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Linear Temporal Logic (LTL) is the standard specification language for reactive systems and is suc-
cessfully applied in industrial settings. However, many shortcomings of LTL have been identified in
the literature, among them the limited expressiveness, the lack of quantitative features, and the in-
ability to express robustness. There is work on overcoming these shortcomings, but each of these is
typically addressed in isolation. This is insufficient for applications where all shortcomings manifest
themselves simultaneously.

Here, we tackle this issue by introducing logics that address more than one shortcoming. To this
end, we combine the logics Linear Dynamic Logic, Prompt-LTL, and robust LTL, each addressing
one aspect, to new logics. For all combinations of two aspects, the resulting logic has the same
desirable algorithmic properties as plain LTL. In particular, the highly efficient algorithmic backends
that have been developed for LTL are also applicable to these new logics. Finally, we discuss how to
address all three aspects simultaneously.

1 Introduction

Linear Temporal Logic (LTL) [21] is amongst the most prominent and most important specification lan-
guages for reactive systems, e.g., non-terminating controllers interacting with an antagonistic environ-
ment. Verification of such systems against LTL specifications is routinely applied in industrial settings
nowadays [10, 13]. Underlying this success story is the exponential compilation property [25]: every
LTL formula can be effectively translated into an equivalent Büchi automaton of exponential size (and it
turns out that this upper bound is tight). In fact, almost all verification algorithms for LTL are based on
this property, which is in particular true for the popular polynomial space model checking algorithm and
the doubly-exponential time synthesis algorithms. Other desirable properties of LTL include its compact
and variable-free syntax and its intuitive semantics.

Despite the success of LTL, a plethora of extensions of LTL have been studied, all addressing indi-
vidual and specific shortcomings of LTL, e.g., its limited expressiveness, its lack of quantitative features,
and its inability to express robustness. Commonly, extensions of LTL as described above are only stud-
ied in isolation—the logics are either more expressive, or quantitative, or robust. One notable exception
is Parametric LDL (PLDL) [12], which adds quantitative operators and increased expressiveness while
maintaining the exponential compilation property and intuitive syntax and semantics. In practical set-
tings, however, it does not suffice to address one shortcoming of LTL while ignoring the others. Instead,
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one needs a logic that combines multiple extensions while still maintaining the desirable properties of
LTL. The overall goal of this paper is, hence, to bridge this gap, thereby enabling expressive, quantitative,
and robust verification and synthesis.

It is a well-known fact that LTL is strictly weaker than Büchi automata, i.e., it does not harness
the full expressive power of the algorithmic backends. Thus, increasing the expressiveness of LTL has
generated much attention [17, 24, 25, 26] as it can be easily exploited: as long as the new logic also has
the exponential compilation property, the same optimized backends as for LTL can be used. A prominent
and recent example of such an extension that yields the full expressive power of Büchi automata is Linear
Dynamic Logic (LDL) [24], which adds to LTL temporal operators guarded by regular expressions. As
an example, consider the specification “p holds at every even time point, but may or may not hold at odd
time points”. It is well-known that this property is not expressible in LTL, as LTL, intuitively, is unable
to count modulo a fixed number. However, the specification is easily expressible in LDL as [r ] p, where
r is the regular expression (tt ·tt)∗. The formula requires p to be satisfied at every position j such that
the prefix up to position j matches the regular expression r (which is equivalent to j being even), i.e., tt
is an atomic regular expression that matches every letter. In this work, we consider LDL instead of the
alternatives cited above for its conceptual simplicity: LDL has a simple and variable-free syntax based on
regular expressions as well as intuitive semantics (assuming some familiarity with regular expressions).

Another serious shortcoming of LTL (and LDL) is its inability to adequately express timing bounds.
For example, consider the specification “every request q is eventually answered by a response p”, which
is expressed in LTL as (q→ p). It is satisfied, even if the waiting time between requests q and
responses p diverges to infinity, although such a behavior is typically undesired. Again, a long line
of research has addressed this second shortcoming of LTL [1, 12, 15, 16, 28]. The most basic one is
Prompt-LTL [16], which adds the prompt-eventually operator p to LTL. The semantics is now defined
with an additional parameter k, which bounds the scope of p: (q→ p p) requires every request q
to be answered within k steps, when evaluated with respect to k. The resulting logic is a quantitative
one: either one quantifies the parameter k existentially and obtains a boundedness problem, e.g., “is
there a bound k such that every request can be answered within k steps”, or one even aims to determine
the optimal bound k. Again, Prompt-LTL retains the desirable properties of LTL, i.e., the exponential
compilation property as well as intuitive syntax and semantics. Furthermore, Prompt-LTL captures the
technical core of the alternatives cited above, e.g., decision problems for the more general logic PLTL [1]
can be reduced to those for Prompt-LTL. For these reasons, we study Prompt-LTL in this work.

Finally, a third line of extensions of LTL is concerned with the concept of robustness, which is
much harder to formalize. This is reflected by a multitude of incomparable notions of robustness in
verification [5, 6, 8, 9, 11, 18, 20, 22, 23]. Here, we are interested in robust LTL (rLTL) [23], which equips
LTL with a five-valued semantics that captures different degrees of violations of universal specifications.
As an example, consider the specification “if property ϕ always holds true, then property ψ also always
holds true”, which is expressed in LTL as ϕ → ψ and is typical for systems that have to interact
with an antagonistic environment. In classical semantics, the whole formula is satisfied as soon as the
assumption ϕ is violated once, even if the guarantee ψ is violated as well. By contrast, the semantics
of robust LTL ensures that the degree of the violation of ψ is always proportional to the degree of the
violation of ϕ . To this end, the degree of a violation of a property ϕ is expressed by five different
truth values: either ϕ always holds, or ϕ is violated only finitely often, violated infinitely often, violated
almost always, or violated always. Again, robust LTL has the exponential compilation property and
an intuitive syntax (though its semantics is more intricate). In this work, we consider robust LTL, as
it is the first logic that intrinsically captures the notion of robustness in LTL. In particular, formulas of
robust LTL are evaluated over traces with Boolean truth values for atomic propositions and do not require
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non-Boolean assignments, which are often hard to determine in real-life applications.

Our Contributions

We develop logics that address more than one shortcoming of LTL at a time. See Figure 1 for an overview.

LTL

rLTL( , ) Prompt-LTL LDL

rPrompt-LTL rLDL Prompt-LDL

rPrompt-LDL

Figure 1: The logics studied in this work. Ex-
isting logics and influences are marked gray
with dashed arrows.

In Section 3, we “robustify” Prompt-LTL. More
precisely, we introduce a novel logic, named
rPrompt-LTL, by extending the five-valued semantics
from robust LTL to Prompt-LTL. Our main result here
shows that rPrompt-LTL retains the exponential com-
pilation property. Then, in Section 4, we “robustify”
LDL: we introduce a novel logic, named rLDL, by lift-
ing the five-valued semantics of robust LTL to LDL.
Our main result shows that rLDL also retains the ex-
ponential compilation property. Hence, one can indeed
combine any two of the three extensions of LTL while
still preserving the desirable algorithmic properties of
LTL. In particular, let us stress again that all highly
sophisticated algorithmic backends developed for LTL
are applicable to these novel logics as well, e.g., we show that the verification problem and the synthesis
problem for each of these logics is solvable without an (asymptotic) increase in complexity.

Tabuada and Neider gave two proofs showing that robust LTL has the exponential compilation prop-
erty. The first one presented a translation of robust LTL into equivalent Büchi automata of exponential
size while the second one is based on a polynomial translation of robust LTL into (standard) LTL, which
is known to be translatable into equivalent Büchi automata of exponential size. We refer to those two
approaches as the direct approach and the reduction-based approach. To obtain our results mentioned
above, we need to generalize both. To prove the exponential compilation property for rLDL, we gener-
alize the direct approach by exhibiting a direct translation of rLDL into Büchi automata via alternating
automata. In contrast, to prove the exponential compilation property for rPrompt-LTL, we present a
generalization of the reduction-based approach translating rPrompt-LTL into equivalent Prompt-LTL
formulas of linear size, which have the exponential compilation property.

Finally, in Section 5, we discuss the combination of all three aspects. Recall that we present a
direct translation to automata for rLDL and a reduction-based one for rPrompt-LTL. For reasons we
discuss in Section 5, it is challenging to develop a reduction from rLDL to LDL or a direct translation
for rPrompt-LTL that witness the exponential compilation property. Hence, both approaches seem inad-
equate to deal with the combination of all three extensions. Ultimately, we leave the question of whether
the logic combining all three aspects has the exponential compilation property for future work.

Proofs omitted due to space restrictions can be found in the full version [19].

2 Preliminaries

We denote the non-negative integers by N, the set {0,1} of Boolean truth values by B, and the power
set of S by 2S. By convention, we have min /0 = 1 and max /0 = 0 when the operators range over sub-
sets of B. Following Tabuada and Neider [23], the set of truth values for robust semantics is B4 =
{0000,0001,0011,0111,1111}, which are ordered by 0000≺ 0001≺ 0011≺ 0111≺ 1111. We write�



4 Robust, Expressive, and Quantitative Linear Temporal Logics

for the non-strict variant of ≺ and define min /0 = 1111 and max /0 = 0000 when the operators range over
subsets of B4.

Throughout this work, we fix a finite non-empty set P of atomic propositions. For a set A ⊆ P and
a propositional formula φ over P, we write A |= φ if the variable valuation mapping elements in A to
1 and elements in P \A to 0 satisfies φ . A trace (over P) is an infinite sequence w ∈ (2P)ω . Given a
trace w = w(0)w(1)w(2) · · · and a position j ∈ N, we define w[0, j) = w(0) · · ·w( j− 1) and w[ j,∞) =
w( j)w( j+1)w( j+2) · · · , i.e., w[0, j) is the prefix of length j of w and w[ j,∞) the remaining suffix. In
particular, w[0,0) is empty and w[0,∞) is w.

Our work is based on three logics, Robust Linear Temporal Logic (rLTL( , )) [23], Linear Dy-
namic Logic (LDL) [24], and Prompt Linear Temporal Logic (Prompt-LTL) [16], which we briefly re-
view in the following three subsections. More formal definitions can be found in in the original publica-
tions introducing these logics and in the full version of this work [19].

We define the semantics of all these logics by evaluation functions V mapping a trace, a formula, and
a bound (in the case of a quantitative logic) to a truth value. This is prudent for robust semantics, hence
we also use this approach for the other logics, which are typically defined via satisfaction relations.
In particular, V R, V D, and V P denote the evaluation functions of rLTL( , ), LDL, and Prompt-LTL,
respectively. Nevertheless, our definitions here are equivalent to the original definitions.

2.1 Robust Linear Temporal Logic

The main impetus behind the introduction of robust LTL was the need to capture the concept of robust-
ness in temporal logics. As a first motivating example consider the LTL formula p, stating that p holds
at every position. Consequently, the formula is violated if there is a single position where p does not hold.
However, this is a very “mild” violation of the property and there are much more “severe” violations. As
exhibited by Tabuada and Neider, there are four canonical degrees of violation of p: (i) p is violated at
finitely many positions, (ii) p is violated at infinitely many positions, (iii) p is violated at all but finitely
many positions, and (iv) p is violated at all positions. These first three degrees are captured by the LTL
formulas p, p, and p, which are all weakenings of p. All five possibilities, satisfaction and
four degrees of violation, are captured in robust LTL by the truth values

1111� 0111� 0011� 0001� 0000

introduced above. By design, the formula p of robust LTL1 has

• truth value 1111 on all traces where p holds at all positions,

• truth value 0111 on all traces where p holds at all but finitely many positions,

• truth value 0011 on all traces where p holds at infinitely many positions and does not hold at
infinitely many positions,

• truth value 0001 on all traces where p only holds at finitely many positions, and

• truth value 0000 on all traces where p holds at no position.

As a further example, consider the formula p→ q. For this formula, the robust semantics cap-
tures the intuition described in the introduction: the implication is satisfied (i.e., has truth value 1111), if

1Following the precedent for robust LTL, we use dots to distinguish operators of robust logics from those of classical logics
troughout the paper.
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the degree of violation of the property “always q” is at most the degree of violation of the property “al-
ways p”. Thus, if p is violated finitely often, then q may also be violated finitely often (but not infinitely
often) while still satisfying the implication.

Conjunction and disjunction are defined as usual using minimization and maximization relying on
the order indicated above while negation is based on the intuition that 1111 represents satisfaction and all
other truth values represent degrees of violation. Hence, a negation ¬ϕ is satisfied (i.e., has truth value
1111), if ϕ has truth value less than 1111, and it is violated (i.e., has truth value 0000) if ϕ has truth
value 1111. Finally, the semantics of the eventually operator is defined as usual, i.e., the truth value of

ϕ on w is the maximal truth value that is assumed by ϕ on some suffix of w.
This intuition is formalized in the evaluation function V R, which maps a trace w ∈ (2P)ω and an

rLTL( , ) formula ϕ to a truth value V R(w,ϕ) in B4 [23]. Note that, for the sake of simplicity, we
restrict ourselves to rLTL( , ), i.e., robust LTL with the always and eventually operators, but without
next, until, and release. We comment on the effect of this restriction when defining the combinations of
logics.

2.2 Linear Dynamic Logic

The logic LDL has only two temporal operators, 〈r〉 and [r ] , which can be understood as guarded
variants of the classical eventually and always operators from LTL, respectively. Both are guarded by
regular expressions r over the atomic propositions that may contain tests, which are again LDL formulas.
These two operators together with Boolean connectives capture the full expressive power of the ω-regular
expressions, i.e., LDL exceeds the expressiveness of LTL.

Formally, a formula 〈r〉ϕ is satisfied by a trace w, if there is some j such that the prefix w[0, j)
matches the regular expression r and the corresponding suffix w[ j,∞) satisfies ϕ . Dually, a formula [r ]ϕ
is satisfied by a trace w if for every j with w[0, j) matching r, w[ j,∞) satisfies ϕ . Thus, while the
classical eventually and always operator range over all positions, the operators of LDL range only over
those positions whose induced prefix matches the guard of the operator.

The semantics of LDL is captured by the evaluation function V D mapping a trace w ∈ (2P)ω and an
LDL formula ϕ to a truth value V D(w,ϕ) in B [7, 24].

2.3 Prompt Linear Temporal Logic

To express timing constraints, the logic Prompt-LTL adds the prompt-eventually operator p to LTL.
For technical reasons [1], this requires to disallow negation and implication. Intuitively, the new operator
requires its argument to be satisfied within a bounded number of steps.

Thus, the semantics is given by an evaluation function V P that maps a trace w∈ (2P)ω , a Prompt-LTL
formula ϕ , and a bound k ∈N to a truth value V R(w,k,ϕ) in B [16]. This function is defined as usual for
all Boolean and standard temporal operators (ignoring the bound k), while a formula p ϕ is satisfied
with respect to the bound k if ϕ holds within the next k steps, i.e., the prompt-eventually behaves like the
classical eventually with a bounded scope.

3 Robust and Prompt Linear Temporal Logic

We begin our treatment of combinations of the three basic logics by introducing robust semantics for
Prompt-LTL, obtaining the logic rPrompt-LTL. To this end, we add the prompt-eventually operator to
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rLTL( , ) while disallowing implications and restricting negation to retain decidability (cf. [1]). The
formulas of rPrompt-LTL are given by

ϕ ::= p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ | ϕ | ϕ | p ϕ,

where p ranges over the set P of atomic propositions. The size |ϕ| of a formula ϕ is the number of its
distinct subformulas.

The semantics of rPrompt-LTL is given by an evaluation function V RP mapping a trace w, a bound k
for the prompt-eventuallies, and a formula ϕ to a truth value in B4. To simplify our notation, we write
V RP

i (w,k,ϕ) for i ∈ {1,2,3,4} to denote the i-th bit of V RP(w,k,ϕ), i.e.,

V RP(w,k,ϕ) =V RP
1 (w,k,ϕ)V RP

2 (w,k,ϕ)V RP
3 (w,k,ϕ)V RP

4 (w,k,ϕ).

The semantics of Boolean connectives as well as of the eventually and always operators is defined as for
robust LTL. The motivation behind these definitions is carefully and convincingly discussed by Tabuada
and Neider [23]. The semantics of the prompt-eventually operator bounds its scope to the next k positions
as in classical Prompt-LTL [16].

• V RD(w,k, p) =

{
1111 if p ∈ w(0),
0000 if p /∈ w(0),

• V RD(w,k,¬p) =

{
1111 if p /∈ w(0),
0000 if p ∈ w(0),

• V RD(w,k,ϕ0∧ϕ1) = min{V RD(w,k,ϕ0),V RD(w,k,ϕ1)},
• V RD(w,k,ϕ0∨ϕ1) = max{V RD(w,k,ϕ0),V RD(w,k,ϕ1)},
• V RP(w,k, ϕ) = b1b2b3b4 where bi = max j∈NV RP

i (w[ j,∞),k,ϕ),2 and

• V RP(w,k, ϕ) = b1b2b3b4 where
– b1 = min j∈NV RP

1 (w[ j,∞),k,ϕ), i.e., b1 = 1 iff ϕ holds always,
– b2 = max j′∈N min j′≤ j V RP

2 (w[ j,∞),k,ϕ), i.e., b2 = 1 iff ϕ holds almost always,
– b3 = min j′∈N max j′≤ j V RP

3 (w[ j,∞),k,ϕ), i.e., b3 = 1 iff ϕ holds infinitely often, and
– b4 = max j∈NV RP

4 (w[ j,∞),k,ϕ) i.e., b4 = 1 iff ϕ holds at least once.

• V RP(w,k, p ϕ) = b1b2b3b4 where bi = max0≤ j≤k V RP
i (w[ j,∞),k,ϕ).

It is easy to verify that V RP(w,k,ϕ) is well-defined, i.e., V RP(w,k,ϕ) ∈ B4 for all w, k, and ϕ .

Example 1. Consider the formula ϕ = p s, where we interpret occurrences of the atomic proposi-
tion s as synchronizations. Then, the different degrees of satisfaction of the formula express the following
possibilities, when evaluating it with respect to k ∈ N: (i) the distance between synchronizations is
bounded by k, (ii) from some point onwards, the distance between synchronizations is bounded by k, (iii)
there are infinitely many synchronizations, and (iv) there is at least one synchronization. Note that the
last two possibilities are independent of k, which is explained by simple logical equivalences, e.g., the
third possibility reads actually as follows: there are infinitely many positions such that a synchronization
occurs within distance k. However, it is easy to see that is equivalent to the property stated above.

In the next two sections, we solve the model checking problem and the synthesis problem for
rPrompt-LTL. To this end, we translate every rPrompt-LTL formula into a sequence of five Prompt-LTL
formulas that capture the five degrees of satisfaction and violation by making the semantics of the robust
always operator explicit. This is a straightforward generalization of the, in the terms of the introduction,
reduction-based approach to robust LTL [23].

2This definition is equivalent to V RP(w,k, ϕ) = max j∈NV RP(w[ j,∞),k,ϕ) due to monotonicity of the truth values, which
is closer to the classical semantics of the eventually operator. A similar equivalence holds for p ϕ .
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Lemma 1. For every rPrompt-LTL formula ϕ and every β ∈ B4, there is a Prompt-LTL formula ϕβ of
size O(|ϕ|) such that V RP(w,k,ϕ)� β if and only if V P(w,k,ϕβ ) = 1.

Note that the logic rLTL( , ) is not a fragment of rPrompt-LTL as we have to disallow negation and
implication to retain decidability [1]. Conversely, Prompt-LTL is also not a fragment of rPrompt-LTL
as we omitted the next, until, and release operator. However, we present a reduction-based approach
from rPrompt-LTL to Prompt-LTL. Thus, one could easily add the additional temporal operators to
rPrompt-LTL while maintaining the result of Lemma 1. We prefer not to do so for the sake of accessibility
and brevity.

3.1 Model Checking

Let us now consider the rPrompt-LTL model checking problem, which asks whether all executions of
a given finite transition system satisfy a given specification expressed as an rPrompt-LTL formula with
truth value at least β ∈ B4. More formally, we assume the system under consideration to be modeled
as a (labeled and initialized) transition system S = (S,sI,E,λ ) over P consisting of a finite set S of
states containing the initial state sI , a directed edge relation E ⊆ S× S, and a state labeling λ : S→ 2P

that maps each state to the set of atomic propositions that hold true in this state. A path through S
is a sequence ρ = s0s1s2 · · · satisfying s0 = sI and (s j,s j+1) ∈ E for every j ∈ N, and ΠS denotes the
set of all paths through S . Finally, the trace of a path ρ = s0s1s2 · · · ∈ ΠS is the sequence λ (ρ) =
λ (s0)λ (s1)λ (s2) · · · of labels induced by ρ .

Problem 1. Let ϕ be an rPrompt-LTL formula, S a transition system, and β ∈B4. Is there a k ∈N such
that V RP(λ (ρ),k,ϕ)� β holds true for all paths ρ ∈ΠS ?

Our solution relies on Lemma 1 and on Prompt-LTL model checking being in PSPACE [16].

Theorem 1. rPrompt-LTL model checking is in PSPACE.

We do not claim PSPACE-hardness because model checking the fragment of LTL with disjunc-
tion, conjunction, always, and eventually operators only (and classical semantics) is NP-complete [3].
Since this fragment can be embedded into rPrompt-LTL (via a translation of this LTL fragment into
rPrompt-LTL using techniques similar to those presented by Tabuada and Neider [23] for translating
LTL into rLTL( , )), we obtain at least NP-hardness for Problem 1. As we have no next, until, and
release operators (by our own volition), we cannot easily claim PSPACE-hardness. In contrast, the so-
lution of the Prompt-LTL model checking problem consists of a reduction to LTL model checking that
introduces until operators (see [16]). Hence, we leave the fragment mentioned above, for which NP
membership is known. However, adding next, until, and release to rPrompt-LTL yields a PSPACE-hard
model checking problem.

3.2 Synthesis

Next, we consider the problem of synthesizing reactive controllers from rPrompt-LTL specifications. In
this context, we rely on the classical reduction from reactive synthesis to infinite-duration two-player
games over finite graphs. In particular, we show how to construct a finite-state winning strategy for
games with rPrompt-LTL winning conditions, which immediately correspond to implementations of
reactive controllers. Throughout this section, we assume familiarity with games over finite graphs (see,
e.g., [14, Chapter 2]).

We consider rPrompt-LTL games over P, which are triples G =(G,ϕ,β ) consisting of a labeled game
graph G, an rPrompt-LTL formula ϕ , and a truth value β ∈ B4. A labeled game graph G = (V0,V1,E,λ )
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consists of a directed graph (V0 ∪V1,E), two finite, disjoint sets of vertices V0 and V1, and a function
λ : V0 ∪V1 → 2P mapping each vertex v to the set λ (v) of atomic propositions that hold true in v. We
denote the set of all vertices by V =V0∪V1 and assume that game graphs do not have terminal vertices,
i.e., {v}×V ∩E 6= /0 for each v ∈V .

As in the classical setting, rPrompt-LTL games are played by two players, Player 0 and Player 1, who
move a token along the edges of the game graph ad infinitum (if the token is currently placed on a vertex
v∈Vi, i∈{0,1}, then Player i decides the next move). The resulting infinite sequence ρ = v0v1v2 · · · ∈V ω

of vertices is called a play and induces a trace λ (ρ) = λ (v0)λ (v1)λ (v2) · · · ∈ (2P)ω .
A strategy of Player 0 is a mapping f : V ∗V0→V that prescribes where to move the token depending

on the finite play prefix constructed so far. A play v0v1v2 · · · is played according to f if v j+1 = f (v0 · · ·v j)
for every j with v j ∈V0. A strategy f of Player 0 is winning from a vertex v ∈V if there is a k ∈ N such
that all plays ρ that start in v and that are played according to f satisfy V RP(λ (ρ),k,ϕ) � β , i.e., the
evaluation of ϕ with respect to k on λ (ρ) determines the winner of the play ρ . Further, a (winning)
strategy is a finite-state strategy if there exists a finite-state machine computing it in the usual sense
(see [14, Chapter 2] for details).

We are interested in solving rPrompt-LTL games, i.e., in solving the following problem.

Problem 2. Let G be an rPrompt-LTL game and v a vertex. Determine whether Player 0 has a winning
strategy for G from v and compute a finite-state winning strategy if so.

Again, our solution to this problem relies on Lemma 1 and the fact that solving Prompt-LTL games
is in 2EXPTIME [16, 27].

Theorem 2. Solving rPrompt-LTL games is 2EXPTIME-complete.

Here we have a matching lower bound, as solving games with LTL conditions without next, until,
and release is already 2EXPTIME-hard [2].

4 Robust Linear Dynamic Logic

Next, we “robustify” LDL by generalizing the ideas underlying robust LTL to LDL, obtaining the logic
rLDL. Again, following the precedent of robust LTL, we equip robust operators with dots to distinguish
them from non-robust ones. The formulas of rLDL are given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | 〈·r·〉ϕ | [·r·]ϕ r ::= φ | ϕ? | r+ r | r ;r | r∗,

where p ranges over the atomic propositions in P and φ over propositional formulas over P. We refer
to formulas of the form 〈·r·〉ϕ and [·r·]ϕ as diamond formulas and box formulas, respectively. In both
cases, r is the guard of the operator. An atom ϕ? of a regular expression is a test. We use the abbrevi-
ations tt = p∨¬p and ff = p∧¬p for some p ∈ P and note that both are formulas and guards. We
denote the set of subformulas of ϕ by cl(ϕ). Guards are not subformulas, but the formulas appearing in
the tests are, e.g., we have cl(〈· p? ;q·〉 p′) = { p, p′,〈· p? ;q·〉 p′}. The size |ϕ| of ϕ is the sum of |cl(ϕ)|
and the sum of the lengths of the guards appearing in ϕ (counted with multiplicity and measured in the
number of operators).

Before we introduce the semantics of rLDL we first recall the semantics of the robust always op-
erator ϕ in robust LTL. To this end, call a position j of a trace ϕ-satisfying if the suffix starting at
position j satisfies ϕ . Now, the robust semantics are based on the following five cases, where the lat-
ter four distinguish various degrees of violating the formula ϕ: either all positions are ϕ-satisfying
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( ), almost all positions are ϕ-satisfying ( ), infinitely many positions are ϕ-satisfying ( ), some
position is ϕ-satisfying ( ), or no position is ϕ-satisfying.

A similar approach for a formula [·r·]ϕ would be to consider the following possibilities, where a
position j of a trace w is an r-match if the prefix of w up to and including position j−1 is in the language
of r: all r-matches are ϕ-satisfying, almost all r-matches are ϕ-satisfying, infinitely many r-matches are
ϕ-satisfying, some r-match is ϕ-satisfying, or no r-match is ϕ-satisfying. On a trace w with infinitely
many r-matches, this is the natural generalization of the robust semantics. A trace, however, may only
contain finitely many r-matches, or none at all. In the former case, there are not infinitely many ϕ-
satisfying r-matches, but all r-matches could satisfy ϕ . Thus, the monotonicity of the cases is violated.
We overcome this by interpreting “almost all” as “all” and “infinitely many” as “some” if there are only
finitely many r-matches.3

Also, the guard r may contain tests, which have to be evaluated to determine whether a position is an
r-match. For this, we have to use the appropriate semantics for the robust box operator. For example, if
we interpret [·r·]ϕ to mean “almost all r-matches satisfy ϕ”, then the robust box operators in tests of r
are evaluated with this interpretation as well. This may, however, violate monotonicity (see Example 3),
which we therefore hardcode in the semantics.

We now formalize the informal description above and subsequently show that this formalization
satisfies all desired properties. To this end, we again define an evaluation function V RD mapping a
trace w and a formula ϕ to a truth value. Also, we again denote the projection of V RD(w,ϕ) to its i-th
bit by V RD

i (w,ϕ). For atomic propositions and Boolean connectives, the definition is the same as for
rPrompt-LTL introduced above (ignoring the bound k) and for negation and implication, the definition is
the same as for robust LTL (cf. [23]):

• V RD(w,¬ϕ) =

{
0000 if V RD(w,ϕ) = 1111,
1111 if V RD(w,ϕ) 6= 1111,

and

• V RD(w,ϕ0→ ϕ1) =

{
1111 if V RD(w,ϕ0)�V RD(w,ϕ1),
V RD(w,ϕ1) if V RD(w,ϕ0)�V RD(w,ϕ1).

To define the semantics of the diamond and the box operator, we need to first define the semantics of the
guards: The match set RRD

i (w,r) ⊆ N for i ∈ {1,2,3,4} contains all positions j of w such that w[0, j)
matches r and is defined inductively as follows:

• RRD
i (w,φ) = {1} if w(0) |= φ and RRD

i (φ ,w) = /0 otherwise, for propositional φ .

• RRD
i (w,ϕ?) = {0} if V RD

i (w,ϕ) = 1 and RRD
i (w,ϕ?) = /0 otherwise.

• RRD
i (w,r0 + r1) = RRD

i (w,r0)∪RRD
i (w,r1).

• RRD
i (w,r0 ;r1) = { j0 + j1 | j0, j1 ≥ 0 and j0 ∈RRD

i (w,r0) and j1 ∈RRD
i (w[ j0,∞),r1)}, i.e., for j

to be in RRD
i (w,r0 ;r1), it has to be the sum of natural numbers j0 and j1 such that w has a prefix

of length j0 that matches r0 and w[ j0,∞) has a prefix of length j1 that matches r1.

• RRD
i (w,r∗) = {0}∪{ j1 + · · ·+ j` | 0≤ j`′ ∈RRD

i (w[ j1 + · · ·+ j`′−1,∞),r) for all `′ ∈ {1, . . . , `}},
where we use j1 + · · ·+ j0 = 0. Thus, for j to be in RRD

i (w,r∗), it has to be expressible as j =
j1 + · · ·+ j` with non-negative j`′ such that the prefix of w of length j1 matches r, the prefix of

3There is an alternative definition inspired by the semantics of LTL on finite traces: Here, both ϕ and ϕ are
equivalent to “ϕ holds at the last position”. This suggests interpreting “almost all r-matches are ϕ-satisfying” and “infinitely
many r-matches are ϕ-satisfying” as “the last r-match is ϕ-satisfying” in case there are only finitely many r-matches. Arguably,
this definition is less intuitive than the one we propose to pursue.
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length j2 of w[ j1,∞) matches r, and in general, the prefix of length j`′ of w[ j1 + · · ·+ j`′−1,∞)
matches r, for every `′ ∈ {1, . . . , `}.

Due to tests, membership of j in RRD
i (w,r) does, in general, not only depend on the prefix w[0, j), but on

the complete trace w. Also, the semantics of the propositional atom φ differs from the semantics of the
test φ?: the former consumes an input letter, while the latter one does not. Thus, rLDL (as LDL) features
both kinds of atoms. We define the intuition given above via

• V RD(w,〈·r·〉ϕ) = b1b2b3b4 where bi = max j∈RRD
i (w,r)V RD

i (w[ j,∞),ϕ) and

• V RD(w, [·r·]ϕ) = b1b2b3b4 with bi = max{b′1, . . . ,b′i} for every i ∈ {1,2,3,4}, where

– b′1 = min j∈RRD
1 (w,r)V RD

1 (w[ j,∞),ϕ),

– b′2 =


max j′∈N min j∈RRD

2 (w,r)∩{ j′, j′+1, j′+2,...}V RD
2 (w[ j,∞),ϕ) if |RRD

2 (w,r)|= ∞,

min j∈RRD
2 (w,r)V RD

2 (w[ j,∞),ϕ) if 0 < |RRD
2 (w,r)|< ∞,

1 if |RRD
2 (w,r)|= 0,

– b′3 =


min j′∈N max j∈RRD

3 (w,r)∩{ j′, j′+1, j′+2,...}V RD
3 (w[ j,∞),ϕ) if |RRD

3 (w,r)|= ∞,

max j∈RRD
3 (w,r)V RD

3 (w[ j,∞),ϕ) if 0 < |RRD
3 (w,r)|< ∞,

1 if |RRD
3 (w,r)|= 0,

– b′4 =

{
max j∈RRD

4 (w,r)V RD
4 (w[ j,∞),ϕ) if |RRD

4 (w,r)|> 0,
1 if |RRD

4 (w,r)|= 0.

To give an intuitive description of the semantics, let us first generalize the notion of r-matches and
ϕ-satisfiability. We say that a position j of w is an r-match of degree β if j ∈RRD

i (w,r) for the unique
i with β = 0i−115−i, which requires all tests in r to be evaluated w.r.t. V RD

i (i.e., to some truth value at
least β ). Similarly, we say that a position j of w is ϕ-satisfying of degree β if V RD(w[ j,∞),ϕ) � β , or
if, equivalently, V RD

i (w[ j,∞),ϕ) = 1 for the unique i with β = 0i−115−i.
Now, consider the b′i defining the semantics of the robust box operator: We have b′1 = 1 if all r-

matches of degree 1111 are ϕ-satisfying of degree 1111. This is in particular satisfied if there is no such
match. Further, if there are infinitely (finitely) many r-matches of degree 0111, then b′2 = 1 if almost all
(if all) those matches are ϕ-satisfying of degree 0111. Dually, if there are infinitely (finitely) many r-
matches of degree 0011, then b′3 = 1 if infinitely many (at least one) of those matches are (is) ϕ-satisfying
of degree 0011. Finally, if there is at least one r-match of degree 0001, then b′4 = 1 if at least one of
those matches is ϕ-satisfying of degree 0001. The cases where there is no r-match are irrelevant due to
monotonicity, so we hardcode them to 1.

Example 2. Consider the formula [·r·]q→ [·tt ;r·] p with r = (tt;tt)∗, which expresses that the degree
of violation of q at even positions should at most be the degree of violation of p at odd positions. Such a
property cannot be expressed in rLTL( , ), as even [·r·]q is known to be inexpressible in LTL [4].

First, we state that the semantics is well-defined. This is not obvious due to the case distinctions and
the use of the matching sets RRD

i for different i.

Lemma 2. We have V RD(w,ϕ) ∈ B4 for every trace w and every formula ϕ .

To conclude the definition of the semantics, we give an example witnessing that the maximization
over the b′i in the semantics of the box operator is indeed necessary to obtain monotonicity.

Example 3. Let ϕ = [·r·]ff with r = ([·tt∗·] p)?. Moreover, consider the trace w = /0{p}ω . Then,
we have V RD(w, [·tt∗·] p) = 0111 and consequently RRD

1 (w,r) = /0 and RRD
2 (w,r) = {0}. Therefore,
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min j∈RRD
1 (w,r)V RD

1 (w[ j,∞),ff) = min /0 = 1, but min j∈RRD
2 (w,r)V RD

2 (w[ j,∞),ff) = min{0}= 0. Thus, the
bits b′1 and b′2 inducing V RD(w, [·r·]ff) are not monotonic, which explains the need to maximize over
the b′i to obtain the semantics of the robust box operator. The traces ( /0{p})ω and {p} /0ω witness that
monotonicity can also be violated for the pairs b′2,b

′
3 and b′3,b

′
4.

We prove that rLDL has the exponential compilation property. This allows us to solve the model
checking and the synthesis problem using well-known and efficient automata-based algorithms. Fur-
thermore, we are able to show that the complexity of these algorithms is asymptotically the same as the
complexity of the algorithms for plain LDL and LTL. In the terminology introduced in the introduction,
we present a direct translation, i.e., we translate rLDL directly into automata.

Theorem 3. Let ϕ be an rLDL formula, n = |ϕ|, and β ∈ B4. There is a non-deterministic Büchi
automaton Bϕ,β with 2O(n logn) states recognizing the language {w ∈ (2P)ω |V RD(w,ϕ)� β}.

In order to obtain the desired Büchi automata, we follow the approach by Faymonville and Zim-
mermann [12], who presented a bottom-up translation of parametric LDL, an extension of LDL with
prompt temporal operators, into alternating parity automata of linear size. These are then translated into
Büchi automata of exponential size. Here, we do not have to deal with prompt operators, but instead
with the consequences of the five-valued semantics. Formally, we show that for every rLDL formula ϕ

and every β ∈ B4, there is an alternating parity automaton Aϕ,β with O(|ϕ|) states recognizing the lan-
guage {w ∈ (2P)ω |V RD(w,ϕ)� β}.

As alternating parity automata are closed under union, intersection, and complementation, we di-
rectly obtain constructions for robust disjunction and conjunction, as these are defined with respect to
the order of the truth values. Furthermore, even the robust semantics of implication and negation can be
expressed using union, intersection, and complementation of automata. Thus, the only interesting cases
are formulas of the form 〈r〉ϕ and [r ]ϕ . Faymonville and Zimmermann showed that one can translate r
(which may contain tests) into an equivalent non-deterministic finite automaton with tests, i.e., states
may be marked with formulas and the semantics of the automaton takes these into account.

Fix some β ∈ B4. One can take an automaton Ar for r, an alternating automaton Aϕ,β for ϕ , and
an alternating automaton Aθ ,β for each test θ occurring in r, and combine them into an alternating
automaton for 〈r〉ϕ with respect to β that works as follows. It simulates Ar and spawns a copy of Aθ ,β

each time a state marked by the test θ is traversed. Furthermore, the acceptance condition is chosen such
that the simulation has to be stopped at some accepting state of Ar, which implies that the prefix read so
far is an r-match of degree β . Additionally, when stopping the simulation of Ar, we additionally spawn a
copy of Aϕ,β to check that this r-match is ϕ-satisfying of degree β . Altogether, the resulting automaton
checks that there is an r-match of degree β that is ϕ-satisfying of degree β , i.e., it is indeed equivalent
to 〈r〉ϕ with respect to β .

The construction for a formula of the form [r ]ϕ relies on dual arguments, but is more involved due
to the case distinctions in the definition of the robust semantics of the box operator. Using standard
arguments about infinite languages of finite words, one can show that each of the conditions on RRD

i
used in the case distinctions can be checked by an automaton obtained from Ar. Furthermore, one can
construct alternating automata checking that all (almost all, infinitely many, some) r-matches of some
degree β are ϕ-satisfying of degree β by dualizing the construction for diamond formulas sketched
above. Here, one heavily relies on alternation and the parity acceptance condition allowing to express
finiteness and infiniteness properties. Finally, the case distinctions themselves can be implemented using
the closure properties of alternating automata. We present the full construction in the full version [19].

Furthermore, as it is done for the similar construction for PLDL [12], one can show that the automata
can indeed be constructed efficiently: the non-deterministic Büchi automaton Bϕ,β can be constructed
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on-the-fly in polynomial space, which is crucial to obtain a model checking algorithm with polynomial
space requirements.

4.1 Expressiveness

In this section, we compare the expressiveness of rLDL to that of rLTL( , ) and LDL. Following
Tabuada and Neider [23] we focus on the fragment rLTL( , ) without next, until and release operators.
While the next and until operator could be added easily, the robust semantics of the release operator is
incompatible with our definition of the robust box operator. It turns out as expected, that rLDL subsumes
rLTL( , ). Conversely, every rLDL formula ϕ can be translated into four LDL formulas ϕ1, . . . ,ϕ4
that encode ϕ in the following sense: We have V RD

i (w,ϕ) =V D(w,ϕi) for every w.

Theorem 4. Both rLTL( , ) and LDL can be embedded into rLDL.

As LTL is a syntactic fragment of LDL, we immediately obtain that LTL can be embedded into rLDL
and, thus, rLDL inherits the lower bounds of LTL.

Our next theorem states that LDL and rLDL are of equal expressiveness. The direction from LDL to
rLDL was shown in Theorem 4, hence we focus on the other one. Following Tabuada and Neider [23],
we construct for every rLDL formula ϕ four LDL formulas ϕ1, . . . ,ϕ4 encoding ϕ as explained above.
The construction relies on Theorem 3, unlike the analogous result translating robust LTL directly into
LTL [23].

Theorem 5. LDL and rLDL are equally expressive and the translations are effective.

In general, translating an rLDL formula into an equivalent LDL formula incurs a triply-exponential
blow-up when using the translation described in the proof. On a more positive note, the resulting LDL
formula is test-free, i.e., it does not contain tests in its guards. We leave the question of whether
there are non-trivial lower bounds on the translation for future work. For the special case of translat-
ing rLTL( , ) into LTL mentioned above, there is only a linear blowup. This translation was presented
by Tabuada and Neider [23], but they only claimed an exponential upper bound. However, closer inspec-
tion shows that it is linear if the size of formulas is measured in the number of distinct subformulas, not
the length of the formula.

4.2 Model Checking and Synthesis

Theorem 5 immediately provides solutions for typical applications of rLDL, such as model checking
and synthesis, by reducing the problem from the domain of rLDL to that of LDL. However, the price
to pay for this approach is a triply-exponential blow-up in the size of the resulting LDL formula, which
is clearly prohibitive for any real-world application. For this reason, we now develop more efficient
model checking and synthesis techniques that are based on our direct translation of rLDL into automata
(Theorem 3).

We begin with the rLDL model checking checking problem, which is defined as follows.

Problem 3. Let ϕ be an rLDL formula, S a transition system, and let β ∈ B4. Does V RD(λ (ρ),ϕ)� β

hold true for all paths ρ ∈ΠS ?

The exponential compilation property (see Theorem 3) and standard on-the-fly techniques for check-
ing emptiness of exponentially-sized Büchi automata [25] yield a PSPACE upper bound on the complex-
ity of Problem 3. The matching lower bound follows from the subsumption of LDL shown above, as
model checking LDL is PSPACE-complete.
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Theorem 6. rLDL model checking is PSPACE-complete.

Similar to model checking, the translation from rLDL formulas to automata provides us with an
effective means to synthesize reactive controllers from rLDL specifications, i.e., for the following prob-
lem, where an rLDL game now has the form (G,ϕ,β ) and Player 0 wins a play if and only if its trace w
satisfies V RD(w,ϕ)≥ β .

Problem 4. Let G be an rLDL game and v a vertex. Determine whether Player 0 has a winning strategy
for G from v and compute a finite-state winning strategy if so.

Theorem 3 provides a straightforward way to solve Problem 4 by reducing it to solving classical
parity games (again, see [14, Chapter 2] for an introduction to parity games) while the lower bound
follows from the subsumption of LDL.

Theorem 7. Solving rLDL games is 2EXPTIME-complete.

5 Towards Robust and Prompt Linear Dynamic Logic

In the previous sections, we studied robust LDL, i.e., we combined robustness and increased expres-
siveness, and robust Prompt-LTL, i.e., we combined robustness and quantitative operators. The third
combination of two aspects, i.e., quantitative operators and increased expressiveness, has been studied
before [12]. For all three resulting logics, model checking and synthesis have the same complexity as for
plain LTL.

Here, we consider the combination of all three extensions, obtaining the logic rPrompt-LDL, robust
Prompt-LDL. The syntax is obtained by adding the prompt diamond operator 〈·r·〉p ϕ to LDL, by re-
stricting negations to atomic formulas, and by disallowing implications. Here, r is a guard as in rLDL,
which may contain tests, i.e., formulas of rPrompt-LDL. Similarly, the semantics is defined as expected,
i.e., it is obtained by extending the semantics of rLDL with a bound k for the prompt diamond opera-
tor 〈·r·〉p ϕ . Now, its semantics requires the existence of a ϕ-satisfying r-match within the next k steps.
Formal definitions are as expected and presented in the full version [19].

Example 4. Consider the formula [·((¬t)∗ ; t ;(¬t)∗ ; t)∗·]〈·tt∗·〉p s and interpret t as the tick of a clock
and s as a synchronization. Then, the formula intuitively expresses that every other tick of the clock is
followed after a bounded number of steps (not ticks!) by a synchronization.

More formally, the different degrees of satisfaction of ϕ express the following possibilities, with
respect to a given bound k: (i) every even clock tick is followed by a synchronization within k steps; (ii)
almost every even clock tick is followed by a synchronization within k steps; (iii) infinitely many even
clock ticks are followed by a synchronization within k steps; (iv) there is at least one even clock tick that
is followed by a synchronization within k steps.

This property can neither be expressed in (robust) LDL nor in (robust) Prompt-LTL. Also note that
unlike for the similar formula from Example 1, the last two possibilities are not trivial, as we now only
consider positions with an even clock tick and not all positions.

In the previous sections, we have seen two approaches to translating robust logics into Büchi au-
tomata, the direct and the reduction-based one. Both are extensions of translations originally introduced
by Tabuada and Neider for robust LTL. The former one translates a formula of a robust logic directly
into an equivalent Büchi automaton while the latter one first translates a formula of a robust logic into an
equivalent classical (non-robust) logic, for which a translation into equivalent Büchi automata is already
known. For robust LTL, both approaches are applicable [23] and yield Büchi automata of exponential
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size. Here, out of necessity, we apply both approaches: for robust LDL, we present a direct transla-
tion while we present a reduction-based approach for robust Prompt-LTL. Let us quickly elaborate the
reasons for this.

First, consider the reduction-based approach for robust LTL, which translates a formula ϕ of robust
LTL and a truth value β � 0000 into an LTL formula ϕβ that captures ϕ with respect to β . To this end,
the formula ϕβ implements the intuitive meaning of the robust semantics for the always operator, e.g.,
we have ( p)1111 = p, ( p)0111 = p, ( p)0011 = p, and ( p)0001 = p.

Trying to apply this approach to the rLDL formula ϕ = [·r·] p, say for β = 0111, would imply using
a formula of the form 〈·r0·〉 [·r1·] p where r0 and r1 are obtained by “splitting” up r. It captures the robust
semantics of ϕ with respect to β on some trace w by expressing that there is an r0-match j such that
every r1-match in w[ j,∞) is p-satisfying with degree β . Thus, r0 and r1 have to be picked such that the
r1-matches in w[ j,∞) as above correspond exactly to the r-matches in w. Further, to obtain a translation
of optimal complexity, r0 and r1 have to be of polynomial size in |r|. It is an open problem whether such
a splitting is always possible, in particular in the presence of tests in r and guards with only finitely many
r-matches.

Secondly, recall that the direct approach to robust LTL translates a formula ϕ of rLTL( , ) into
a Büchi automaton that captures ϕ with respect to all β ∈ B4 (by considering five initial states, one for
each β ). Trying to apply this approach to robust Prompt-LTL requires using a more general automaton
model that is able to capture the quantitative nature of the prompt diamond operator while still yielding
a model checking and a synthesis algorithm with the desired complexity. To the best of our knowledge,
no such translation from Prompt-LTL to automata has been presented in the literature, which would be a
special case of our construction here.

Thus, according to the state-of-the-art, the direct approach is the only viable one for robust extensions
of LDL while the reduction-based approach is the only viable one for robust extensions of Prompt-LTL.
This leaves us with no viable approach for rPrompt-LDL.

Nevertheless, in the full version [19], we present a fragment of rPrompt-LDL and a reduction-based
translation to Prompt-LDL for it. The fragment is obtained by disallowing tests in guards and requiring
them to always have infinitely many matches. For such formulas, one can translate the guard into a
deterministic finite automaton (without tests) and then use this automaton to “split” r. However, this
involves multiple exponential blowups and hence does not prove that the fragment has the exponential
compilation property. Nonetheless, this translation shows that both model checking and synthesis are
decidable for this fragment. The decidability of these problems for full rPrompt-LDL is left for further
research and seemingly requires new approaches.

6 Conclusion

We addressed the problems of verification and synthesis with robust, expressive, and quantitative lin-
ear temporal specifications. Inspired by robust LTL, we have first developed robust extensions of the
logics LDL and Prompt-LTL, named rLDL and rPrompt-LTL, respectively. Then, we combined rLDL
and rPrompt-LTL into a third logic, named rPrompt-LDL, which has the expressiveness of ω-regular
languages and allows robust reasoning about timing bounds.

For rLDL and rPrompt-LTL, we have shown how to solve the model checking and synthesis problem
relying on the exponential compilation property. Hence, all these problems are not harder than those for
plain LTL. The situation for the combination of all three basic logics, i.e., for rPrompt-LDL, is less en-
couraging. In the full version [19], we show the problems to be decidable for an important fragment, but
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due to a blowup of the formulas during the reduction, we (most likely) do not obtain optimal algorithms.
Decidability for the full logic remains open.

In future work, we aim to determine the exact complexity of the model checking and synthesis
problem for (full) rPrompt-LDL. One promising approach is to generalize the translation of rLDL into
alternating parity automata. However, this requires a suitable quantitative alternating automata model
with strong closure properties that can be transformed into equivalent non-deterministic and deterministic
automata.

Another promising direction for further research is to study the semantics for the robust box oper-
ator proposed in Footnote 3 on Page 9. In particular, it is open whether the translation into alternating
automata can be generalized to this setting without a blowup. Also, we leave open whether full robust
LTL, i.e., with until and release, can be embedded into rLDL. As is, the robust semantics of the release
operator (see [23]) is not compatible with our robust semantics for rLDL. In future work, we plan to
study generalizations of full robust LTL.

Another natural question is whether the techniques developed for rLDL can be applied to a robust
version of the Property Specification Language [10].
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