
steps before the play reaches one of the designated vertices, in Büchi games the
number of steps between visits of the designated vertices, and in parity games
the number of steps between visits of the minimal even color seen infinitely often.

Another winning condition with a natural notion of waiting is the request-
response condition [6]. It is given by pairs (Qj , Pj) of subsets of the graph’s
vertices. Player 0 wins a play if every visit of Qj is eventually responded by a
visit of Pj . The waiting time is given by the number of steps between a request
and the next response. As there might be several request-response pairs, there
is a trade-off between the pairs: it can be favorable to delay the response of a
pair to answer another request more quickly. Wallmeier [5] defined the value of
a play to be the long-term average accumulated waiting time and the value of
a strategy to be the worst-case outcome. He then proved that optimal winning
strategies exist and are effectively computable (see also [4, 7]).

? This work was supported by the ESF project GASICS

However, request-response winning conditions are often too weak to express
real-life requirements concisely, because a request is responded by a single event.
Imagine an intersection with a level crossing: if a train approaches the crossing
(a request), then all traffic lights have to be switched to red, then the boom
barriers are lowered, the train gets an all-clear signal and crosses the intersec-
tion. Afterwards, the barriers are raised and the lights are switched to green. It
would be rather cumbersome to model this requirement using request-response
conditions with a single event as response. Another example is motivated by
project planning: a project consists of several subtasks (and their durations)
and a partial ordering of the subtasks, e.g., specifying that the roof of a house
cannot be constructed before the walls are built. A plan is then a linearization
of this partial ordering.

These examples motivate to replace a response by a partially ordered set of
events and require Player 0 to answer every request by an embedding of these
events in time. This generalization of request-response games retains the natural
definition of waiting times. Hence, the framework for request-response games can
be adapted to the new type of games, called poset games.

We prove that optimal winning strategies for poset games exist, which are
again finite-state and effectively computable. To this end, we adapt the proof pre-
sented in [4] for request-response games. However, the increased expressiveness
of poset games requires substantial changes. As a request is no longer responded
by a single event, there can be different requests that are answered to a different
degree at a given position, i.e., the embeddings can overlap. This requires ad-
ditional bookkeeping of the events that still have to be embedded and changes
to the definition of waiting times. Informally, in request-response games, there
is a single clock for every pair (Qj , Pj) that is started when Qj is visited and
stopped as soon as Pj is visited afterwards; requests that are encountered, while
the clock is already active, are ignored. This is no longer possible in poset games:
here, we need a clock for every request, due to the overlapping of embeddings.
Hence, we do not only have to bound the waiting times to obtain our result, but
also the number of open requests, i.e., the number of active clocks.

This paper is structured as follows: Section 2 fixes our notation and intro-
duces poset games, which are solved by a reduction to Büchi games in Section 3.
Finally, in Section 4 the existence of optimal strategies is proven. All proofs
omitted due to space restrictions can be found in [8].

2 Definitions

Throughout this paper let P be a set of events. The power set of a set S is
denoted by 2S , N is the set of non-negative integers, and let [n] :={1, . . . , n}.
The prefix-ordering on words is denoted by v, its strict version by @. Given a
sequence (wn)n∈N of finite words such that wn @ wn+1 for all n, limn→∞ wn
denotes the unique ω-word induced by the wn. Let (fn)n∈N be a sequence of
functions fn : A → B and f : A → B. We say that (fn)n∈N converges to f ,
limn→∞ fn = f , if ∀a ∈ A ∃na ∈ N ∀n ≥ na : fn(a) = f(a).

Infinite Games An (initialized and labeled) arena G = (V, V0, V1, E, s0, lG)
consists of a finite directed graph (V,E), a partition {V0, V1} of V denoting the
positions of Player 0 and Player 1, an initial vertex s0 ∈ V , and a labeling
function lG : V → 2P . It is assumed that every vertex has at least one outgoing
edge. A play ρ = ρ0ρ1ρ2 . . . is an infinite path starting in s0. A strategy for
Player i is a (partial) mapping σ : V ∗Vi → V such that (s, σ(ws)) ∈ E for all
w ∈ V ∗ and all s ∈ Vi. A play ρ is consistent with σ if ρn+1 = σ(ρ0, . . . ρn) for
all ρn ∈ Vi. The unique play consistent with the strategies σ for Player 0 and τ
for Player 1 is denoted by ρ(σ, τ).

A game G = (G,ϕ) consists of an arena G and a winning condition ϕ speci-
fying the set of winning plays for Player 0. All other plays are won by Player 1.
A strategy σ is a winning strategy for Player i if every play consistent with σ is
won by Player i. Player i wins G (and Player 1− i loses G) if she has a winning
strategy for G. A game is determined if one of the Players has a winning strategy.

Game Reductions A memory structure M = (M,m0,update) for G consists
of a set M of memory states, an initial memory state m0 ∈ M , and an update
function update : M × V → M . The update function can be extended to a
function update∗ : V ∗ → M by defining update∗(s0) = m0 and update∗(ws) =
update(update∗(w), s). A next-move function for Player i next : Vi ×M → S
has to satisfy (s,next(s,m)) ∈ E for all s ∈ Vi and all m ∈ M . It induces
a strategy σ with memory M via σ(ws) = next(s,update∗(ws)). A strategy is
called finite-state if it can be implemented with finite memory, and positional if
it can be implemented with a single memory state.

An arena G and a memory structure M for G induce the expanded arena
G×M = (V ×M,V0×M,V1×M,E′, (s0,m0), lG×M) where ((s,m), (s′,m′)) ∈ E′
iff (s, s′) ∈ E and update(m, s′) = m′, and lG×M(s,m) = lG(s). Every play ρ′ =
(ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in G×M has a unique projected play ρ = ρ0ρ1ρ2 . . .
in G. Conversely, every play ρ = ρ0ρ1ρ2 . . . in G has a unique expanded play
ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in G×M defined by mn+1 = update(mn, ρn+1).
A game G = (G,ϕ) is reducible to G′ = (G′, ϕ′) via M, written G ≤M G′, if
G′ = G ×M and every play in G′ is won by the player who wins the projected
play in G.

Remark 1. If G ≤M G′ and Player i has a positional winning strategy for G′,
then she also has a finite-state winning strategy with memory M for G.

Poset Games A (labeled) partially ordered set (poset for short) P = (D,�, lP)
consists of a domain D, a reflexive, antisymmetric and transitive relation � over
D, and a labeling function lP : D → P . The set of non-empty upwards-closed
subsets of P is denoted by Up(P); its size can be bounded by |D| ≤ |Up(P)| ≤
2|D| − 1.

Let ρ be an infinite path in an arena G with labeling function lG. An embed-
ding in time, embedding for short, of P in ρ is a function f : D → N such that
lP(d) ∈ lG(ρf(d)) and d � d′ implies f(d) ≤ f(d′). An embedding of P in a finite
path w is defined analogously.

A poset game G = (G, (qj ,Pj)j∈[k]) consists of an arena G as above and a
finite collection of (request-poset) conditions (qj ,Pj) where qj ∈ P is a request
(of condition j) and Pj = (Dj ,�j , lj) is a finite labeled poset. Player 0 wins a
play ρ iff qj ∈ lG(ρn) implies that Pj can be embedded in ρnρn+1ρn+2 . . . for all
j ∈ [k] and all n ∈ N.

To define the waiting times we need to keep track of the unanswered requests.
For j ∈ [k], D ⊆ Dj and s ∈ V let Newj(s) = Dj if qj ∈ lG(s) and Newj(s) = ∅
otherwise, and Embj(D, s) = {d ∈ D | ∃d′ ∈ D : d′ �j d and lj(d′) /∈ lG(s)}.
The set Embj(D, s) contains the elements of D that cannot be embedded into s
since a smaller element d′ ∈ D cannot be mapped to s. The set of open requests
of condition j after the finite play w is defined inductively by Openj(ε) = ∅ and

Openj(ws) = {(Embj(D, s), t+1) | (D, t) ∈ Openj(w)∪{(Newj(s), 0)}}\{∅}×N.

That is, Openj(ws) deletes all those elements from the open requests D in
Openj(w) that can be embedded into s, adds a tick to the clock t of every re-
quest that is not yet responded completely, checks for new requests, and deletes
responded requests. If (D, t + 1) ∈ Openj(ρ0 . . . ρn), then there was a request
of condition j at position n − t, the elements of Dj\D can be embedded into
ρn−t . . . ρn, and Player 0 has to embed all elements of D in the future to respond
to this request.

Note that Openj(w) contains only upwards-closed subsets of Pj . The number
of open requests D ∈ Up(Pj) of condition j after w is sj,D(w) = |{t | (D, t) ∈
Openj(w)}|. A set D ∈ Up(Pj) is open indefinitely in ρ0ρ1ρ2 . . ., if there exists
a position n such that (D, t) ∈ Openj(ρ0 . . . ρn+t) for all t > 1.

Lemma 1. Let ρ = ρ0ρ1ρ2 . . . be a play. For all j ∈ [k]:

(i) If Player 0 wins ρ, then (Openj(ρ0 . . . ρn))n∈N induces an embedding fm of
Pj in ρmρm+1ρm+2 . . . for every position m such that qj ∈ lG(ρm).

(ii) ρ is won by Player 0 iff there is no D ∈ Up(Pj) that is open indefinitely.

For the remainder of this paper, let (G, (qj ,Pj)j∈[k]) be a poset game, where
Pj = (Dj ,�j , lj). Furthermore, let cj := |Up(Pj)| and c :=

∑k
j=1 cj .

3 Solving Poset Games

In this section, poset games are reduced to Büchi games. The memory stores
the elements of the posets Pj that still have to be embedded. A cyclic counter
ensures that all requests are responded by an embedding eventually.

Theorem 1. Poset games are reducible to Büchi games and therefore deter-
mined with finite-state strategies.

Proof. Let h =
∑k
j=1 |Dj | and fix an enumeration e : [h] →

⋃k
j=1{j} ×Dj . We

assume h > 1 (without loss of generality) to obtain a nontrivial counter. The
memory structure M = (M,m0,update) consists of M =

∏k
j=1 Up(Pj) × [h] ×

{0, 1}, m0 = (Emb1(New1(s0), s0), . . . ,Embk(Newk(s0), s0), 1, 0), and we define
update((O1, . . . , Ok,m, f), s) = (O′1, . . . , O

′
k,m

′, f ′) with

– O′j =

{
Embj(Dj , s) if qj ∈ lG(s)
Embj(Oj , s) if qj /∈ lG(s)

,

– m′ =

{
(m mod h) + 1 if e(m) = (j, d) and d /∈ O′j or lj(d) ∈ lG(s)
m if e(m) = (j, d) and d ∈ O′j and lj(d) /∈ lG(s)

,

– f ′ =

{
1 if m 6= m′

0 otherwise
.

Finally, let F = V ×
∏k
j=1 Up(Pj) × [h] × {1} and let G′ = (G ×M, F) be a

Büchi game in the expanded arena. Verifying G ≤M G′ is now straightforward.
Positional determinacy of Büchi games [3] and Remark 1 finish the proof.

If e is defined such that the elements of each domain Dj are enumerated con-
secutively and such that d �j d′ implies e−1(j, d) ≤ e−1(j, d′), then it takes at
most h + |Dj | visits to vertices in F after a request of condition j to complete
an embedding of Pj in the projected play.

The size of M can be bounded by |M | ≤ h · 2h+1, which is asymptotically
optimal. This can be shown by transforming the family of request-response games
presented in Theorem 2 of [6] into poset games.

4 Time-optimal Strategies for Poset Games

Waiting times for poset games are defined employing the information given by
the open requests in Openj(w). Define the

– totalized waiting time for D ∈ Up(Pj) after w: tj,D(w) =
∑

(D,t)∈Openj(w) t,

– penalty after w: p(w) =
∑k
j=1

∑
D∈Up(Pj)

tj,D(w),
– value of a play ρ: v(ρ) = lim supn→∞

1
n

∑n−1
i=0 p(ρ0 . . . ρi),

– value of a strategy σ: v(σ) = sup{v(ρ(σ, τ)) | τ strategy for Player 1}.

Hence, the influence of an open request on the value of a play grows quadrati-
cally in the waiting time, which penalizes longer waiting times more severely. A
strategy σ for Player 0 is optimal if v(σ) ≤ v(σ′) for all strategies σ′ for Player 0.
The following lemma is a simple consequence of Lemma 1.

Lemma 2. Let ρ be a play and σ a strategy for Player 0.

(i) If v(ρ) <∞, then Player 0 wins ρ.
(ii) If v(σ) <∞, then σ is a winning strategy for Player 0.

Note that the other directions of the statements are false: there are plays of
infinite value that are won by Player 0.

Theorem 1 implies an upper bound on the value of an optimal strategy.

Corollary 1. Let h =
∑k
j=1 |Dj |. If Player 0 wins G, then she also has a win-

ning strategy σ with

v(σ) ≤
k∑
j=1

(
cj ·
|M | · |G|(h+ |Dj |)(|M | · |G|(h+ |Dj |) + 1)

2

)
= : bG .

Let σ be a strategy for Player 0 and D ∈ Up(Pj) for some condition j. We say
that σ uniformly bounds the waiting time for D to b, if for all finite plays w
consistent with σ it holds that t ≤ b for all (D, t) ∈ Openj(w). Analogously, σ
uniformly bounds the totalized waiting time for D to b, if tj,D(w) ≤ b for all finite
plays w consistent with σ. If the (totalized) waiting time for all D ∈ Up(Pj) is
bounded, then the length of the embeddings that respond to a request is also
bounded.

Remark 2. Let σ be a strategy for Player 0. If σ uniformly bounds the waiting
time for D to b, then σ also uniformly bounds the totalized waiting time for D
to 1

2b(b+ 1).

We are now able to state the main theorem of this paper, which will be proved
in the remainder of this section.

Theorem 2. If Player 0 wins a poset game G, then she also has an optimal
winning strategy which is finite-state and effectively computable. The value of an
optimal strategy is effectively computable as well.

4.1 Strategy Improvement for Poset Games

We begin by defining a strategy improvement operator Ij,D for every D ∈ Up(Pj).
It deletes loops of plays, consistent with the given strategy, that are spent waiting
for a position into which an element from D has been embedded. Hence, the
intervals in which D is an open request will be shorter if Player 0 plays according
to the improved strategy. Doing this repeatedly will uniformly bound the waiting
time tj,D. However, the improved strategy has to ensure that no other responses
get incomplete by deleting loops, i.e., the improved strategy is still winning for
Player 0. Also, we do not want the value of the improved strategy to be greater
than the value of the original strategy. We begin by defining the operator and
then prove that it has the desired properties. Afterwards we show how to obtain
uniform bounds on the waiting time by applying each Ij,D infinitely often.

Let σ be a winning strategy (not necessarily finite-state) for Player 0 such
that v(σ) ≤ bG . The strategy Ij,D(σ) is implemented with memory structure
M = (M,m0,update) where M is a subset of the finite plays consistent with σ
and defined implicitly. The initial memory state is m0 = s0 and update(w, s) is
defined by a case distinction:

Player 0 only skips loops if the totalized waiting time for D is guaranteed
to be higher than the value of the strategy, i.e., at least bG . Then, the value of
the play does not increase from taking a shortcut. Thus, if tj,D(ws) ≤ bG , let
update(w, s) = ws. Hence, if the totalized waiting time is small, then she copies
the original play according to σ.

Otherwise, if tj,D(ws) > bG consider the tree Tσws containing all finite contin-
uations of ws that are consistent with σ restricted to those paths wsx such that
Openj(wsx′)∩ ({D} × N) 6= ∅ for all x′ v x. This tree contains all continuations
of ws up to the point where the first element of the open request D can be
embedded into. This tree is finite since σ is a winning strategy. The set of finite

plays zs of Tσws such that tj′,D′(zs) ≥ tj′,D′(ws) and sj′,D′(zs) ≥ sj′,D′(ws) for
all j′ ∈ [k] and all D′ ∈ Up(Pj′) is non-empty as it contains ws. Let x be a play
of maximal length in that set. Then, update(ws) = x. So, if the totalized waiting
time for D is sufficiently high, then Player 0 looks ahead whether ws is the start
of a loop such that the totalized waiting times and the number of open requests
for all j′ ∈ [k] and all D′ ∈ Up(Pj′) are higher at the end of the loop than they
were at the beginning. Then, she jumps ahead (by updating the memory to x)
and continues to play as if she had finished the loop already.

The condition on tj′,D′ ensures that she does not miss a vertex that she has to
visit in order to embed an element of the posets. This ensures that the improved
strategy is still winning for Player 0. The condition on sj′,D′ guarantees that the
value of the play does not increase from taking a shortcut by jumping ahead to
a position where more requests will be open than before.

Finally, define next(s, ws) = σ(ws). Thus, Player 0’s choice of the next move
assumes that she has already finished the loops which were skipped by the mem-
ory update. The improved strategy Ij,D(σ) is now given by M and next.

Lemma 3. Let σ be a winning strategy for Player 0, j ∈ [k], and D ∈ Up(Pj).

(i) If σ bounds the totalized waiting time for some D′ ∈ Up(Pj′) to b, then so
does Ij,D(σ).

(ii) v(Ij,D(σ)) ≤ v(σ).
(iii) Ij,D(σ) is a winning strategy for Player 0.

In order to obtain small bounds on the waiting times, each improvement operator
Ij,D is now applied infinitely often to a given initial winning strategy. The limit
of the strategies improved with Ij,D uniformly bounds the totalized waiting time
for D. Furthermore, all properties stated in Lemma 3 can be lifted to the limit
strategy as well.

The order of improvement is given by enumerations ej : [cj]→ Up(Pj) such
that |D| > |D′| implies e−1

j (D) < e−1
j (D′). Thus, the subsets are enumerated

in order of decreasing size. Given a winning strategy σ0 for Player 0 such that
v(σ0) ≤ bG (whose existence is guaranteed by Corollary 1), define

– σj,l,0 =

{
σj−1 if l = 1
σj,l−1 otherwise

for j ∈ [k] and l ∈ [cj],

– σj,l,n+1 = Ij,ej(l)(σj,l,n) for j ∈ [k], l ∈ [cj], and n ∈ N,
– σj,l = limn→∞ σj,l,n for j ∈ [k] and l ∈ [cj], and
– σj = σj,cj

for j ∈ [k].

For notational convenience, let σj,0 = σj−1 for j ∈ [k]. Before we discuss the
properties of the strategies defined above, we need to introduce some additional
notation that is used to bound the waiting times.

The strategy improvement operator Ij,D skips a loop if the vertices at the
beginning and at the end coincide and the values sj′,D′ and tj′,D′ at the end
are greater than or equal to the values at the beginning. Hence, we say that
two finite plays y1 @ y2 form a Dickson pair [1] if their last vertices coincide

and sj′,D′(y1) ≤ sj′,D′(y2) and tj′,D′(y1) ≤ tj′,D′(y2) for all j′ ∈ [k] and all
D′ ∈ Up(Pj′). Dickson pairs are candidates for deletion by Ij,D.

The set D is in Openj throughout a loop skipped by Ij,D. Accordingly, an
infix ρm . . . ρm+n of a play ρ is called non-Dickson save D if tj,D increases strictly
monotonic throughout the infix and if there are no m ≤ g < h ≤ m + n such
that ρ0 . . . ρg and ρ0 . . . ρh are a Dickson pair. The length of such an infix can be
bounded inductively by a function b in the size n of G and in c =

∑k
j=1 |Up(Pj)|.

If c = 1, then the single set is D, whose values increase monotonically. Hence,
there is a vertex repetition after at most |G| steps. Therefore, b(n, 1) = n.

If c + 1 > 1, then tj′,D′ (and thereby also sj′,D′) has to be reset to 0 after
at most b(n, c) steps for every D′ 6= D. If not, then the initial prefix of length
b(n, c) contains a Dickson pair by induction hypothesis. For the same reason,
for every c′ ∈ [c] there are c′ sets D′ such that tj′,D′ (and also sj′,D′) was
reset to 0 in the last b(n, c′) steps. If not, then this infix would again contain a
Dickson pair by induction hypothesis. Accounting for all possible combinations,
we obtain b(n, c + 1) = b(n, c) + nc!

∏c
j=1

1
2 (b(n, j))2(b(n, j) + 1), as we have

tj′,D′(xy) ≤ 1
2 |y|(|y|+ 1) and sj′,D′(xy) ≤ |y| if tj′,D′(x) = 0.

Note that the same idea can be applied to request-response games, which
lowers the bounds given in [4, 5].

Now, we are able to lift the properties of the strategy improvement operator
to the limit of the improved strategies and to bound the waiting times.

Lemma 4. Let j ∈ [k], l ∈ [cj], and ej(l) = D. Then:

(i) limn→∞ σj,l,n exists.
(ii) If σj,l−1 uniformly bounds the totalized waiting time for some D′ ∈ Up(Pj′),

then so does σj,l.
(iii) v(σj,l) ≤ v(σj,l−1), and therefore v(σj) ≤ v(σj−1).
(iv) σj,l uniformly bounds the waiting time for D to

bj,D := bG + (|Dj\D|+ 1) · b (|G|, c) .

These properties of the improved strategies can be combined to show that the
waiting times can be bounded without increasing the value of a strategy.

Lemma 5. For every winning strategy σ0 for Player 0 with v(σ0) ≤ bG, there
is a winning strategy σk for Player 0 that bounds sj,D to bj,D and tj,D to
tbj,D := 1

2 (bj,D(bj,D + 1)) for all j ∈ [k] and all D ∈ Up(Pj). Furthermore,
v(σk) ≤ v(σ0).

4.2 Reducing Poset Games to Mean-Payoff Games

In this subsection, we reduce the poset game to a mean-payoff game [2], which
we will introduce in the following.

A mean-payoff game G = (G, d, l) consists of an arena G = (V, V0, V1, E, s0),
d ∈ N and a labeling function l : E → {−d, . . . , d} (note that l labels the

edges in this case). Let ρ be a play in G. The gain v0(ρ) for Player 0 is de-
fined as v0(ρ) = lim infn→∞ 1

n

∑n−1
i=0 l(ρi, ρi+1) and the loss v1(ρ) for Player 1

is v1(ρ) = lim supn→∞
1
n

∑n−1
i=0 l(ρi, ρi+1). Player 0’s goal is to maximize v0(ρ)

whereas Player 1 aims to minimize v1(ρ). A strategy σ for Player 0 guarantees
a gain of v if v0(ρ) ≥ v for every play ρ consistent with σ. Analogously, τ for
Player 1 guarantees a loss of v if v1(ρ) ≤ v for every play ρ consistent with τ .

Theorem 3 ([2, 9]). Let G be a mean-payoff game. There exists a value νG
and positional strategies σ and τ that guarantee νG for Player 0 and Player 1,
respectively. These strategies are optimal, i.e., there is no strategy for Player i
that guarantees a better value for her. Furthermore, σ, τ and νG are computable
in pseudo-polynomial time.

Now, we explain the reduction. The memory keeps track of the totalized waiting
time tj,D(w) for every j ∈ [k] and every D ∈ Up(Pj). To be able to compute
tj,D(ws) from tj,D(w) in every update of the memory state, sj,D(w) has to be
stored as well. Due to Lemma 5 we can bound tj,D(w) by tbj,D and sj,D(w)
by bj,D. If these bounds are exceeded, then the memory is updated to a sink
state m↑. Hence, we obtain a finite memory structure M. The formal definition
is straightforward, but technical, and can be found in the long version of this
paper [8].

The arena for the mean-payoff game G′ is G ×M where an edge is labeled
by the sum of the totalized waiting times at the source of the edge. The value
d is defined appropriately and is also the weight of all edges originating from
a vertex with memory state m↑. As it is Player 1’s goal to minimize the limit
superior of the average edge labels, we have to exchange the positions of the
players. This finishes the definition of G′.

If the totalized waiting times in play ρ of the poset game G are bounded by
tbj,D, then the values v(ρ) and v1(ρ′) are equal, where ρ′ is the expanded play
of the mean-payoff game G′. Dually, if a play ρ′ of G′ avoids the vertices with
memory state m↑, then v1(ρ′) = v(ρ), where ρ is the projected play of ρ′.

Now, we are able to prove Theorem 2: let Player 0 win G. Corollary 1 and
Lemma 5 imply that there is a strategy for Player 1 in G′ that avoids the vertices
with memory state m↑. Hence, the value νG′ is smaller than d and an optimal
strategy for Player 1 for G′ avoids the vertices with memory state m↑, too. It is
now easy to show that an optimal positional strategy for Player 1 for G′ induces
an optimal finite-state strategy for Player 0 for G. Furthermore, the values of
both optimal strategies coincide.

5 Conclusion

We have introduced a novel winning condition for infinite two-player games that
extends the request-response condition while retaining a natural definition of
waiting times. These games are well-suited to add aspects of planning to the
synthesis of finite-state controllers for reactive systems. We proved that optimal
strategies (with respect to long-term average accumulated waiting times) exist

and are effectively computable. The memory size of the optimal strategy com-
puted here is super-exponential. However, this holds already for request-response
games. Thus, the increased expressiveness of the poset condition does not add
too much additional complexity.

In future research, the memory size should be analyzed: determining the com-
putational complexity of finding optimal strategies and proving tight upper and
lower bounds on the memory size of an optimal strategy. The size of the mean-
payoff game (and thus the memory) can be reduced by finding better bounds
on the length of non-Dickson infixes. Also, one should investigate, whether the
(costly, in terms of time and space) reduction to mean-payoff games is necessary:
can an optimal strategy be computed without a reduction?

Another direction of further research is to consider discounted waiting times
and to establish a reduction to discounted payoff games [9]. Furthermore, the
reduction to Büchi games induces a uniform upper bound on the waiting times
in poset games, but the (efficient) computation of optimal bounds should be
addressed as well.

Acknowledgments This work presents results of the author’s diploma thesis [7]
prepared under the supervision of Wolfgang Thomas. I want to thank him for
his advice and suggestions. Also, I want to thank the anonymous referees for
their helpful remarks.

References

1. Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. Amer. J. Math., 35(4):413–422, 1913.

2. Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games.
International Journal of Game Theory, 8(2):109–113, 1979.

3. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,
and Infinite Games, volume 2500 of LNCS. Springer, 2002.

4. Florian Horn, Wolfgang Thomas, and Nico Wallmeier. Optimal strategy synthesis
in request-response games. In Sung Deok Cha, Jin-Young Choi, Moonzoo Kim,
Insup Lee, and Mahesh Viswanathan, editors, ATVA, volume 5311 of LNCS, pages
361–373. Springer, 2008.

5. Nico Wallmeier. Strategien in unendlichen Spielen mit Liveness-Gewinnbedin-
gungen: Syntheseverfahren, Optimierung und Implementierung. PhD thesis, RWTH
Aachen University, 2008.

6. Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of
finite-state controllers for request-response specifications. In Oscar H. Ibarra and
Zhe Dang, editors, CIAA, volume 2759 of Lecture Notes in Computer Science, pages
11–22. Springer, 2003.

7. Martin Zimmermann. Time-optimal Winning Strategies in Infinite Games. Diploma
Thesis, RWTH Aachen University, 2009. automata.rwth-aachen.de/~zimmermann.

8. Martin Zimmermann. Time-optimal winning strategies for poset games. Technical
Report AIB-2009-13, RWTH Aachen University, 2009.

9. Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1&2):343–359, 1996.

