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Abstract
Quantitative extensions of parity games have recently attracted significant interest. These ex-
tensions include parity games with energy and payoff conditions as well as finitary parity games
and their generalization to parity games with costs. Finitary parity games enjoy a special status
among these extensions, as they offer a native combination of the qualitative and quantitative
aspects in infinite games: the quantitative aspect of finitary parity games is a quality measure
for the qualitative aspect, as it measures the limit superior of the time it takes to answer an odd
color by a larger even one. Finitary parity games have been extended to parity games with costs,
where each transition is labelled with a non-negative weight that reflects the costs incurred by
taking it. We lift this restriction and consider parity games with costs with arbitrary integer
weights. We show that solving such games is in NP∩co-NP, the signature complexity for games
of this type. We also show that the protagonist has finite-state winning strategies, and provide
tight exponential bounds for the memory he needs to win the game. Naturally, the antagonist
may need infinite memory to win. Finally, we present tight bounds on the quality of winning
strategies for the protagonist.
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1 Introduction

Finite games of infinite duration offer a wealth of challenges and applications that has
garnered to a lot of attention. The traditional class of games under consideration were
games with a simple parity [19, 12, 11, 21, 2, 31, 15, 16, 29, 18, 25, 27, 26, 3, 17, 13, 20] or
payoff [24, 32, 15, 1, 27] objective. These games form a hierarchy with very simple tractable
reductions from parity games through mean payoff games [24, 32, 15, 1, 27] and discounted
payoff games [32, 15, 27] to simple stochastic games [9].
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36:2 Parity Games with Weights

More recently, games with a mixture of the qualitative parity condition and further
quantitative objectives have been considered, including mean payoff parity games [8] and
energy parity games [4]. Finitary parity games [7] take a special role within the class of
games with mixed parity and payoff objectives. To win a finitary parity game, Player 0
needs to enforce a play with a bound b such that almost all occurrences of an odd color are
followed by a higher even color within at most b steps.

This is interesting, because it provides a natural link between the qualitative and quant-
itative objective. One aspect that attracted attention is that, as long as one is not interested
in optimizing the bound b, these games are the only games of the lot that are known to be
tractable [7]. However, the bound b itself is also interesting: It serves as a native quality
measure, because it limits the response time [30].

This property calls for a generalization to different cost models, and a first generalization
has been made with the introduction of parity games with costs [14]. In parity games with
costs, the basic cost function of finitary parity games – where each step incurs the same
cost – is replaced with different non-negative costs for different edges. In this paper, we
generalize this further to general integer costs: We decorate the edges with integer weights.
The quantitative aspect in these parity games with weights consists of having to answer
almost all odd colors by a higher even color, such that the absolute value of the weight of the
path to this even color is bounded by a bound b.

In addition to their conceptual charm, we show that parity games with weights are PTime
equivalent to energy parity games. This indicates that these games are part of a natural
complexity class, whereas the games with a plain objective appear to form a hierarchy. We
use the reduction from parity games with weights to energy parity games to solve them.
This reduction goes through intermediate reductions to and from bounded parity games
with weights. These games have the additional restriction that the limit superior of the
absolute weight of initial sequences of unanswered requests in a play is finite. These bounded
parity games with weights are then reduced to energy parity games. The other direction
of the reduction is through simple gadgets that preserve the main elements of winning
strategies in games that are extended in two steps by very simple gadgets. As a result,
we obtain the same complexity results for parity games with weights as for energy parity
games, i.e., NP ∩ co-NP, the signature complexity for finite games of infinite duration with
parity conditions and their extensions. Thereby, we obtain an argument that these games
might be representatives of a natural complexity class, lending a further argument for the
relevance of two player games with mixed qualitative and quantitative winning conditions.
Furthermore, Daviaud et al. recently showed that parity games with weights can even be
solved in pseudo-quasi-polynomial time [10].

Naturally, parity games with weights subsume parity games (as a special case where all
weights are zero), finitary parity games (as a special case where all weights are positive), and
parity games with costs (as a special case where all weights are non-negative).

Finally, we show that the protagonist has finite-state winning strategies, and provide
tight exponential bounds for the memory he needs to win the game. We also present tight
bounds on the quality of winning strategies for the protagonist. Naturally, the antagonist
may need infinite memory to win.

2 Preliminaries

We denote the non-negative integers by N, the integers by Z, and define N∞ = N ∪ {∞}. As
usual, we have ∞ > n, −∞ < n, n+∞ =∞, and −∞− n = −∞ for all n ∈ Z.
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An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E) and a parti-
tion {V0, V1} of V into the positions of Player 0 (drawn as ellipses) and Player 1 (drawn
as rectangles). The size of A, denoted by |A|, is defined as |V |. A play in A is an infinite
path ρ = v0v1v2 · · · through (V,E). To rule out finite plays, we require every vertex to
be non-terminal. We define |ρ| = ∞. Dually, for a finite play prefix π = v0 · · · vj we
define |π| = j + 1.

A game G = (A,Win) consists of an arena A with vertex set V and a set Win ⊆ V ω of
winning plays for Player 0. The set of winning plays for Player 1 is V ω \Win. A winning
condition Win is 0-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ ∈Win implies wρ ∈Win.
Dually, Win is 1-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ /∈Win implies wρ /∈Win.

A strategy for Player i ∈ {0, 1} is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈ E
holds true for all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) holds true
for every wv ∈ V ∗Vi. A play v0v1v2 · · · is consistent with a strategy σ for Player i, if
vj+1 = σ(v0 · · · vj) holds true for every j with vj ∈ Vi. A strategy σ for Player i is a
winning strategy for G from v ∈ V if every play that starts in v and is consistent with
σ is won by Player i. If Player i has a winning strategy from v, then we say Player i
wins G from v. The winning region of Player i is the set of vertices, from which Player i
wins G; it is denoted by Wi(G). Solving a game amounts to determining its winning regions.
If W0(G) ∪W1(G) = V , then we say that G is determined.

Let A = (V, V0, V1, E) be an arena and let X ⊆ V . The i-attractor of X is defined
inductively as Attri(X) = Attr|V |i (X), where Attr0

i (X) = X and

Attrji (X) = Attrj−1
i (X) ∪ {v ∈ Vi | ∃v′ ∈ Attrj−1

i (X). (v, v′) ∈ E}

∪ {v ∈ V1−i | ∀(v, v′) ∈ E. v′ ∈ Attrj−1
i (X)} .

Hence, Attri(X) is the set of vertices from which Player i can force the play to enter X:
Player i has a positional strategy σX such that each play that starts in some vertex in Attri(X)
and is consistent with σX eventually encounters some vertex from X. We call σX an attractor
strategy towards X. Moreover, the i-attractor can be computed in time linear in |E| [23].
When we want to stress the arena A the attractor is computed in, we write AttrAi (X).

A set X ⊆ V is a trap for Player i, if every vertex in X ∩ Vi has only successors in X
and every vertex in X ∩ V1−i has at least one successor in X. In this case, Player 1− i has
a positional strategy τX such that every play starting in some vertex in X and consistent
with τX never leaves X. We call such a strategy a trap strategy.

I Remark 1.
1. The complement of an i-attractor is a trap for Player i.
2. If X is a trap for Player i, then Attr1−i(X) is also a trap for Player i.
3. If Win is i-extendable and (A,Win) determined, then W1−i(A,Win) is a trap for Player i.

A memory structure M = (M, init,upd) for an arena (V, V0, V1, E) consists of a
finite set M of memory states, an initialization function init : V → M , and an update
function upd: M × E → M . The update function can be extended to finite play prefixes
in the usual way: upd+(v) = init(v) and upd+(wvv′) = upd(upd+(wv), (v, v′)) for w ∈ V ∗
and (v, v′) ∈ E. A next-move function Nxt: Vi × M → V for Player i has to satisfy
(v,Nxt(v,m)) ∈ E for all v ∈ Vi and m ∈ M . It induces a strategy σ for Player i with
memoryM via σ(v0 · · · vj) = Nxt(vj ,upd+(v0 · · · vj)). A strategy is called finite-state if it
can be implemented by a memory structure. We define |M| = |M |. Slightly abusively, we
say that the size of a finite-state strategy is the size of a memory structure implementing it.

CSL 2018
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Cor(ρ, j)

Cor(ρ, j)

w

vj vj′

Figure 1 The cost-of-response of some request posed by visiting vertex vj , which is answered by
visiting vertex vj′ .

3 Parity Games with Weights

Fix an arena A = (V, V0, V1, E). A weighting for A is a function w : E → Z. We
define w(ε) = w(v) = 0 for all v ∈ V and extend w to sequences of vertices of length at least
two by summing up the weights of the traversed edges. Given a play (prefix) π = v0v1v2 · · · ,
we define the amplitude of π as Ampl(π) = supj<|π| |w(v0 · · · vj)| ∈ N∞.

A coloring of V is a function Ω: V → N. The classical parity condition requires almost
all occurrences of odd colors to be answered by a later occurrence of a larger even color.
Hence, let Ans(c) = {c′ ∈ N | c′ ≥ c and c′ is even} be the set of colors that “answer” a
“request” for color c. We denote a vertex v of color c by v/c.

Fijalkow and Zimmermann introduced a generalization of the parity condition and the
finitary parity condition [7], the parity condition with costs [14]. There, the edges of the
arena are labeled with non-negative weights and the winning condition demands that there
exists a bound b such that almost all requests are answered with weight at most b, i.e., the
weight of the infix between the request and the response has to be bounded by b.

Our aim is to extend the parity condition with costs by allowing for the full spectrum of
weights to be used, i.e., by also incorporating negative weights. In this setting, the weight of
an infix between a request and a response might be negative. Thus, the extended condition
requires the weight of the infix to be bounded from above and from below.3 To distinguish
between the parity condition with costs and the extension introduced here, we call our
extension the parity condition with weights.

Formally, let ρ = v0v1v2 · · · be a play. We define the cost-of-response at position j ∈ N
of ρ by

Cor(ρ, j) = min{Ampl(vj · · · vj′) | j′ ≥ j,Ω(vj′) ∈ Ans(Ω(vj))}

where we use min ∅ =∞. As the amplitude of an infix only increases by extending the infix,
Cor(ρ, j) is the amplitude of the shortest infix that starts at position j and ends at an answer
to the request posed at position j. We illustrate this notion in Figure 1.

We say that a request at position j is answered with cost b, if Cor(ρ, j) = b. Consequently,
a request with an even color is answered with cost zero. The cost-of-response of an unanswered
request is infinite, even if the amplitude of the remaining play is bounded. In particular,
this means that an unanswered request at position j may be “unanswered with finite cost b”
(if the amplitude of the remaining play is b ∈ N) or “unanswered with infinite cost” (if the
amplitude of the remaining play is infinite). In either case, however, we have Cor(ρ, j) =∞.

3 We discuss other possible interpretations of negative weights in Section 9.
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We define the parity condition with weights as

WeightParity(Ω, w) = {ρ ∈ V ω | lim supj→∞ Cor(ρ, j) ∈ N} .

I.e., ρ satisfies the condition if and only if there exists a bound b ∈ N such that almost all
requests are answered with cost less than b. In particular, only finitely many requests may
be unanswered, even with finite cost. Note that the bound b may depend on the play ρ.

We call a game G = (A,WeightParity(Ω, w)) a parity game with weights, and we
define |G| = |A|+ log(W ), where W is the largest absolute weight assigned by w; i.e., we as-
sume weights to be encoded in binary. If w assigns zero to every edge, then WeightParity(Ω, w)
is a classical (max-) parity condition, denoted by Parity(Ω). Similarly, if w assigns positive
weights to every edge, then WeightParity(Ω, w) is equal to the finitary parity condition over
Ω, as introduced by Chatterjee and Henzinger [6]. Finally, if w assigns only non-negative
weights, then WeightParity(Ω, w) is a parity condition with costs, as introduced by Fijalkow
and Zimmermann [14]. In these cases, we refer to G as a parity game, a finitary parity game,
or a parity game with costs, respectively. We recall the characteristics of these games in
Table 1 on Page 15.

4 Solving Parity Games with Weights

We now show how to solve parity games with weights. Our approach is inspired by the classic
work on finitary parity games [7] and parity games with costs [14]: We first define a stricter
variant of these games, which we call bounded parity games with weights, and then show
two reductions:

parity games with weights can be solved in polynomial time with oracles that solve
bounded parity games with weights (in this section); and
bounded parity games with weights can be solved in polynomial time with oracles that
solve energy parity games (Section 5).

Furthermore, in Section 8 we polynomially reduce solving energy parity games to solving
parity games with weights and thereby show that parity games with weights, bounded parity
games with weights, and energy parity games belong to the same complexity class.

The energy parity games that we reduce to are known to be efficiently solvable [4, 10]:
they are in NP ∩ co-NP and can be solved in pseudo-quasi-polynomial time.

We first introduce the bounded parity condition with weights, which is a strength-
ening of the parity condition with weights. Hence, it is also induced by a coloring and a
weighting:

BndWeightParity(Ω, w) = WeightParity(Ω, w)
∩ {ρ ∈ V ω | no request in ρ is unanswered with infinite cost} .

Note that this condition allows for a finite number of unanswered requests, as long as they
are unanswered with finite cost.

We solve parity games with weights by repeatedly solving bounded parity games with
weights. To this end, we apply the following two properties of the winning conditions:
We have BndWeightParity(Ω, w) ⊆WeightParity(Ω, w) as well as that WeightParity(Ω, w)
is 0-extendable. Hence, if Player 0 has a strategy from a vertex v such that every
consistent play has a suffix in BndWeightParity(Ω, w), then the strategy is winning for
her from v w.r.t. WeightParity(Ω, w). Thus, Attr0(W0(A,BndWeightParity(Ω, w))) ⊆
W0(A,WeightParity(Ω, w)). The algorithm that solves parity games with weights repeatedly

CSL 2018
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Algorithm 1 A fixed-point algorithm computing W0(A,WeightParity(Ω, w)).
k = 0; W k

0 = ∅; Ak = A
repeat
k = k + 1
Xk =W0(Ak−1,BndWeightParity(Ω, w))
W k

0 = W k−1
0 ∪AttrAk−1

0 (Xk)
Ak = Ak−1 \AttrAk−1

0 (Xk)
until Xk = ∅
return W k

0

removes attractors of winning regions of the bounded parity game with weights until a fixed
point is reached. We will later formalize this sketch to show that the removed parts are a
subset of Player 0’s winning region in the parity game with weights.

To show that the obtained fixed point covers the complete winning region of Player 0, we
use the following lemma to show that the remaining vertices are a subset of Player 1’s winning
region in the parity game with weights. The proof is very similar to the corresponding one
for finitary parity games and parity games with costs.

I Lemma 2. Let G = (A,WeightParity(Ω, w)) and let G′ = (A,BndWeightParity(Ω, w)). If
W0(G′) = ∅, then W0(G) = ∅.

Lemma 2 implies that the algorithm for solving parity games with weights by repeatedly
solving bounded parity games with weights (see Algorithm 1) is correct. Note that we use
an oracle for solving bounded parity games with weights. We provide a suitable algorithm in
Section 5.

The loop terminates after at most |A| iterations (assuming the algorithm solving bounded
parity games with weights terminates), as during each iteration at least one vertex is removed
from the arena. The correctness proof relies on Lemma 2 and is similar to the one for finitary
parity games [7] and for parity games with costs [14].

I Lemma 3. Algorithm 1 returns W0(A,WeightParity(Ω, w))

The winning strategy defined in the proof of Lemma 3 can be implemented by a memory
structure of size maxk≤k∗ sk, where sk is the size of a winning strategy σk for Player 0 in
the bounded parity game with weights solved in the k-th iteration, and where k∗ is the value
of k at termination. To this end, one uses the fact that the winning regions Xk are disjoint
and are never revisited once left. Hence, we can assume the implementations of the σk to
use the same states.

5 Solving Bounded Parity Games with Weights

After having reduced the problem of solving parity games with weights to that of solving
(multiple) bounded parity games with weights, we reduce solving bounded parity games with
weights to solving (multiple) energy parity games [4].

Similarly to a parity game with weights, in an energy parity game, the vertices are colored
and the edges are equipped with weights. It is the goal of Player 0 to satisfy the parity
condition, while, at the same time, ensuring that the weight of every infix, its so-called energy
level, is bounded from below. In contrast to a parity game with weights, however, the weights
in an energy parity game are not tied to the requests and responses denoted by the coloring.
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v1/1 v2/2

−1

−1
v1/1 v2/0 v3/2

0

+1

0

0

Figure 2 The difference between energy parity games and parity games with weights.

Consider, for example, the games shown in Figure 2. In the game on the left-hand side,
players only have a single, trivial strategy. If we interpret this game as a parity game with
weights, Player 0 wins from every vertex, as each request is answered with cost one. If
we, however, interpret that game as an energy parity game, Player 1 instead wins from
every vertex, since the energy level decreases by one with every move. In the game on the
right-hand side, the situation is mirrored: When interpreting this game as a parity game
with weights, Player 1 wins from every vertex, as she can easily unbound the costs of the
requests for color one by staying in vertex v2 for an ever-increasing number of cycles. Dually,
when interpreting this game as an energy parity game, Player 0 wins from every vertex, since
the parity condition is clearly satisfied in every play, and Player 1 is only able to increase
the energy level, while it is never decreased.

In Section 5.1, we introduce energy parity games formally and present how to solve
bounded parity games with weights via energy games in Section 5.2.

5.1 Energy Parity Games
An energy parity game G = (A,Ω, w) consists of an arena A = (V, V0, V1, E), a color-
ing Ω: V → N of V , and an edge weighting w : E → Z of E. Note that this definition is
not compatible with the framework presented in Section 2, as we have not (yet) defined the
winner of the plays. This is because they depend on an initial credit, which is existentially
quantified in the definition of winning the game G. Formally, the set of winning plays with
initial credit c0 ∈ N is defined as

EnergyParityc0(Ω, w) = Parity(Ω) ∩ {v0v1v2 · · · ∈ V ω | ∀j ∈ N. c0 + w(v0 · · · vj) ≥ 0} .

Now, we say that Player 0 wins G from v if there exists some initial credit c0 ∈ N such that
he wins Gc0 = (A,EnergyParityc0(Ω, w)) from v (in the sense of the definitions in Section 2).
If this is not the case, i.e., if Player 1 wins Gc0 from v for every c0, then we say that Player 1
wins G from v. Note that the initial credit is uniform for all plays, unlike the bound on the
cost-of-response in the definition of the parity condition with weights, which may depend on
the play.

Unravelling these definitions shows that Player 0 wins G from v if there is an initial
credit c0 and a strategy σ, such that every play that starts in v and is consistent with
σ satisfies the parity condition and the accumulated weight over the play prefixes (the
energy level) never drops below −c0. We call such a strategy σ a winning strategy for
Player 0 in G from v. Dually, Player 1 wins G from v if, for every initial credit c0, there is
a strategy τc0 , such that every play that starts in v and is consistent with τc0 violates the
parity condition or its energy level drops below −c0 at least once. Thus, the strategy τc0

may, as the notation suggests, depend on c0. However, Chatterjee and Doyen showed that
using different strategies is not necessary: There is a uniform strategy τ that is winning from
v for every initial credit c0.

CSL 2018
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I Proposition 4 ([4]). Let G be an energy parity game. If Player 1 wins G from v, then she
has a single positional strategy that is winning from v in Gc0 for every c0.

We call such a strategy as in Proposition 4 a winning strategy for Player 1 from v. A
play consistent with such a strategy either violates the parity condition, or the energy levels
of its prefixes diverge towards −∞.

Furthermore, Chatterjee and Doyen obtained an upper bound on the initial credit
necessary for Player 0 to win an energy parity game, as well an upper bound on the size of a
corresponding finite-state winning strategy.

I Proposition 5 ([4]). Let G be an energy parity game with n vertices, d colors, and largest
absolute weight W . The following are equivalent for a vertex v of G:
1. Player 0 wins G from v.
2. Player 0 wins G(n−1)W from v with a finite-state strategy with at most ndW states.

The previous proposition yields that finite-state strategies of bounded size suffice for
Player 0 to win.

Such strategies do not admit long expensive descents, which we show by a straightforward
pumping argument.

I Lemma 6. Let G be an energy parity game with n vertices and largest absolute weight W .
Further, let σ be a finite-state strategy of size s, and let ρ be a play that starts in some vertex,
from which σ is winning, and is consistent with σ. Every infix π of ρ satisfies w(π) > −Wns.

Moreover, Chatterjee and Doyen gave an upper bound on the complexity of solving energy
parity games, which was recently supplemented by Daviaud et al. with an algorithm solving
them in pseudo-quasi-polynomial time.

I Proposition 7 ([4, 10]). The following problem is in NP ∩ co-NP and can be solved in
pseudo-quasi-polynomial time: “Given an energy parity game G and a vertex v in G, does
Player 0 win G from v?”

5.2 From Bounded Parity Games with Weights to Energy Parity Games
Let G = (A,BndWeightParity(Ω, w)) be a bounded parity game with weights with vertex
set V . Without loss of generality, we assume Ω(v) ≥ 2 for all v ∈ V . We construct, for each
vertex v∗ of A, an energy parity game Gv∗ with the following property: Player 1 wins Gv∗
from some designated vertex induced by v∗ if and only if she is able to unbound the amplitude
for the request of the initial vertex of the play when starting from v∗. This construction is
the technical core of the fixed-point algorithm that solves bounded parity games with weights
via solving energy parity games.

The main obstacle towards this is that, in the bounded parity game with weights G,
Player 1 may win by unbounding the amplitude for a request from above or from below,
while she can only win Gv∗ by unbounding the costs from below. We model this in Gv∗ by
constructing two copies of A. In one of these copies the edge weights are copied from G,
while they are inverted in the other copy. We allow Player 1 to switch between these copies
arbitrarily. To compensate for Player 1’s power to switch, Player 0 can increase the energy
level in the resulting energy parity game during each switch.

First, we define the set of polarities P = {+,−} as well as + = − and − = +. Given a
vertex v∗ of A, define the “polarized” arena Av∗ = (V ′, V ′0 , V ′1 , E′) of A = (V, V0, V1, E) with
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V ′ = (V × P ) ∪ (E × P × {0, 1}),
V ′i = (Vi × P ) ∪ (E × P × {i}) for i ∈ {0, 1}, and
E′ contains the following edges for every edge e = (v, v′) ∈ E with Ω(v) /∈ Ans(Ω(v∗))
and every polarity p ∈ P :

((v, p), (e, p, 1)): The player whose turn it is at v picks a successor v′. The edge e =
(v, v′) is stored as well as the polarity p.
((e, p, 1), (v′, p)): Then, Player 1 can either keep the polarity p unchanged and execute
the move to v′, or
((e, p, 1), (e, p, 0)): she decides to change the polarity, and another auxiliary vertex is
reached.
((e, p, 0), (e, p, 0)): If the polarity is to be changed, then Player 0 is able to use a
self-loop to increase the energy level (see below), before
((e, p, 0), (v′, p)): he can eventually complete the polarity switch by moving to v′.

Furthermore, for every vertex v with Ω(v) ∈ Ans(Ω(v∗)) and every polarity p ∈ P , E′
contains the self-loop ((v, p), (v, p)).4

Thus, a play in Av∗ simulates a play in A, unless Player 0 stops the simulation by using
the self-loop at a vertex of the form (e, p, 0) ad infinitum, and unless an answer to Ω(v∗)
is reached. We define the coloring and the weighting for Av∗ so that Player 0 loses in the
former case and wins in the latter case. Furthermore, the coloring is defined so that all
simulating plays that are not stopped have the same color sequence as the simulated play
(save for irrelevant colors on the auxiliary vertices in E × P × {0, 1}). Hence, we define

Ωv∗(v) =


Ω(v′) if v = (v′, p) with v′ /∈ Ans(Ω(v∗)) ,

0 if v = (v′, p) with v′ ∈ Ans(Ω(v∗)) ,

1 otherwise .

As desired, due to our assumption that Ω(v) ≥ 2 for all v ∈ V , the vertices from E×P×{0, 1}
do not influence the maximal color visited infinitely often during a play, unless Player 0 opts
to remain in some (e, p, 0) ad infinitum (and thereby violating the parity condition) or an
answer to the color of v∗ is reached (and thereby satisfying the parity condition).

Moreover, recall that our aim is to allow Player 1 to choose the polarity of edges by
switching between the two copies of A occurring in Av∗ . Intuitively, Player 1 should opt for
positive polarity in order to unbound the costs incurred by the request posed by v∗ from
above, while she should opt for negative polarity in order to unbound these costs from below.
Since in an energy parity game, it is, broadly speaking, beneficial for Player 1 to move along
edges of negative weight, we negate the weights of edges in the copy of A with positive
polarity. Thus, we define

wv∗(e) =


−w(v, v′) if e = ((v,+), ((v, v′),+, 1)) ,

w(v, v′) if e = ((v,−), ((v, v′),−, 1)) ,

1 if e = ((e, p, 0), (e, p, 0)) ,

0 otherwise .

4 Note that this definition introduces some terminal vertices, i.e., those of the form ((v, v′), p, i) with
Ω(v) ∈ Ans(Ω(v∗)). However, these vertices also have no incoming edges. Hence, to simplify the
definition, we just ignore them.
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Figure 3 A bounded parity game with weights G and the associated energy parity game Gv0 .
The unnamed vertices of Player 1 (Player 0) are of the form ((v, v′), p, 1) (of the form ((v, v′), p, 0))
when between the vertices (v, p) and (v′, p′). All missing edge weights in Gv0 are 0.

This definition implies that the self-loops at vertices of the form (v, p) with Ω(v) ∈ Ans(Ω(v∗))
have weight zero. Combined with the fact that these vertices have color zero, this allows
Player 0 to win Gv∗ by reaching such a vertex. Intuitively, answering the request posed at
v∗ is beneficial for Player 0. In particular, if Ω(v∗) is even, then Player 0 wins Gv∗ trivially
from (v∗, p), as we then have Ω(v∗) ∈ Ans(Ω(v∗)).

Finally, define the energy parity game Gv∗ = (Av∗ ,Ωv∗ , wv∗). In the following, we are
only interested in plays starting in vertex (v∗,+) in Gv∗ .

I Example 8. Consider the bounded parity game with weights depicted on the left hand side
of Figure 3 and the associated energy parity game Gv0 on the right side. First, let us note
that all other Gv for v 6= v0 are trivial in that they all consist of a single vertex (reachable
from (v,+)), which has even color with a self-loop of weight zero. Hence, Player 0 wins each
of these games from (v,+).

Player 1 wins G from v0, where a request for color 5 is opened, which is then kept
unanswered with infinite cost by using the self-loop at v1 or v2 ad infinitum, depending on
which successor Player 0 picks.

We show that Player 1 wins Gv0 from (v0,+): the outgoing edges of (v0,+) correspond
to picking the successor v1 or v2 as in G. Before this is executed, however, Player 1 gets to
pick the polarity of the successor: she should pick + for v1 and − for v2. Now, Player 0
may use the self-loop at her “tiny” vertices ad infinitum. These vertices have color one, i.e.,
Player 1 wins the resulting play. Otherwise, we reach the vertex (v1,+) or (v2,−). From
both vertices, Player 1 can enforce a loop of negative weight, which allows him to win by
violating the energy condition.

Note that the winning strategy for Player 1 for G from v is very similar to that for her
for Gv0 from (v0,+). We show that one direction holds in general: A winning strategy for
Player 0 for Gv from (v,+) is “essentially” one for him in G from v.

Note that the other direction does, in general, not hold. This can be seen by adding a
vertex v−1 of color 3 with a single edge to v0. Then, vertices of the form (vi, p) with i ∈ {1, 2}
in Gv−1 are winning sinks for Player 0. Hence, he wins Gv−1 from (v−1, p) in spite of losing
the bounded parity game with weights from v−1.
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Algorithm 2 A fixed-point algorithm computing W1(A,BndWeightParity(Ω, w)).
k = 0; W k

1 = ∅; Ak = A
repeat
k = k + 1
Xk = {v∗ | Player 1 wins the energy parity game ((Ak−1)v∗ ,Ωv∗ , wv∗) from (v∗,+)}
W k

1 = W k−1
1 ∪AttrAk−1

1 (Xk)
Ak = Ak−1 \AttrAk−1

1 (Xk)
until Xk = ∅
return W k

1

Hence, the initial request the vertex v inducing Gv plays a special role in the construction:
It is the request Player 1 aims to keep unanswered with infinite cost. To overcome this and
to complete our construction, we show a statement reminiscent of Lemma 2: If Player 0 wins
Gv from (v,+) for every v, then she also wins Gx from every vertex. With this relation at
hand, one can again construct a fixed-point algorithm solving bounded parity games with
weights using an oracle for solving energy parity games that is very similar to Algorithm 1.

Formally, we have the following lemma, which forms the technical core of our algorithm
that solves bounded parity games with weights by solving energy parity games.

I Lemma 9. Let G be a bounded parity game with weights with vertex set V .
1. Let v∗ ∈ V . If Player 1 wins Gv∗ from (v∗,+), then v∗ ∈ W1(G).
2. If Player 0 wins Gv∗ from (v∗,+) for all v∗ ∈ V , then W1(G) = ∅.

This lemma is the main building block for the algorithm that solves bounded parity games
with weights by repeatedly solving energy parity games, which is very similar to Algorithm 1.
Indeed, we just swap the roles of the players: We compute 1-attractors instead of 0-attractors
and we change the definition of Xk. Hence, we obtain the following algorithm (Algorithm 2).

Algorithm 2 terminates after solving at most a quadratic number of energy parity
games. Furthermore, the proof of correctness is analogous to the one for Algorithm 1,
relying on Lemma 9. We only need two further properties: the 1-extendability of
BndWeightParity(Ω, w), and an assertion that AttrAk−1

1 (Xk) is a trap for Player 0 in Ak−1.
Both are easy to verify.

After plugging Algorithm 2 into Algorithm 1, Proposition 7 yields our main theorem,
settling the complexity of solving parity games with weights.

I Theorem 10. The following problem is in NP∩co-NP and can be solved in pseudo-quasi-
polynomial time: “Given a parity game with weights G and a vertex v in G, does Player 0
win G from v?”

6 Memory Requirements

We now discuss the upper and lower bounds on the memory required to implement winning
strategies for either player. Recall that we use binary encoding to denote weights, i.e., weights
may be exponential in the size of the game. In this section we show polynomial (in n, d,
and W ) upper and lower bounds on the necessary and sufficient memory for Player 0 to
win parity games with weights. Due to the binary encoding of weights, these bounds are
exponential in the size of the game. In contrast, Player 1 requires infinite memory.
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vreq/3 v′req,1/1 · · · v′req,n/1 vdel/1 v′ans/2 vans/4
0 W W W

−1

0

0

0

0

n vertices

Figure 4 A game of size O(n) in which Player 0 only wins with strategies of size at least nW + 1.

I Theorem 11. Let G be a parity game with weights with n vertices, d colors, and largest
absolute weight W assigned to any edge in G. Moreover, let v be a vertex of G.
1. Player 0 has a winning strategy σ from W0(G) with |σ| ∈ O(nd2W ). This bound is tight.
2. There exists a parity game with weights G, such that Player 1 has a winning strategy from

each vertex v in G, but she has no finite-state winning strategy from any v in G.

The proof of the second item of Theorem 11 is straightforward, since Player 1 already
requires infinite memory to implement winning strategies in finitary parity games [7]. Since
parity games with weights subsume finitary parity games, this result carries over to our
setting. We show the game witnessing this lower bound on the right-hand side of Figure 2.

In contrast, exponential memory is sufficient, but also necessary, for Player 0. To this end,
we first prove that the winning strategy for him constructed in the proof of Lemma 9.2 suffers
at most a linear blowup in comparison to his winning strategies in the underlying energy
parity games. This is sufficient as we have argued in Section 4 that the construction of a
winning strategy for Player 0 in a parity game with weights suffers no blowup in comparison
to the underlying bounded parity games with weights.

I Lemma 12. Let G, n, d, and W be as in Theorem 11. Player 0 has a finite-state winning
strategy of size at most d(6n)(d+ 2)(W + 1) from W0(G).

Having established an upper bound on the memory required by Player 0, we now proceed
to show that this exponential bound is indeed tight, which is witnessed by the games Gn
depicted in Figure 4.

I Lemma 13. Let n,W ∈ N. There exists a parity game with weights Gn,W with n vertices
and largest absolute weight W such that Player 0 wins Gn from every vertex, but each winning
strategy for her is of size at least nW + 1.

7 Quality of Strategies

We have shown in the previous section that finite-state strategies of bounded size suffice for
Player 0 to win in parity games with weights, while Player 1 clearly requires infinite memory.
However, as we are dealing with a quantitative winning condition, we are not only interested
in the size of winning strategies, but also in their quality. More precisely, we are interested
in an upper bound on the cost of requests that Player 0 can ensure. In this section, we show
that he can guarantee an exponential upper bound on such costs. Dually, Player 1 is required
to unbound the cost of responses.

I Theorem 14. Let G be a parity game with weights with n vertices, d colors, and largest
absolute weight W .

There exists a b ∈ O((ndW )2) and a strategy σ for Player 0 such that, for all plays ρ
beginning in W0(G) and consistent with σ, we have lim supj→∞Cor(ρ, j) ≤ b. This bound is
tight.
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v1/1 v2/0 · · · vn−1/0 vn/2
W W W W

W

Figure 5 The game Gn,W witnessing an exponential lower bound on the cost that Player 0 can
ensure.

We first show that Player 0 can indeed ensure an upper bound as stated in Theorem 14.
We obtain this bound via a straightforward pumping argument leveraging the upper bound
on the size of winning strategies obtained in Lemma 12.

I Lemma 15. Let G, n, d, and W be as in the statement of Theorem 14 and let s =
d(6n)(d+ 2)(W + 1). Player 0 has a winning strategy σ such that, for each play ρ that starts
in W0(G) and is consistent with σ, we have lim supj→∞ Cor(ρ, j) ≤ nsW .

Having thus shown that Player 0 can indeed ensure an exponential upper bound on the
incurred cost, we now proceed to show that this bound is tight. A simple example shows
that there exists a series of parity games with weights, in which Player 0 wins from every
vertex, but in which he cannot enforce a sub-exponential cost of any request.

I Lemma 16. Let n,W ∈ N. There exists a parity game with weights Gn,W with n vertices
and largest absolute weight W as well as a vertex v ∈ W0(G), such that for each winning
strategy for Player 0 from v there exists a play ρ starting in v and consistent with σ

with lim supj→∞Cor(ρ, j) ≥ (n− 1)W .

Proof. We show the game Gn,W in Figure 5. The arena of Gn,W is a cycle with n vertices of
Player 1, where each edge has weight W . Moreover, one vertex is labeled with color two, its
directly succeeding vertex is labeled with color one. All remaining vertices have color zero.

Player 0 only has a single strategy in this game and there exist only n plays in Gn,W ,
each starting in a different vertex of Gn. In each play, each request for color one is only
answered after n− 1 steps, each contributing a cost of W . Hence, this request incurs a cost
of (n− 1)W . Moreover, as this request is posed and answered infinitely often in each play,
we obtain the desired result. J

8 From Energy Parity Games to (Bounded) Parity Games with
Weights

We have discussed in Sections 4 and 5 how to solve parity games with weights via solving
bounded parity games with weights and how to solve the latter games by solving energy
parity games, both steps with a polynomial overhead. An obvious question is whether one
can also solve energy parity games by solving (bounded) parity games with weights. In this
section, we answer this question affirmatively. We show how to transform an energy parity
game into a bounded parity game with weights so that solving the latter also solves the
former. Then, we show how to transform a bounded parity game with weights into a parity
game with weights with the same relation: Solving the latter also solves the former. Both
constructions here are gadget based and increase the size of the arenas only linearly. Hence,
all three types of games are interreducible with at most polynomial overhead.

8.1 From Energy Parity Games to Bounded Parity Games with Weights
Note that, in an energy parity game, Player 0 wins if the energy increases without a bound,
as long as there is a lower bound. However, in a bounded parity game, he has to ensure an
upper and a lower bound. Thus, we show in a first step how to modify an energy parity
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game so that Player 0 still has to ensure a lower bound on the energy, but can also throw
away unnecessary energy during each transition, thereby also ensuring an upper bound. The
most interesting part of this construction is to determine when energy becomes unnecessary
to ensure a lower bound. Here, we rely on Lemma 6.

Formally, let G = (A,Ω, w) be an energy parity game with A = (V, V0, V1, E) where we
assume w.l.o.g. that the minimal color in Ω(V ) is strictly greater than 1. Now, we define
G′ = (A′,Ω′, w′) with A = (V, V0, V1, E) where

V ′ = V ∪ E, V ′0 = V0 ∪ E, and V ′1 = V1,
E′ = {(v, e), (e, e), (e, v′) | e = (v, v′) ∈ E},
Ω′(v) = Ω(v) and Ω′(e) = 1, and
w′(v, e) = w(e), w′(e, e) = −1, and w(e, v′) = 0 for every e = (v, v′) ∈ E.

Intuitively, every edge of A is subdivided and a new vertex for Player 0 is added, where he
can decrease the energy level. The negative weight ensures that he eventually leaves this
vertex in order to satisfy an energy condition.

We say that a strategy σ for Player 0 in A′ is corridor-winning for him from some v ∈ V ,
if there is a b ∈ N such that every play ρ that starts in v and is consistent with σ satisfies
the parity condition and Ampl(ρ) ≤ b. Hence, instead of just requiring a lower bound on the
energy level as in the energy parity condition, we also require a uniform upper bound on the
energy level (where we w.l.o.g. assume these bounds to coincide).

I Lemma 17. Let G and G′ be as above and let v ∈ V . Player 0 has a winning strategy for
G from v if and only if Player 0 has a corridor-winning strategy for G′ from v.

Now, we turn G′ into a bounded parity game with weights. In such a game, the cost-of-
response of every request has to be bounded, but the overall energy level of the play may
still diverge to −∞. To rule this out, we open one unanswerable request at the beginning of
each play, which has to be unanswered with finite cost in order to satisfy the bounded parity
condition with weights. If this is the case, then the energy level of the play is always in a
bounded corridor, i.e., we obtain a corridor-winning strategy.

Formally, for every vertex v ∈ V , we add a vertex v to A′ of an odd color c∗ that is
larger than every color in Ω(V ), i.e., the request can never be answered. Furthermore, v
has a single outgoing edge to v of weight 0, i.e., it is irrelevant whose turn it is. Call
the resulting arena A′′, the resulting coloring Ω′′, and the resulting weighting w′′, and let
G′′ = (A′′,BndWeightParity(Ω′′, w′′)).

I Lemma 18. Let G′ and G′′ be as above and let v ∈ V . Player 0 has a corridor-winning
strategy for G′ from v if and only if v ∈ W0(G′′).

8.2 From Bounded Parity Games with Weights to Parity Games with
Weights

Next, we show how to turn a bounded parity game with weights into a parity game with
weights so that solving the latter also solves the former. The construction here uses the
same restarting mechanism that underlies the proof of Lemma 2: as soon as a request has
incurred a cost of b, restart the play and enforce a request of cost b+ 1, and so on. Unlike
the proof of Lemma 2, where Player 1 could restart the play at any vertex, here we always
have to return to a fixed initial vertex we are interested in. While resetting, we have to
answer all requests in order to prevent Player 1 to use the reset to prevent requests from
being answered. Assume v∗ ∈ V is the initial vertex we are interested in. Then, we subdivide
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Table 1 Characteristic properties of variants of parity games.

Complexity Mem. Pl. 0/Pl. 1 Bounds

Parity Games [3] quasi-poly. pos./pos. –
Energy Parity Games [4, 10] pseudo-quasi-poly. O(ndW )/pos. O(nW )

Finitary Parity Games [7] poly. pos./inf. O(nW )
Parity Games with Costs [14, 22] quasi-poly. pos./inf. O(nW )
Parity Games with Weights pseudo-quasi-poly. O(nd2W )/inf. O((ndW )2)

every edge in A′′ to allow Player 1 to restart the play by answering all open requests and
then moving back to v∗.

Formally, fix a bounded parity game with weights G = (A,BndWeightParity(Ω, w)) with
A = (V, V0, V1, E) and a vertex v∗ ∈ V . We define the parity game with weights Gv∗ =
(Av∗ ,WeightParity(Ωv∗ , wv∗)) with Av∗ = (V ′, V ′0 , V ′1 , E′) where

V ′ = V ∪ E ∪ {>}, V ′0 = V0, and V ′1 = V1 ∪ E ∪ {>},
E′ = {(v, e), (e,>), (e, v′) | e = (v, v′) ∈ E} ∪ {(>, v∗)},
Ωv∗(v) = Ω(v), Ωv∗(e) = 0 for every e ∈ E, and Ωv∗(>) = 2 max(Ω(V )), and
wv∗(v, e) = w(e) for (v, e) ∈ V × E and wv∗(e′) = 0 for every other edge e′ ∈ E′.

I Lemma 19. Let G and Gv∗ as above. Then, v∗ ∈ W0(G) if and only if v∗ ∈ W0(Gv∗).

9 Conclusions and Future Work

We have established that parity games with weights and bounded parity games fall into the
same complexity class as energy parity games. This is interesting, because, while solving
such games has the signature complexity class NP ∩ co-NP, they are not yet considered a
class in their own right. It is also interesting because the properties appear to be inherently
different: While they both combine the qualitative parity condition with quantified costs,
parity games with weights combine these aspects on the property level, whereas energy
parity games simply look at the combined – and totally unrelated – properties. We show
the characteristic properties of parity games and of games with combinations of a parity
condition with quantitative conditions relevant for this work in Table 1.

As future work, we are looking into the natural extensions of parity games with weights
to Streett games with weights [7, 14], and at the complexity of determining optimal bounds
and strategies that obtain them [30]. We are also looking at variations of the problem. The
two natural variations are

to use a one-sided definition (instead of the absolute value) for the amplitude of
a play, i.e., using Ampl(π) = supj<|π| w(v0 · · · vj) ∈ N∞ (instead of Ampl(π) =
supj<|π| |w(v0 · · · vj)| ∈ N∞), and
to use an arbitrary consecutive subsequence of a play, i.e., Ampl(π) =
supj≤k<|π| |w(vj · · · vk)| ∈ N∞.

There are good arguments in favor and against using these individual variations – and their
combination to Ampl(π) = supj≤k<|π| w(vj · · · vk) ∈ N∞ – but we feel that the introduction
of parity games with weights benefit from choosing one of the four combinations as the parity
games with weights.

We expect the complexity to rise when changing from maximizing over the absolute value
to maximizing over the value, as this appears to be close to pushdown boundedness games [5],
and we conjecture this problem to be PSPACE complete.
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