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Abstract
Infinite-duration games with disturbances extend the classical framework of infinite-duration games,
which captures the reactive synthesis problem, with a discrete measure of resilience against non-
antagonistic external influence. This concerns events where the observed system behavior differs
from the intended one prescribed by the controller. For games played on finite arenas it is known
that computing optimally resilient strategies only incurs a polynomial overhead over solving classical
games.

This paper studies safety games with disturbances played on infinite arenas induced by pushdown
systems. We show how to compute optimally resilient strategies in triply-exponential time. For the
subclass of safety games played on one-counter configuration graphs, we show that determining the
degree of resilience of the initial configuration is PSPACE-complete and that optimally resilient
strategies can be computed in doubly-exponential time.
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1 Introduction

Infinite games on finite arenas are a popular approach to the synthesis of reactive controllers
from logical specifications. Originally proposed by Büchi and Landweber in 1969 [7], many
variations of this classical framework have been studied, including stochastic games [12],
games with partial information [14], games with delays [20], and games over infinite arenas
such as pushdown graphs [42] and automatic structures [27, 28]. Other variations of this
framework stem from the desire to synthesize controllers that exhibit certain user-desired
properties. Examples of such properties range from controllers that need to achieve their task,
e.g., reaching a goal, as quickly as possible [8] to controllers that are “robust” or “resilient”
with respect to the environment in which they are deployed [3, 26, 4, 21, 25, 37, 38, 39].
Furthermore, infinite games have a plethora of applications in logic, automata theory and
verification beyond the synthesis of reactive controllers. In this paper, we are concerned with
the synthesis application and study infinite games with so-called unmodeled intermittent
disturbances [13] played on configuration graphs of pushdown machines (pushdown graphs).
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Pushdown graphs are finitely represented infinite graphs, typically the simplest class of
such graphs one studies. Despite being conceptually simple, they have natural applications in
program analysis, static code analysis, and compiler optimization [31, 32] due to their ability
to capture recursion, e.g., the call stack of a procedural program. Furthermore, pushdown
graphs are known to be well-behaved, and many problems on pushdown graphs are decidable
(see, e.g., [5, 33, 34, 36]). In particular, Walukiewicz showed that solving parity games played
on pushdown graphs is ExpTime-complete [42], paving the way for effective synthesis of
recursive controllers. Also, Walukiewicz’s result started a long and fruitful line of work on
games on pushdown graphs [8, 9, 10, 24, 35]. Of particular interest is the special case of
games on configuration graphs of one-counter machines, i.e., pushdown machines with a
single stack symbol, which is known to be PSpace-complete [35, 23].

Games with unmodeled intermittent disturbances were originally introduced by Dallal,
Neider, and Tabuada [13] to synthesize resilient controllers. The observation underlying this
type of infinite game is that modeling the real-world environment of a controller in sufficiently
great detail is often extremely challenging, either because parts of the environment are
unknown or because simulating the environment is costly. Moreover, even if a high-resolution
model of the environment is available, the resulting games often become prohibitively large.
To alleviate this serious obstacle, Dallal, Neider, and Tabuada proposed to augment classical
games with what they call unmodeled intermittent disturbances (in the following just called
disturbances for the sake of brevity). Intuitively, such disturbances modify the outcome of
a control action, thus modeling that the intended action of the controller did not have the
desired consequences. Note, however, that disturbances are not under the control of the
environment and, thus, are not antagonistic. Similarly, one does not consider the occurrence
of disturbances as random events, as coming up with an appropriate stochastic error model
is typically hard. Instead, the reader should understand them as rare events, such as a robot
arm failing to grab an object due a physical phenomenon that has not been fully modeled.

The original work of Dallal, Neider, and Tabuada [13] provides a method to compute
optimally resilient strategies for safety games over finite arenas, which intuitively are winning
strategies that can tolerate as many disturbances as possible. In follow-up work, Neider,
Weinert, and Zimmermann [30] have shown that computing optimally resilient strategies in
finite arenas only incurs a polynomial overhead over solving classical games (under some mild
assumptions on the winning condition), i.e., whenever a class of games is solvable without
disturbances, then it is also solvable with disturbances. In particular, they have developed
an algorithm that is effective for all standard winning conditions such as Rabin, Muller, and
parity. Note, however, that both approaches crucially rely on the arena being finite.

The natural question, which we address here, is how to compute optimally resilient
strategies for games on infinite arenas. As this is a very ambitious goal in its full generality,
we restrict ourselves here to the setting of safety games played on pushdown graphs.1

As argued before, pushdown games are a natural starting point for investigating effective
algorithms for games on infinite graphs, and safety specifications are a fundamental class
of specifications in practice [15]. While this setting might seem restrictive, recall that both
the ExpTime-hardness of solving pushdown games [42] and the PSpace-hardness of solving
one-counter games [35] already hold for the safety condition. Thus, the complexity of solving

1 Some of our results do carry over to other winning conditions, such as reachability and parity, or do not
require the underlying arena to be a pushdown graph. If this is the case, we present our arguments and
state our results as general as possible. Also, we discuss the additional challenges one has to overcome
to generalize all our results to reachability and parity conditions.
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pushdown games stems from the transition from finite to infinite graphs, not from the
expressiveness of the winning condition. The setting we consider here is still expressive
enough to model interesting applications such as reasoning about exception handling in
recursive programs. Here, one is interested in determining how many exceptions the program
can tolerate while still satisfying a given specification.

To capture the optimization aspect of the problem at hand, we re-use Neider, Weinert,
and Zimmermann’s notion of resilience values [30], which assigns to every vertex v of the
arena an ordinal rG(v) ≤ ω + 1, where G denotes the game in question and ω is the first
infinite ordinal. Intuitively, rG(v) denotes how many disturbances can be tolerated by an
optimally resilient strategy from v. This value can be k ∈ ω (k − 1 disturbances can be
tolerated, but not k), ω (finitely many disturbances can be tolerated, but not infinitely
many), or ω+ 1 (infinitely many disturbances can be tolerated). When moving from finite to
infinite arenas, however, various conceptual and technical complications arise, which make
computing the resilience values of vertices and, by extension, resilient strategies challenging.

For instance, safety games over infinite arenas no longer guarantee the existence of
optimally resilient strategies, i.e., in an infinite arena, one does not necessarily have a strategy
that can tolerate an arbitrary finite number of disturbances from a vertex with resilience ω.
Instead one has, for every k ∈ ω, a strategy that can tolerate k disturbances, but not k + 1.

Another complication is the fact that it is no longer possible to globally bound the finite
resilience values in infinite arenas. In contrast, in the case of finite arenas, the number of
vertices is a trivial bound on the finite resilience values [30]. Hence, fixed-point algorithms
like the ones devised for finite arenas [13, 30] and algorithms based on exhaustive search do
not necessarily terminate.

Our Contributions
In the rest of this paper, we study resilience in pushdown safety games, which we introduce
in Section 2.

First, we show in Section 3 that no vertex of a finitely branching safety game (which
covers pushdown games in particular) can have resilience ω. As a corollary, we show that
Player 0 has positional optimally resilient strategies in finitely branching safety games. In
contrast, we show that Player 0 does not necessarily have an optimally resilient strategy in
infinitely branching safety games, for the reasons explained earlier.

In Sections 4 to 6, we consider the problem of determining the resilience of the initial
vertex of a given pushdown safety game. First, we show in Section 4 how to characterize
resilience values using classical games (without disturbances): While the notion of resilience
is not defined via strategies of the antagonist, we show that one can nevertheless give control
over disturbances to the antagonist, if one additionally adjusts the winning condition to
control the number of occurrences of disturbances. For certain resilience values, but not all,
this adjustment leads to a polynomial time reduction to solving classical games on pushdown
games. The values that can be characterized in safety games are fixed finite values k and
ω + 1, but not ω.

We then prove that the resilience value of the initial vertex in pushdown safety games can
determined in triply-exponential time (Sections 5) and that of the initial vertex in one-counter
safety games in polynomial space (Section 6). The latter result is tight, as associated decision
problems are shown to be PSpace-complete. To show membership, we use the following
approach: We prove the existence of an upper bound on the resilience value of the initial
vertex in case it is finite. With such an upper bound b, we can use the characterizations
developed in Section 4 to perform an exhaustive search on the finite search space (the resilience

MFCS 2020
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is either in {0, 1, . . . , b} or ω + 1, as we have ruled out ω). For general pushdown games, this
search can be implemented in triply-exponential time, as the bound b is doubly-exponential.
However, relying on the simplicity of configuration graphs of one-counter systems and on the
fact that the bound b is only exponential in this case, we are able to show that the search can
be implemented in polynomial space for one-counter safety games. Proving the last result
requires the combination of a wide range of techniques, including results from the theory of
quantitative pushdown games [17], positional determinacy for quantitative pushdown games,
and specifically tailored “hill-cutting” [5, 40] and “summarization” arguments [31, 19], which
we generalize from individual paths in pushdown systems to strategies. Also, we show that a
strategy that is optimally-resilient from the initial vertex can be computed in exponential
space (triply-exponential time) for one-counter safety games (pushdown safety games).

Section 7 concludes and discusses directions for future work. Finally, in the full version [29],
we present an application of our results, namely, a connection between optimally resilient
strategies in pushdown safety games and optimal strategies (in the number of steps to the
target) in pushdown reachability games [8, 10]. There, we also discuss which of our results
obtained here carry over to pushdown reachability games and discuss the obstacles preventing
us from generalizing the other results from safety to reachability.

Related Work
Resilience, and closely related notions like fault-tolerance and robustness, are not a novel
concept in the context of reactive systems synthesis, with numerous formalizations having been
proposed. So as to not clutter this paper too much, we refer the reader to Dallal, Neider, and
Tabuada [13] as well as Neider, Weinert, and Zimmermann [30] for a comprehensive discussion
of how these notions are related to the concept of unmodeled intermittent disturbances.
Other notions of resilience against environmental impacts not discussed there include an
approach based on imperfect information games that quantifies the resilience of controllers
to noise in the input signal [2, 41] (see also the references).

Finally, let us mention that one can implement the characterization of finite resilience
values presented in Section 4 by energy conditions [6, 11]. However, solving energy games on
pushdown graphs is undecidable [1] and so we do not pursue this approach here. Similarly
unfeasible are stochastic methods to quantify resilience in pushdown games. Indeed, checking
even the most basic, almost-sure reachability conditions for stochastic games on pushdown
graphs is undecidable already for single state systems or single-player games [16].

2 Preliminaries

We use the ordinals 0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 to define resilience values. For
convenience of notation, we also denote the cardinality of ω by ω.

2.1 Infinite Games with Disturbances
An arena (with unmodeled intermittent disturbances) A = (V, V0, V1, E,D) consists of a
countable directed graph (V,E), a partition {V0, V1} of V into the set of vertices V0 of
Player 0 and the set of vertices V1 of Player 1, and a set D ⊆ V0 × V of disturbance edges.
Note that only vertices of Player 0 may have outgoing disturbance edges. We require that
every vertex v ∈ V has a successor v′ with (v, v′) ∈ E to avoid finite plays. A vertex v ∈ V
is a sink if it has a single outgoing edge (v, v) ∈ E leading back to itself but no outgoing
disturbance edges.
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A play in A is an infinite sequence ρ = (v0, b0)(v1, b1)(v2, b2) · · · ∈ (V ×{0, 1})ω such that
b0 = 0 and for all j > 0: bj = 0 implies (vj−1, vj) ∈ E, and bj = 1 implies (vj−1, vj) ∈ D.
Hence, the additional bits bj for j > 0 denote whether a standard edge or a distur-
bance edge has been taken to move from vj−1 to vj . We say ρ starts in v0. A play
prefix (v0, b0) · · · (vj , bj) is defined similarly and ends in vj . The number of disturbances in a
play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is defined as #D(ρ) = |{j ∈ ω | bj = 1}|, which is either
some k ∈ ω (if there are finitely many disturbances, namely k) or it is equal to ω (if there
are infinitely many). A play ρ is disturbance-free, if #D(ρ) = 0.

A game (with unmodeled intermittent disturbances) G=(A,Win) consists of an arena with
set V of vertices and a winning condition Win ⊆ V ω. A play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is
winning for Player 0 if v0v1v2 · · · ∈Win, otherwise it is winning for Player 1. Hence, winning
is oblivious to occurrences of disturbances.

In this work, we focus on safety conditions, but also use the Büchi condition in proofs.
Both are induced by a subset F of the set V of vertices.

Safety(F ) containing the sequences v0v1v2 · · · ∈ V ω with vj /∈ F for every j ∈ ω denotes
the safety condition induced by F , which requires to avoid F .
Büchi(F ) containing the sequences v0v1v2 · · · ∈ V ω with vj ∈ F for infinitely many j ∈ ω
denotes the Büchi condition induced by F , which requires to visit F infinitely often.

A game (A,Win) is a safety game if Win = Safety(F ) for some subset F of the vertices of A.
A strategy for Player i ∈ {0, 1} is a function σ : V ∗Vi → V such that (vj , σ(v0 · · · vj)) ∈ E

for every v0 · · · vj ∈ V ∗Vi. A play (v0, b0)(v1, b1)(v2, b2) · · · is consistent with σ if vj+1 =
σ(v0 · · · vj) for every j with vj ∈ Vi and bj+1 = 0, i.e., if the next vertex is the one
prescribed by the strategy unless a disturbance edge is used. A strategy σ is positional, if
σ(v0 · · · vj) = σ(vj) for all v0 · · · vj ∈ V ∗Vi.

2.2 Pushdown Games

A pushdown system (PDS) P = (Q,Γ, E , qI) consists of a finite set Q of states with an initial
state qI ∈ Q, a stack alphabet Γ with a designated stack bottom symbol ⊥ /∈ Γ, and a
transition relation E ⊆ Q×Γ⊥×Q×Γ≤2

⊥ , where Γ⊥ = Γ∪{⊥} and Γ≤2
⊥ = {w ∈ Γ∗⊥ | |w| ≤ 2}.

We require E to neither write nor delete ⊥ from the stack. Also, we assume every PDS to
be deadlock-free, i.e., for every q ∈ Q and A ∈ Γ⊥ there exist q′ ∈ Q and w ∈ Γ≤2

⊥ such that
(q, A, q′, w) ∈ E . Finally, P is a one-counter system (OCS) if |Γ| = 1.

A stack content is a word in Γ∗⊥ where the leftmost symbol is assumed to be the top
of the stack. A configuration of P is a pair (q, γ) consisting of a state q ∈ Q and a stack
content γ ∈ Γ∗⊥. The stack height of a configuration (q, γ) is defined by sh(q, γ) = |γ| − 1.
Given two configurations (q, γ) and (q′, γ′) we write (q, γ) `E (q′, γ′) if there exists a
transition (q, γ0, q

′, w) ∈ E with γ′ = wγ1 · · · γ|γ|−1.
Fix a PDS P = (Q,Γ, E , qI), a partition {Q0, Q1} of Q and an additional transition

relation ∆ ⊆ Q0 × Γ⊥ ×Q× Γ≤2
⊥ , which is also required to neither write nor delete ⊥ from

the stack. These induce the (pushdown) arena (V, V0, V1, E,D) with
V = {(q, γ) | q ∈ Q, γ ∈ Γ∗⊥} is the set of configurations of P,
Vi = {(q, γ) ∈ V | q ∈ Qi} for i ∈ {0, 1} is the set of configurations whose state is in Qi,
E = {(v, v′) | v `E v′} is the set of edges, induced by the transition relation E , and
D = {(v, v′) | v `∆ v′} is the set of disturbance edges, which is induced by the transition
relation ∆, where `∆ is defined analogously to `E .

Typically, we are interested in the initial vertex of the arena, which is defined as (qI ,⊥).

MFCS 2020
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· · ·

· · ·

qI

q1

q2

⊥ A⊥ A2⊥ A3⊥ A4⊥ A5⊥ A6⊥ A7⊥

Figure 1 A one-counter arena, restricted to vertices reachable from the initial vertex (qI ,⊥). All
vertices are in V0, disturbance edges are drawn as dashed arrows, and doubly-lined vertices are in F .

A pushdown safety game is a safety game whose arena is induced by a pushdown system P
and whose winning condition is induced by a subset of P’s states, i.e., F ⊆ Q induces the
set {(q, γ) ∈ V | q ∈ F} of vertices. One-counter safety games are defined analogously.

When using a pushdown game as an input for an algorithm, we represent it by the under-
lying PDS, the partition of its states, the additional transition relation for the disturbance
edges, and a subset of the states inducing the winning condition. We define the size of the
input as |Q|+ |Γ|, as all these objects can be represented in polynomial size in the number
of states and stack symbols of the underlying PDS.

2.3 Infinite Games without Disturbances
For technical convenience, we characterize the classical notion of infinite games, i.e., those
without disturbances, (see, e.g., [18]) as a special case of games with disturbances. Let G be
a game with vertex set V . A strategy σ for Player i in G is said to be a winning strategy for
her from v ∈ V , if every disturbance-free play that starts in v and that is consistent with σ
is winning for Player i. The winning region Wi(G) of Player i in G contains those vertices
from which Player i has a winning strategy. Thus, the winning regions of G are independent
of the disturbance edges, i.e., we obtain the classical notion of infinite games. Player i wins
G from v, if v ∈ Wi(G).

2.4 Resilient Strategies
Let G be a game with vertex set V and let α ∈ ω + 2. A strategy σ for Player 0 in G
is α-resilient from v ∈ V if every play ρ that starts in v, that is consistent with σ, and
with #D(ρ) < α, is winning for Player 0. Thus, a k-resilient strategy with k ∈ ω is winning
even under at most k−1 disturbances, an ω-resilient strategy is winning even under any finite
number of disturbances, and an (ω + 1)-resilient strategy is winning even under infinitely
many disturbances.

We define the resilience of a vertex v of G as

rG(v) = sup{α ∈ ω + 2 | Player 0 has anα-resilient strategy for G from v}.

Note that the definition is not antagonistic, i.e., it is not defined via strategies of Player 1. A
strategy σ is optimally resilient if it is rG(v)-resilient from every vertex v.

I Example 1. Consider the game G = (A,Safety(F )) where A is the arena from Figure 1
and Safety(F ) is the safety condition induced by F = {q2}.

We have that rG(qI , An⊥) = ω + 1, rG(q1, A
n⊥) = n for all n ∈ ω, and rG(q2,⊥) = 0.

Furthermore, the strategy that indefinitely stays in state qI is optimally resilient.
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3 Resilience in Infinite Safety Games

Player 0 has optimally resilient strategies in every safety game played in a finite arena [13]. In
this section, we show that this result also holds for pushdown safety games, but fails for safety
games in arbitrary infinite arenas. We start by observing that in safety games in infinite
arenas, vertices with resilience ω may exist, unlike in safety games in finite arenas [13].

I Example 2. Consider the one-counter arena presented in Figure 1 with the safety condition
induced by F = {q2}, i.e., Player 0 wins if she avoids visiting a vertex with state q2. As
argued in Example 1, the resulting game G has vertices of resilience ω + 1 and k, for each
k ∈ ω, i.e., all values but ω are assumed.

Let us add a vertex v ∈ V0 to G with outgoing edges to all vertices of the form (q1, A
n⊥)

to obtain the game G′ (which is infinitely branching and therefore no longer a pushdown
arena). Let σk, for k > 0, be a strategy that moves from v to (q1, A

k⊥). We have that
rG′(v) ≥ ω, as σk is k-resilient from v. Consider an arbitrary strategy σ: From v, it moves
to some (q1, A

k⊥) from which k disturbances force the play into the losing sink. Hence, σ
is not (k + 1)-resilient and therefore not ω-resilient. Thus, there is no optimally resilient
strategy in G′.

The underlying issue is that rG(v) ≥ ω can be witnessed either
(a) by the existence of a strategy that is ω-resilient from v, or
(b) by the existence of a family (σk)k∈ω of strategies where each σk is k-resilient from v, but

not ω-resilient from v.
The second case only exists as ω is a limit ordinal (the only one we consider). For all α 6= ω,
we have that rG(v) = α if and only if Player 0 has an α-resilient strategy from v. The games
studied in previous work [13, 30] only exhibited the former case, as these only considered
finite arenas. As witnessed in Example 2, this is no longer true in games in infinite arenas.

Note that there is a change of quantifiers between these two cases: by definition, an
ω-resilient strategy is k-resilient for every k ∈ ω, i.e., in the former case there is a uniform
strategy that is k-resilient for every k ∈ ω. In the latter case, for every k ∈ ω, there is
a strategy that is k-resilient, but not ω-resilient. Hence, in the following, we distinguish
between these two cases. We say that a vertex v of a game G with rG(v) = ω has a uniform
witness2, if there is an ω-resilient strategy from v. A game with a vertex of resilience ω
without a uniform witness has no optimally resilient strategy by definition.

For safety games in infinite arenas, the existence of optimally resilient strategies depends
on the branching of the arena. We say that an arena (V, V0, V1, E,D) is finitely branching if
the set {v′ | (v, v′) ∈ E} of successors of v is finite for every v ∈ V . Otherwise, if there is
a vertex with infinitely many successors, then the arena is infinitely branching. Note that
pushdown arenas are finitely branching.

The following theorem shows that the games presented in Example 2 already exhibit all
possible resilience values in safety games, and that infinite branching is necessary to obtain
a vertex of resilience ω. We formulate the result for arbitrary infinite arenas, as the proof
technique we use here does not rely on the arena being a pushdown arena.

I Lemma 3. Let G be a safety game with vertex set V .
1. There is no v ∈ V with rG(v) = ω that has a uniform witness.
2. If A is finitely branching, then there is no v ∈ V with rG(v) = ω.

2 Note that uniformity here refers to having a single strategy σ that is k-resilient from v for every k. It is
not related to the concept of uniform winning strategies, i.e., strategies that are winning from every
vertex in a winning region.

MFCS 2020
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Finally, the main result of this section shows that optimally resilient strategies exist in
all finitely branching safety games, i.e., in particular in pushdown safety games.

I Theorem 4. Player 0 has positional optimally resilient strategies in finitely branching
safety games.

4 Characterizing Resilience Values via Classical Games

In this section, we characterize the existence of α-resilient strategies by games without
disturbances. This generalizes a characterization for α = ω+ 1 in finite arenas [30] to infinite
arenas and all α ∈ ω + 2.

The main idea is to give Player 1 control over the disturbances and to restrict the number
of their occurrences using the winning condition. Intuitively, when it is Player 0’s turn at
a vertex v, we let Player 1 first decide whether to simulate a disturbance edge from D or
whether to allow Player 0 to pick a standard edge from E. To this end, we add v to Player 1’s
vertices and he can either move to some vertex v′ such that the disturbance edge (v, v′)
exists. By doing his, he has to visit the fresh vertex (v, v′), which allows to keep track of the
number of simulated disturbances. This vertex has exactly one outgoing edge leading to v′.
On the other hand, if he does not simulate a disturbance edge, he moves from v to a fresh
copy v of v from which Player 0 has edges leading to the successors of v. Finally, the moves
at Player 1’s original vertices are unchanged, but we subdivide the edge so that a play in the
extended arena always alternates between vertices from V and auxiliary vertices.

Formally, given an arena A = (V, V0, V1, E,D), we define the rigged arena Arig =
(V ′, V ′0 , V ′1 , E′, D′) with V ′ = V ∪A for the set

A = {v | v ∈ V0} ∪D ∪ {(v, v′) ∈ E | v ∈ V1}

of auxiliary vertices, V ′0 = {v | v ∈ V0}, V ′1 = V ′ \ V ′0 , D′ = ∅, and E is the union of the
following sets of edges:
{(v, (v, v′)), ((v, v′), v′) | (v, v′) ∈ D}: Player 1 simulates a disturbance edge (v, v′) ∈ D
by moving from v to v′ via the auxiliary vertex (v, v′) that signifies that a disturbance is
simulated.
{(v, v) | v ∈ V0}: Player 1 does not simulate a disturbance edge and instead gives control
to Player 0 by moving to the auxiliary vertex v.
{(v, v′) | v ∈ V0 and (v, v′) ∈ E}: Player 0 has control at the auxiliary vertex v and
simulates a standard move from v ∈ V0 to v′.
{(v, (v, v′)), ((v, v′), v′) | (v, v′) ∈ E and v ∈ V1}: Player 1 simulates a standard move
from v ∈ V1 to v′ by moving via the auxiliary vertex (v, v′).

Let R≥k denote the set of sequences v0v1v2 · · · ∈ (V ′)ω such that |{j | vj ∈ D}| ≥ k, i.e.,
those plays in which Player 1 simulates at least k disturbances. Finally, given a winning
condition Win ⊆ V ω for A, we define the rigged winning condition

Winrig = {v0v1v2 · · · ∈ (V ′)ω | v0 ∈ V and v0v2v4 · · · ∈Win},

which contains all plays in Arig that start in V and are in Win after removing the auxiliary
vertices. Note that Büchi(D) contains those plays that simulate infinitely many disturbances.

I Lemma 5. Let G = (A,Win) be a game, let v be a vertex of G, and let k ∈ ω.
1. Player 0 has an (ω+ 1)-resilient strategy for G from v if and only if v ∈ W0(Arig,Winrig).
2. Player 0 has an ω-resilient strategy for G from v if and only if v ∈ W0(Arig,Winrig ∪

Büchi(D)).
3. Player 0 has a k-resilient strategy for G from v if and only if v ∈ W0(Arig,Winrig ∪R≥k).
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5 Resilience in Pushdown Safety Games

The goal of this section is to develop an algorithm that determines the resilience of the initial
vertex of a pushdown safety game. To this end, we rely on the characterizations presented in
the previous section as as well as an upper bound on the possible finite resilience values that
can be realized by the initial vertex of such a game. We begin by showing that the first two
characterizations presented in Lemma 5 (for ω + 1 and ω) are effective for pushdown games.
Intuitively, we prove that a pushdown machine P inducing an arena A can in polynomial
time be turned into a pushdown machine Prig inducing the arena Arig.

We state the result for parity conditions (see, e.g., [18] for a definition of parity conditions),
which subsume safety conditions.

I Lemma 6. The following problem is ExpTime-complete (and PSpace-complete if inputs
are restricted to one-counter games): “Given a pushdown parity game G with initial vertex vI
and α ∈ {ω, ω + 1}, does Player 0 have an α-resilient strategy for G from vI?”. If yes, such
a strategy can be computed in exponential time.

Both ExpTime-hardness and PSpace-hardness already hold for pushdown safety games
and one-counter safety games, respectively. The third characterization of Lemma 5 (for
k ∈ ω) is effective as well (even for parity games). Here the running time depends on k.

I Lemma 7. The following problem is in 2ExpTime (in ExpSpace if the input is one-
counter): “Given a pushdown parity game G with initial vertex vI and k ∈ ω (encoded in
binary), does Player 0 have a k-resilient strategy for G from vI?”. If yes, such a strategy can
be computed in doubly-exponential time.

There are no vertices of resilience ω in pushdown safety games (Lemma 3.2). Thus, the
effective characterizations we have presented so far suffice to determine the resilience of the
initial vertex in such a game: First, check whether it is ω + 1; if not, then it has to be finite.
Hence, for increasing k, check whether the resilience is greater than k. As the resilience is
finite, this algorithm will eventually terminate and report the resilience correctly. However,
without an upper bound on the possible finite resilience values of the initial vertex, there is
no bound on the running time, just a termination guarantee. In the remainder of this section,
we present a tight doubly-exponential upper bound b(P) on the resilience of the initial vertex
in pushdown safety games in the case the resilience is finite. That is, if rG(vI) ∈ ω then
rG(vI) < b(P). Note that any proof of the upper bound has to depend on the vertex under
consideration being initial, as we have shown that there is in general no upper bound on
finite resilience values assumed in pushdown safety games (cf. Example 2). The bound b(P)
only depends on the pushdown system P inducing the game and yields an effective algorithm
to determine the resilience of the initial vertex vI , presented as Algorithm 1.

Algorithm 1 Computing the resilience of the initial vertex vI of a pushdown safety game G =
(A, Safety(F )) induced by a PDS P.
1: if vI ∈ W0(Arig,Safety(F )rig) then
2: return ω + 1
3: for k = 1 to b(P) do
4: if vI ∈ W1(Arig,Safety(F )rig ∪R≥k) then
5: return k − 1

Given a PDS P with set Q of states and set Γ of stack symbols let Prig be the PDS
obtained from P by implementing the transformation from an arena to the rigged arena.

MFCS 2020
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The cardinality of the set Q′ of states of Prig is bounded quadratically in |Q| and the
set of stack symbols used by Prig is still Γ. We define b(P) = |Q′| · h(P) · |Γ|h(P), where
h(P) = |Q′| · |Γ| · 2|Q′|+1 + 1. Note that b(P) ∈ 22O(|P|2) and b(P) ∈ 2O(|P|2) if P is an OCS.

I Lemma 8. Let G be a pushdown safety game with initial vertex vI . If rG(vI) 6= ω+ 1, then
rG(vI) < b(P), where P is the PDS underlying G.

This upper bound immediately implies correctness of Algorithm 1, which determines the
resilience of the initial vertex of a pushdown safety game.

I Theorem 9. The following problem can be solved in triply-exponential time: “Given a
pushdown safety game G with initial vertex vI , determine rG(vI)”. If yes, an rG(vI)-resilient
strategy can be computed in triply-exponential time.

Note that there is a gap between the triply-exponential upper bound and the exponential
lower bound obtained for the related decision problems for ω and ω + 1 (Lemma 6).

The complexity for the special case of one-counter safety games is much smaller, i.e.,
the resilience of the initial vertex can be computed in exponential space, as the winner of
one-counter safety games can be computed in polynomial space [35] and the upper bound on
finite resilience values of the initial vertex is only exponential. Furthermore, a witnessing
strategy can be computed in doubly-exponential time using Lemma 7. In the next section, we
prove that one can do even better by exploiting the simple structure of one-counter arenas.

To conclude this section, we claim that the bound b(P) on the resilience of an initial
vertex in a pushdown safety game with finite resilience is tight: There is an exponential lower
bound for the one-counter case and a doubly-exponential lower bound for the pushdown
case. Both constructions are generalizations of constructions that appeared in the literature
previously [10]. To simplify our notation, let pj denote the j-th prime number and define the
primorial pk# = Πk

j=1pj to be the product of the first k prime numbers. We have pk# ≥ 2k.

I Lemma 10. Let k ∈ ω.
1. There is a one-counter safety game Gk with initial state vI such that rG(vI) = pk# and

the underlying OCS has polynomially many states in k.
2. There is a pushdown safety game G′k with initial state vI such that rG(vI) = 2pk#− 1 and

the underlying PDS has polynomially many states in k and two stack symbols.

6 Resilience in One-counter Safety Games

In this section, we show that one can compute the resilience of the initial vertex in a
one-counter safety game in polynomial space, significantly improving the exponential space
requirement derived in the previous section.

I Theorem 11. The following problem can be solved in polynomial space: “Given a one-
counter safety game G with initial vertex vI , determine rG(vI)”.

To prove this result, we show that one can implement Algorithm 1 in polynomial space
if the underlying pushdown system is one-counter. In this case, one can run the check
“vI ∈ W0(Arig,Safety(F )rig)” in Line 1 in polynomial space due to Lemma 6, and can
implement the counter in Line 3 in polynomial space, as the upper bound b(P) is exponential
(see the definition on Page 10). It remains to show that one can check in polynomial space,
for a given k ≤ b(P), if vI ∈ W1(Arig,Safety(F )rig ∪R≥k) holds. In the rest of this section
we show that this is indeed possible.
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Fix, the rigged game Gk = (Arig,Safety(F )rig ∪ R≥k) for some k ≤ b(P) with Arig =
(V ′, V ′0 , V ′1 , E′, ∅), with initial vertex vI , where P is the OCS underlying the original game G
that induces Gk. We show that the existence of winning strategies for Player 1 in Gk can be
witnessed by a finite graph structure, as follows.

A strategy graph for Gk is a tuple (V ◦, E◦, µ◦r , µ◦d) with µ◦r : V ◦ → {0, . . . , k − 1} and
µ◦d : V ◦ → {0, . . . , |V ◦|} such that the following properties are satisfied:
1. (V ◦, E◦) is a directed graph with V ◦ ⊆ V ′, E◦ ⊆ E′, vI ∈ V ◦, and sh(v) ≤ (2k)|Q|2

for all v ∈ V ◦. Note that (2k)|Q|2 is exponential in the size of the pushdown system P
underlying G, even though k ≤ b(P) may itself be exponential.

2. For all v ∈ (V ◦ ∩ V ′0) \ F and all (v, v′) ∈ E′, we have (v, v′) ∈ E◦.
3. For all v ∈ (V ◦ ∩ V ′1) \ F there is a unique outgoing edge (v, v′) ∈ E′ with (v, v′) ∈ E◦.
4. For all (v, v′) ∈ E◦, we have µ◦r(v) ≥ µ◦r(v′) with strict inequality if v ∈ D.
5. For all (v, v′) ∈ E◦, we have µ◦d(v) > µ◦d(v′).

I Lemma 12. Player 1 wins Gk from vI if and only if there exists a strategy graph for Gk.

To simplify the proof, we transform Gk into a game G′k where all reachable vertices in F
are sinks of stack height zero. To do this, we replace all outgoing (standard and disturbance)
edges of vertices (q, An⊥) ∈ F with n > 0 by an edge to (q, An−1⊥) (which is also in F ) and
the all outgoing (standard and disturbance) edges of vertices (q,⊥) ∈ F by an edge to a sink
vertex (qf ,⊥), where qf is a fresh state. Then, G′k is the game played in the modified arena
with winning condition Safety({qf})rig ∪R≥k. Intuitively, once a vertex in F is reached in
the modified arena, the players no longer have strategic choices; instead, the stack is emptied
(without simulating any disturbances) and the unsafe sink vertex (qf ,⊥) is reached.

It is straightforward to verify that we have v ∈ Wi(Gk) if and only v ∈ Wi(G′k) for every
vertex of Arig and i ∈ {0, 1} by transferring winning strategies between the games. So, in
the following, we assume without loss of generality, that the only vertices of Gk in F that are
reachable from the initial vertex are sinks of stack height zero. In this situation, a play can
no longer simulate a disturbance edge once a vertex in F has been reached.

To prove Lemma 12, we show that if Player 1 wins Gk with some arbitrary winning
strategy, then also with a winning strategy that can be turned into a strategy graph. To
simplify our notation, given a strategy τ , let maxSh(τ) = supv sh(v), where v ranges over all
vertices reachable by a play prefix starting in vI that is consistent with τ , i.e., maxSh(τ) is
the maximal stack height visited by a play that is starting in the initial vertex and consistent
with τ . Using this, we show that Player 1 wins Gk from vI if and only if he has a positional
winning strategy from vI with maxSh(τ) ≤ (2k)|Q|2 . The latter can then be transformed
into a strategy graph.

We only have to consider the implication from left to right, as the other one is trivial.
Let Player 1 win Gk from vI , i.e., he has a winning strategy τ for Gk from vI . We proceed in
two steps: First, We turn τ in a positional winning strategy τ ′ from vI (Lemma 13). Then,
we turn τ ′ into a positional winning strategy τ ′′ with maxSh(τ ′′) ≤ (2k)|Q|2 (Lemma 14).

For the first step, we generalize a standard argument for turning an arbitrary, not
necessarily positional, winning strategy τ in a reachability game into a positional one: At a
vertex v /∈ F , consider all play prefixes that are consistent with τ and end in v, and mimic
the move τ prescribes for a longest one (call it rep(v)). The resulting strategy τ ′ is obviously
positional and winning as every play consistent with τ ′ and ending in some v /∈ F can be
shown to be at most as long as the play rep(v) whose moves are mimicked to define τ ′(v).
Here, we have to refine this argument to ensure that the resulting strategy τ ′ still simulates
at most k − 1 disturbances during each play.
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I Lemma 13. If Player 1 wins Gk from vI then he has a positional winning strategy for Gk
from vI .

The second step of our construction is to bound the stack height reached by plays
consistent with the winning strategy (while preserving positionality). To this end, we
generalize a classical argument for pushdown safety games: In such games, Player 1, who
has a reachability objective, has a positional winning strategy τ from vI with exponentially
bounded maxSh(τ), if he wins at all from vI . This is typically proven by a “hill-cutting”
argument [5, 40] showing that a winning strategy exceeding this bound can be turned into
one of smaller maximal stack height by removing infixes of plays that increase the stack
without reaching states that have not been reached at smaller stack height already. Here, we
again have to generalize this argument to additionally ensure that the number of simulated
disturbances remains bounded by k − 1. This is done using “summarizations” of paths in
pushdown systems (see e.g. [31, 19]) that take the number of disturbances into account.

I Lemma 14. If Player 1 wins Gk from vI then he has a positional winning strategy from
vI with maxSh(τ) ≤ (2k)|Q|2 .

A positional strategy as in Lemma 14 is essentially a strategy graph. So, we have proven
Lemma 12: The existence of strategy graphs for Gk captures Player 1 winning Gk. Hence, it
remains to prove that we can decide the existence of strategy graphs in polynomial space.
Here, we use the fact that k is at most b(P) ∈ O(2|P|2), where P is the pushdown system
underlying the game inducing Gk, to guess and verify a strategy graph in polynomial space.

I Lemma 15. The following problem is in PSpace: “Given a one-counter safety game G
induced by a PDS P and k ≤ b(P) (encoded in binary), is there a strategy graph for Gk?”.

While we consider one-counter systems with unit updates, i.e., each transition changes the
counter value by at most one, our results are also applicable to one-counter systems where
each transition updates the counter by some integer (encoded in binary). Such binary updates
can be simulated by unit updates, albeit with an exponential blowup. Hence, the algorithm
above computes the resilience of the initial vertex of a one-counter safety game with binary
updates in exponential space. A matching lower bound follows from the ExpSpace hardness
of solving disturbance-free one-counter safety games with binary updates [22].

7 Conclusion

In this work, we have investigated pushdown safety games with disturbances, thereby extend-
ing the theory of games with disturbances from finite to infinite arenas. In particular, we have
determined the possible resilience values in safety games, presented effective characterizations
for all possible values, and presented algorithms that determine the resilience of the initial
vertex (and a witnessing strategy) in one-counter and pushdown safety games. As an appli-
cation of our results, we obtain a polynomial space algorithm for computing optimal winning
strategies for one-counter reachability games (see the full version for details [29]). This is, to
the best of our knowledge, the first improvement over the general doubly-exponential time
algorithm for pushdown reachability games due to Carayol and Hague [10].

The algorithm computing the resilience in one-counter safety games runs in polynomial
space, which is optimal, as the corresponding decision problems are PSpace-complete.
However, the algorithm for pushdown games has triply-exponential running time. Here, there
is a gap, as some of the corresponding decision problems are ExpTime-complete (e.g., those
for resilience ω+1 and ω) while the complexity of others is open (e.g., that for finite resilience
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values). In future work, we aim to close this gap. An interesting first step in that direction
would be to determine the complexity of checking whether the resilience of the initial vertex
is at least k, where k is part of the input and encoded in binary. Here, one has to keep in
mind that algorithms for computing the resilience also yield algorithms computing optimal
strategies in reachability games. The latter problem also has a complexity gap between the
currently best algorithms and known lower bounds. Finally, another obvious open problem
is to consider more general winning conditions, e.g., reachability (see the full version [29] for
preliminary results) or parity.

The main obstacle is that one either has to develop an effective characterization of
vertices with resilience ω without a uniform witness, or to obtain an upper bound on the
finite resilience value an initial vertex can assume. The first option is challenging due to the
quantifier change discussed in Section 5. Hence, the more promising route seems to be the
second option. The main challenge here is to bound the number of disturbances that are
necessary to prevent Player 0 from ever reaching the target states, i.e., Player 1 now has a
safety objective in conjunction with a limited number of disturbances at his disposal.
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