
Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 20:1–20:50
https://lmcs.episciences.org/

Submitted Jan. 10, 2019
Published Aug. 23, 2019

PARITY GAMES WITH WEIGHTS

SVEN SCHEWE a, ALEXANDER WEINERT b, AND MARTIN ZIMMERMANN a

a University of Liverpool, Liverpool, United Kingdom
e-mail address: {sven.schewe,martin.zimmermann}@liverpool.ac.uk

b German Aerospace Center (DLR), Intelligent and Distributed Systems, Köln, Germany
e-mail address: alexander.weinert@dlr.de

Abstract. Quantitative extensions of parity games have recently attracted significant
interest. These extensions include parity games with energy and payoff conditions as well
as finitary parity games and their generalization to parity games with costs. Finitary parity
games enjoy a special status among these extensions, as they offer a native combination
of the qualitative and quantitative aspects in infinite games: The quantitative aspect of
finitary parity games is a quality measure for the qualitative aspect, as it measures the limit
superior of the time it takes to answer an odd color by a larger even one. Finitary parity
games have been extended to parity games with costs, where each transition is labeled with
a nonnegative weight that reflects the costs incurred by taking it. We lift this restriction
and consider parity games with costs with arbitrary integer weights.

We show that solving such games is in NP ∩ co-NP, the signature complexity for
games of this type. We also show that the protagonist has finite-state winning strategies,
and provide tight pseudo-polynomial bounds for the memory he needs to win the game.
Naturally, the antagonist may need infinite memory to win. Moreover, we present tight
bounds on the quality of winning strategies for the protagonist.

Furthermore, we investigate the problem of determining, for a given threshold b, whether
the protagonist has a strategy of quality at most b and show this problem to be ExpTime-
complete. The protagonist inherits the necessity of exponential memory for implementing
such strategies from the special case of finitary parity games.

1. Introduction

Finite games of infinite duration offer a wealth of challenges and applications that has garnered
a lot of attention. The traditional class of games under consideration were games with a
simple parity [Koz83,EL86,EJ91,McN93,BCJ+97,Zie98,Jur98,Jur00,VJ00,JPZ08,Sch08,
STV15,Sch17,CJK+17,JL17,FJS+17,Leh18] or payoff [Pur95,ZP96,Jur98,BV07,STV15]

Key words and phrases: Infinite Games, Quantitative Games, Parity Games.
Supported by the EPSRC projects ‘Energy Efficient Control’ (EP/M027287/1) and ‘Solving Parity Games

in Theory and Practice’ (EP/P020909/1).
Supported by the project “TriCS” (ZI 1516/1–1) of the German Research Foundation (DFG) and the

Saarbrücken Graduate School of Computer Science. Major parts of this work were performed while the
author was employed with the Reactive Systems Group at Saarland University, Germany.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:20)2019
c© S. Schewe, A. Weinert, and M. Zimmermann
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

20:2 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

objective. These games form a hierarchy with very simple tractable reductions from parity
games through mean-payoff games [Pur95,ZP96,Jur98,BV07,STV15] and discounted-payoff
games [ZP96,Jur98,STV15] to simple stochastic games [Con93].

More recently, games with a mixture of the qualitative parity condition and further
quantitative objectives have been considered, including mean-payoff parity games [CHJ05]
and energy parity games [CD12]. Finitary parity games [CHH09] take a special role within
the class of games with mixed parity and payoff objectives. To win a finitary parity game,
Player 0 needs to enforce a play with a bound b such that almost all occurrences of an odd
color are followed by a higher even color within at most b steps.

This is interesting, because it provides a natural link between the qualitative and
quantitative objective. One aspect that attracted attention is that, as long as one is not
interested in optimizing the bound b, these games are the only games of the lot that are known
to be tractable [CHH09]. However, minimizing the bound b itself is also interesting: As the
bounds limit the response time, small bounds translate to high quality guarantees [WZ17].

This property calls for a generalization to different cost models, and a first generalization
has been made with the introduction of parity games with costs [FZ14]. In parity games
with costs, the basic cost function of finitary parity games—where each step incurs the same
cost—is replaced with different nonnegative costs for different edges. In this article, we
generalize this further to general integer costs: We decorate the edges with integer weights.
The quantitative aspect in these parity games with weights consists of having to answer
almost all odd colors by a higher even color, such that the amplitude of the accumulated
weight on the path to this even color is bounded by a bound b.

In addition to their conceptual charm, we show that parity games with weights are
PTime equivalent to energy parity games. This indicates that these games are part of
a natural complexity class, whereas the games with a plain objective appear to form a
hierarchy. We use the reduction from parity games with weights to energy parity games to
solve them. This reduction goes through intermediate reductions to and from bounded parity
games with weights. These games have the additional restriction that the limit superior of
the absolute weight of initial sequences of unanswered requests in a play is finite. These
bounded parity games with weights are then reduced to energy parity games. The other
direction of the reduction is through simple gadgets that preserve the main elements of
winning strategies in games that are extended in two steps by very simple gadgets. As a
result, we obtain the same complexity results for parity games with weights as for energy
parity games, i.e., NP∩co-NP, the signature complexity for finite games of infinite duration
with parity conditions and their extensions. Thereby, we obtain an argument that these
games might be representatives of a natural complexity class, lending a further argument
for the relevance of two player games with mixed qualitative and quantitative winning
conditions. Furthermore, Daviaud et al. recently showed that parity games with weights can
even be solved in pseudo-quasi-polynomial time [DJL18].

Naturally, parity games with weights subsume parity games (as a special case where all
weights are zero), finitary parity games (as a special case where all weights are positive),
and parity games with costs (as a special case where all weights are nonnegative).

We show that the protagonist has finite-state winning strategies, and provide tight
pseudo-polynomial bounds for the memory he needs to win the game. We also present tight
bounds on the quality of winning strategies for the protagonist. Naturally, the antagonist
may need infinite memory to win.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:3

Solving parity games with weights amounts to determining whether there exists a
bound b such that the protagonist is able to enforce a play in which the amplitude of the
accumulated weight between almost all requests and their corresponding answer is bounded
by b. The value of b, however, may be arbitrarily large, subject to the bounds on the quality
of winning strategies. Hence, it is natural to consider the threshold problem for parity games
with weights: “Given a parity game with weights G and a bound b ∈ N, is the protagonist
able to enforce that the paths between almost all requests and their respective answers have
an amplitude of at most b?” It is known that the threshold problem for finitary parity
games and parity games with costs is PSpace-complete [WZ17]. In this work, we show
that the complexity increases even further in the case of parity games with weights, as
the threshold problem for such games is ExpTime-complete. The complexity of strategies
witnessing the answer to the threshold problem, however, does not increase: Both players
require exponential memory in order to ensure or violate the bound b, respectively, if they
are able to do so at all.

This paper is an extended version of work published at CSL 2018 [SWZ18].

2. Preliminaries

We denote the nonnegative integers by N, the integers by Z, and define N∞ = N ∪ {∞}. As
usual, we have ∞ > n, −∞ < n, n+∞ =∞, and −∞− n = −∞ for all n ∈ Z.

An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E) and a parti-
tion {V0, V1} of V into the positions of Player 0 (drawn as ellipses) and Player 1 (drawn as
rectangles). For pronomial convenience, we refer to Player 0 as he, and to Player 1 as she.
The size of A, denoted by |A|, is defined as |V |. A play in A is an infinite path ρ = v0v1v2 · · ·
through (V,E). To rule out finite plays, we require every vertex to be nonterminal. We
define |ρ| =∞. Dually, for a finite play prefix π = v0 · · · vj we define |π| = j + 1.

A game G = (A,Win) consists of an arena A with vertex set V and a set Win ⊆ V ω of
winning plays for Player 0. The set of winning plays for Player 1 is V ω \Win. A winning
condition Win is 0-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ ∈Win implies wρ ∈Win.
Dually, Win is 1-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ /∈Win implies wρ /∈Win.
Finally, Win is prefix-independent, if it is both 0-extendable and 1-extendable.

A strategy for Player i ∈ {0, 1} is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈ E
holds true for all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) holds true
for every wv ∈ V ∗Vi. A play v0v1v2 · · · is consistent with a strategy σ for Player i, if
vj+1 = σ(v0 · · · vj) holds true for every j with vj ∈ Vi. A strategy σ for Player i is a
winning strategy for G from v ∈ V if every play that starts in v and is consistent with
σ is won by Player i. If Player i has a winning strategy from v, then we say Player i
wins G from v. The winning region of Player i is the set of vertices, from which Player i
wins G; it is denoted byWi(G). Solving a game amounts to determining its winning regions.
If W0(G) ∪W1(G) = V , then we say that G is determined.

Let A = (V, V0, V1, E) be an arena and let X ⊆ V . The i-attractor of X is defined

inductively as Attri(X) = Attr
|V |
i (X), where Attr0

i (X) = X and

Attrji (X) = Attrj−1
i (X) ∪ {v ∈ Vi | ∃v′ ∈ Attrj−1

i (X). (v, v′) ∈ E}

∪ {v ∈ V1−i | ∀(v, v′) ∈ E. v′ ∈ Attrj−1
i (X)} .

20:4 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

Hence, Attri(X) is the set of vertices from which Player i can force the play to enter X:
Player i has a positional strategy σX such that each play that starts in some vertex in
Attri(X) and is consistent with σX eventually encounters some vertex from X. We call σX
an attractor strategy towards X. Moreover, the i-attractor can be computed in time linear
in |E| [NRY96]. When we want to stress the arena A the attractor is computed in, we
write AttrAi (X).

A set X ⊆ V is a trap for Player i, if every vertex in X ∩ Vi has only successors in X
and every vertex in X ∩ V1−i has at least one successor in X. In this case, Player 1− i has
a positional strategy τX such that every play starting in some vertex in X and consistent
with τX never leaves X. We call such a strategy a trap strategy.

Remark 2.1.

(1) The complement of an i-attractor is a trap for Player i.
(2) If X is a trap for Player i, then Attr1−i(X) is also a trap for Player i.
(3) If Win is i-extendable and (A,Win) determined, then W1−i(A,Win) is a trap for

Player i.

A memory structure M = (M, init, upd) for an arena (V, V0, V1, E) consists of a finite
set M of memory states, an initialization function init : V → M , and an update func-
tion upd: M × E → M . The update function can be extended to finite play prefixes in
the usual way: upd+(v) = init(v) and upd+(wvv′) = upd(upd+(wv), (v, v′)) for w ∈ V ∗
and (v, v′) ∈ E. A next-move function Nxt: Vi × M → V for Player i has to satisfy
(v,Nxt(v,m)) ∈ E for all v ∈ Vi and m ∈ M . It induces a strategy σ for Player i with
memory M via σ(v0 · · · vj) = Nxt(vj , upd+(v0 · · · vj)). A strategy is called finite-state if it
can be implemented by a memory structure. We define |M| = |M |. Slightly abusively, we
say that the size of a finite-state strategy is the size of a memory structure implementing it.

3. Parity Games with Weights

Fix an arena A = (V, V0, V1, E). A weighting for A is a function w : E → Z. We
define w(ε) = w(v) = 0 for all v ∈ V and extend w to sequences of vertices of length at least
two by summing up the weights of the traversed edges. Given a play (prefix) π = v0v1v2 · · · ,
we define the amplitude of π as Ampl(π) = supj<|π| |w(v0 · · · vj)| ∈ N∞.

A coloring of V is a function Ω: V → N. The classical parity condition requires almost
all occurrences of odd colors to be answered by a later occurrence of a larger even color.
Hence, let Ans(c) = {c′ ∈ N | c′ ≥ c and c′ is even} be the set of colors that “answer” a
“request” for color c. We denote a vertex v of color c by v/c.

Fijalkow and Zimmermann introduced a generalization of the parity condition and the
finitary parity condition [CHH09], the parity condition with costs [FZ14]. There, the edges
of the arena are labeled with nonnegative weights and the winning condition demands that
there exists a bound b such that almost all requests are answered with weight at most b, i.e.,
the weight of the infix between the request and the response has to be bounded by b.

Our aim is to extend the parity condition with costs by allowing for the full spectrum of
weights to be used, i.e., by also incorporating negative weights. In this setting, the weight of
an infix between a request and a response might be negative. Thus, the extended condition
requires the weight of the infix to be bounded from above and from below.1 To distinguish

1We discuss other possible interpretations of negative weights in Section 10.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:5

Cor(ρ, j)

Cor(ρ, j)

w

vj vj′

Figure 1: The cost-of-response of some request posed by visiting vertex vj , which is answered
by visiting vertex vj′ .

Complexity Mem. Pl. 0/Pl. 1 Bounds

Parity Games [CJK+17] quasi-poly. pos./pos. –
Energy Parity Games [CD12,DJL18] pseudo-quasi-poly. O(ndW)/pos. O(nW)

Finitary Parity Games [CHH09] poly. pos./inf. O(nW)
Parity Games with Costs [FZ14,MMS15] quasi-poly. pos./inf. O(nW)

Table 1: Characteristic properties of variants of parity games.

between the parity condition with costs and the extension introduced here, we call our
extension the parity condition with weights.

Formally, let ρ = v0v1v2 · · · be a play. We define the cost-of-response at position j ∈ N
of ρ by

Cor(ρ, j) = min{Ampl(vj · · · vj′) | j′ ≥ j,Ω(vj′) ∈ Ans(Ω(vj))},
where we use min ∅ = ∞. As the amplitude of an infix only increases by extending the
infix, Cor(ρ, j) is the amplitude of the shortest infix that starts at position j and ends at an
answer to the request posed at position j. We illustrate this notion in Figure 1.

We say that a request at position j is answered with cost b, if Cor(ρ, j) = b. Consequently,
a request with an even color is answered with cost zero. The cost-of-response of an unanswered
request is infinite, even if the amplitude of the remaining play is bounded. In particular,
this means that an unanswered request at position j may be “unanswered with finite cost b”
(if the amplitude of the remaining play is b ∈ N) or “unanswered with infinite cost” (if the
amplitude of the remaining play is infinite). In either case, however, we have Cor(ρ, j) =∞.

We define the parity condition with weights as

WeightParity(Ω, w) = {ρ ∈ V ω | lim supj→∞Cor(ρ, j) ∈ N} .
I.e., ρ satisfies the condition if and only if there exists a bound b ∈ N such that almost all
requests are answered with cost less than b. In particular, only finitely many requests may
be unanswered, even with finite cost. Note that the bound b may depend on the play ρ.

We call a game G = (A,WeightParity(Ω, w)) a parity game with weights, and we de-
fine |G| = |A|+log(W), where W is the largest absolute weight assigned by w; i.e., we assume
weights to be encoded in binary. If w assigns zero to every edge, then WeightParity(Ω, w) is
a classical (max-) parity condition, denoted by Parity(Ω). Similarly, if w assigns positive
weights to every edge, then WeightParity(Ω, w) is equal to the finitary parity condition
over Ω, as introduced by Chatterjee and Henzinger [CH06]. Finally, if w assigns only
nonnegative weights, then WeightParity(Ω, w) is a parity condition with costs, as introduced
by Fijalkow and Zimmermann [FZ14]. In these cases, we refer to G as a parity game, a

20:6 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

finitary parity game, or a parity game with costs, respectively. Dually, every parity game,
finitary parity game, and parity game with costs is a parity game with weights. We recall
the characteristics of these special cases in Table 1.

4. Solving Parity Games with Weights

We now show how to solve parity games with weights. Our approach is inspired by the
classic work on finitary parity games [CHH09] and parity games with costs [FZ14]: We first
define a stricter variant of these games, which we call bounded parity games with weights,
and then show two reductions:

• parity games with weights can be solved in polynomial time with oracles that solve
bounded parity games with weights (in this section); and
• bounded parity games with weights can be solved in polynomial time with oracles that

solve energy parity games (Section 5).

Furthermore, we provide a polynomial time reduction from solving energy parity games to
solving parity games with weights in Section 8. We thereby show that parity games with
weights, bounded parity games with weights, and energy parity games belong to the same
complexity class.

The energy parity games that we reduce to are known to be efficiently solvable, as they
are in NP ∩ co-NP due to Chatterjee and Doyen [CD12]. Moreover, they are LogSpace-
equivalent to mean-payoff parity games as introduced by Chatterjee, Henzinger, and Jur-
dziński [CHJ05]. Hence they can be solved in pseudo-quasi-polynomial time, due to recent
advances by Daviaud, Jurdziński, and Lazić [DJL18].

We first introduce the bounded parity condition with weights, which is a strength-
ening of the parity condition with weights. Hence, it is also induced by a coloring and a
weighting:

BndWeightParity(Ω, w) = WeightParity(Ω, w)

∩ {ρ ∈ V ω | no request in ρ is unanswered with infinite cost} .
Note that this condition allows for a finite number of unanswered requests, as long as they
are unanswered with finite cost.

We solve parity games with weights by repeatedly solving bounded parity games with
weights. To this end, we apply the following two properties of the winning conditions:
We have BndWeightParity(Ω, w) ⊆WeightParity(Ω, w) as well as that WeightParity(Ω, w)
is 0-extendable. Hence, if Player 0 has a strategy from a vertex v such that every consistent
play has a suffix in BndWeightParity(Ω, w), then the strategy is winning for her from v
w.r.t. WeightParity(Ω, w). Thus,

Attr0(W0(A,BndWeightParity(Ω, w))) ⊆ W0(A,WeightParity(Ω, w)) .

The algorithm that solves parity games with weights repeatedly removes attractors of winning
regions of the bounded parity game with weights until a fixed point is reached. We will
later formalize this sketch to show that the removed parts are a subset of Player 0’s winning
region in the parity game with weights.

To show that the obtained fixed point covers the complete winning region of Player 0, we
use the following lemma to show that the remaining vertices are a subset of Player 1’s winning
region in the parity game with weights. The proof is very similar to the corresponding one
for finitary parity games and parity games with costs.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:7

Lemma 4.1. Let G = (A,WeightParity(Ω, w)) and let G′ = (A,BndWeightParity(Ω, w)).
If W0(G′) = ∅, then W0(G) = ∅.

Proof. As bounded parity conditions with weights are Borel, bounded parity games with
weights are determined [Mar75]. Hence, W0(G′) = ∅ implies that, for every vertex v of A,
Player 1 has a strategy τv that is winning in G′ from v.

We combine these strategies into a single strategy τ for Player 1 that is winning in G
from every vertex of A. This strategy is controlled by a vertex v∗ (initialized with the
starting vertex of the play) and a counter κ ranging over N (initialized with zero). The
strategy τ mimics the strategy τv∗ from v∗ until a request is followed by an infix without
an answer and with amplitude κ. This implies that the cost-of-response of this request is
at least κ. If such a situation is encountered, then v∗ is set to the current vertex and κ is
incremented. Furthermore, the history of the play is discarded at this point in the play,
and τ behaves henceforth like τv∗ when starting at v∗ when this happens.

We now show that τ is winning for Player 1 from every vertex in G. Consider a play ρ
that is consistent with this strategy. If, on the one hand, κ is updated infinitely often along ρ,
then ρ contains, for every b ∈ N, a request that has a cost-of-response that is larger than b.
Hence, it violates the parity condition with weights.

If, on the other hand, κ is only updated finitely often, then ρ has a suffix ρ′ that starts in
some v, which is consistent with τv. As τv is winning for Player 1 from v in G′, ρ′ violates the
bounded parity condition with weights. Also, because κ is updated only finitely often during
the suffix, there is a bound b such that the amplitude of every suffix of ρ′ that starts at a
request is bounded by b. Hence, the only way for ρ′ to violate the bounded parity condition
with weights is to violate the parity condition. Thus, the full play ρ also violates the parity
condition, and therefore also the parity condition with weights, which is a strengthening of
the parity condition. Therefore, τ is indeed winning for Player 1 from every vertex in G.

Lemma 4.1 implies that the algorithm for solving parity games with weights by repeatedly
solving bounded parity games with weights (see Algorithm 1) is correct. Note that we use
an oracle for solving bounded parity games with weights. We provide a suitable algorithm
in Section 5.

Algorithm 1 A fixed-point algorithm computing W0(A,WeightParity(Ω, w)).

Input: Parity game with weights G with arena A, coloring Ω and weighting w
1: k = 0; W k

0 = ∅; Ak = A
2: repeat
3: k = k + 1
4: Xk =W0(Ak−1,BndWeightParity(Ω, w))

5: W k
0 = W k−1

0 ∪Attr
Ak−1

0 (Xk)

6: Ak = Ak−1 \Attr
Ak−1

0 (Xk)
7: until Xk = ∅
8: return W k

0

The loop terminates after at most |A| iterations (assuming the algorithm solving
bounded parity games with weights terminates), as, during each iteration, at least one
vertex is removed from the arena. The correctness proof relies on Lemma 4.1 and is similar
to the ones for finitary parity games [CHH09] and for parity games with costs [FZ14].

20:8 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

The underlying argument only relies on a few properties of the winning condition; it is
very general—and fairly standard. We use the same argument again later to establish the
correctness of Algorithm 2.

Lemma 4.2. Algorithm 1 returns W0(A,WeightParity(Ω, w)).

Proof. Let G = (A,WeightParity(Ω, w)) and let k∗ be the final iteration when running the

algorithm on G, i.e., its output is W k∗
0 =

⋃
0<k<k∗ Attr

Ak−1

0 (Xk). First, we consider Player 0

and show W k∗
0 ⊆ W0(G). For every vertex v that is in some Xk, Player 0 has a strategy σv

for Gk = (Ak−1,BndWeightParity(Ω, w)) that is winning from v. Furthermore, for every

attractor Attr
Ak−1

0 (Xk), he has a positional attractor strategy σk. Now, we compose these
strategies to a strategy σ for Player 0 in A via

σ(v0 · · · vj) =

{
σk(vj) if vj ∈ Attr

Ak−1

0 (Xk) \Xk,

σvj′ (vj′ · · · vj) if vj ∈ Xk.

In the second case, vj′ · · · vj is the longest suffix of v0 · · · vj that only contains vertices from
Xk, the set of vertices from which Player 0 has a winning strategy for Gk.

Consider a play ρ = v0v1v2 · · · in A that starts in W k∗
0 and that is consistent with σ.

For every j there is a unique kj in the range 0 < kj < k∗ such that vj ∈ Attr
Akj−1

0 (Xkj).
As BndWeightParity(Ω, w) is 1-extendable, Items 2 and 3 of Remark 2.1 imply that each

Attr
Ak−1

0 (Xk) is a trap for Player 1 in Ak−1. Hence, we obtain k0 > k1 > k2 > · · · . As
the kj are always greater than zero, the sequence stabilizes eventually. This implies that ρ
has a suffix ρ′ = vjvj+1vj+2 · · · that is consistent with σvj .

Hence, due to σvj being a winning strategy for Player 0 in Gk from vj , we obtain
ρ′ ∈ BndWeightParity(Ω, w). Hence, ρ ∈ WeightParity(Ω, w), since the bounded parity
condition with weights is a strengthening of its unbounded variant and due to 0-extendability
of WeightParity(Ω, w). Hence, σ is indeed winning from W k∗

0 .
Now, consider Player 1. We show V \W k∗

0 ⊆ W1(G). Then, determinacy of parity games
with weights (due to their winning conditions being Borel [Mar75]) yields W k∗

0 = W0(G)
and V \W k∗

0 =W1(G).
Due to Xk∗ being empty and bounded parity games with weights being determined

(again due to their winning conditions being Borel), Player 1 wins the bounded parity
game with weights Gk∗ from every vertex. Applying Lemma 4.1 shows that she also wins
the parity game with weights (Ak∗−1,WeightParity(Ω, w)) from every vertex. Finally, as
V \W k∗

0 =W1(Ak∗−1,WeightParity(Ω, w)) is a trap for Player 0 in A by construction, he
also wins G = (A,WeightParity(Ω, w)) from every vertex in V \W k∗

0 .

The winning strategy for Player 0 defined in the proof of Lemma 4.2 can be implemented
by a memory structure of size maxk<k∗ sk, where sk is the size of a winning strategy σk for
Player 0 in the bounded parity game with weights solved in the k-th iteration, and where k∗

is the value of k at termination. To this end, one uses the fact that the winning regions Xk

are disjoint and are never revisited once left. Hence, the implementations of the σk can use
the same states yielding the upper bound maxk<k∗ sk.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:9

v1/1 v2/2

−1

−1

v1/1 v2/0 v3/2
0

+1

0

0

Figure 2: The difference between energy parity games and parity games with weights.

5. Solving Bounded Parity Games with Weights

After having reduced the problem of solving parity games with weights to that of solving
(multiple) bounded parity games with weights, we reduce solving bounded parity games
with weights to solving (multiple) energy parity games [CD12].

Similar to a parity game with weights, in an energy parity game, the vertices are colored
and the edges are equipped with weights. It is the goal of Player 0 to satisfy the parity
condition, while, at the same time, ensuring that the accumulated weight of every prefix, its
so-called energy level, is bounded from below. In contrast to a parity game with weights,
however, the weights in an energy parity game are not “tied” to the requests and responses
denoted by the coloring.

Consider, for example, the games shown in Figure 2. In the game on the left-hand
side, players only have a single, trivial strategy. If we interpret this game as a parity game
with weights, Player 0 wins from every vertex, as each request is answered with cost one.
If we, however, interpret that game as an energy parity game, Player 1 instead wins from
every vertex, since the energy level decreases by one with every move. In the game on the
right-hand side, the situation is reversed: When interpreting this game as a parity game
with weights, Player 1 wins from every vertex, as she can easily unbound the costs of the
requests for color one by staying in vertex v2 for an ever-increasing number of cycles. Dually,
when interpreting this game as an energy parity game, Player 0 wins from every vertex, since
the parity condition is clearly satisfied in every play, and Player 1 is only able to increase
the energy level, while it is never decreased.

In Section 5.1, we introduce energy parity games formally and present how to solve
bounded parity games with weights via energy games in Section 5.2. Finally, Sections 5.3.1
and 5.3.2 are dedicated to the correctness proof of the construction.

5.1. Energy Parity Games. An energy parity game G = (A,Ω, w) consists of an arenaA =
(V, V0, V1, E), a coloring Ω: V → N of V , and an edge weighting w : E → Z of E. Note that
this definition is not compatible with the framework presented in Section 2, as we have
not (yet) defined the winner of the plays. This is because they depend on an initial credit,
which is existentially quantified in the definition of winning the game G. Formally, the set of
winning plays with initial credit c0 ∈ N is defined as

EnergyParityc0(Ω, w) = Parity(Ω) ∩ {v0v1v2 · · · ∈ V ω | ∀j ∈ N. c0 + w(v0 · · · vj) ≥ 0} .
Now, we say that Player 0 wins G from v if there exists some initial credit c0 ∈ N such that
he wins Gc0 = (A,EnergyParityc0(Ω, w)) from v (in the sense of the definitions in Section 2).
If this is not the case, i.e., if Player 1 wins Gc0 from v for every c0, then we say that Player 1
wins G from v. Note that the initial credit is uniform for all plays, unlike the bound on the

20:10 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

cost-of-response in the definition of the parity condition with weights, which may, a priori,
depend on the play.

Unraveling these definitions shows that Player 0 wins G from v if there is an initial
credit c0 and a strategy σ, such that every play that starts in v and is consistent with σ
satisfies the parity condition and the accumulated weight over the play prefixes (the energy
level) never drops below −c0. We call such a strategy σ a winning strategy for Player 0 in G
from v. Dually, Player 1 wins G from v if, for every initial credit c0, there is a strategy τc0 ,
such that every play that starts in v and is consistent with τc0 violates the parity condition
or its energy level drops below −c0 at least once. Thus, the strategy τc0 may, as the notation
suggests, depend on c0. However, Chatterjee and Doyen [CD12] showed that using different
strategies is not necessary: There is a uniform strategy τ that is winning from v for every
initial credit c0.

Proposition 5.1 [CD12]. Let G be an energy parity game. If Player 1 wins G from v, then
she has a single positional strategy that is winning from v in Gc0 for every c0.

We call such a strategy as in Proposition 5.1 a winning strategy for Player 1 from v. A
play consistent with such a strategy either violates the parity condition, or the energy levels
of its prefixes diverge towards −∞.

Furthermore, Chatterjee and Doyen obtained an upper bound on the initial credit
necessary for Player 0 to win an energy parity game, as well as an upper bound on the size
of a corresponding finite-state winning strategy.

Proposition 5.2 [CD12]. Let G be an energy parity game with n vertices, d colors, and
largest absolute weight W . The following are equivalent for a vertex v of G:

(1) Player 0 wins G from v.
(2) Player 0 wins G(n−1)W from v with a finite-state strategy with at most ndW states.

The previous proposition yields that finite-state strategies of bounded size suffice for Player 0
to win. Such strategies do not admit long expensive descents, which we show via a
straightforward pumping argument.

Lemma 5.3. Let G be an energy parity game with n vertices and largest absolute weight W .
Further, let σ be a finite-state strategy of size s, and let ρ be a play that starts in some
vertex, from which σ is winning, and is consistent with σ. Every infix π of ρ satisfies

w(π) > −(ns− 1)W − 1 .

Proof. Let σ be implemented by M = (M, init, upd) and let ρ = v0v1v2 · · · . We assume
towards a contradiction that there is an infix π = vj · · · vj′ with w(π) ≤ −(ns − 1)W − 1.
We assume w.l.o.g. π to be minimal with this property, i.e., such that there exists no proper
prefix π′ of π with w(π′) ≤ −(ns− 1)W − 1.

We define a sequence j0 < · · · < jk ≤ j′ of positions by starting with j0 = j. Inductively,
for each jk′ , we define jk′+1 to be the minimal position strictly greater than jk′ that
satisfies w(vj · · · vjk′+1

) < w(vj · · · vjk′). Intuitively, the positions jk′ are those positions at

which the weight of the infix vj · · · vjk′ reaches a new lower bound. Due to minimality of π′,
we obtain jk = j′.

We now show that there are two positions jk` and jk`′ such that the weight along the infix
from the former to the latter position decreases and such that we are able to pump that infix
while retaining consistency with the strategy σ. To this end, we define w` = w(vj · · · vj`) for
all ` ∈ {0, . . . , k}. In particular, we have w0 = 0. Since each edge has an absolute weight of at

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:11

most W , we obtain w`+1 ≥ w`−W for all ` ∈ {0, . . . , k−1}, which in turn implies wk ≥ −kW .
Moreover, since we have jk = j′, we additionally obtain wk ≤ −(ns− 1)W − 1. Rearranging
the resulting inequality −(ns− 1)W − 1 ≥ −kW yields kW ≥ (ns− 1)W + 1.

In order to obtain a lower bound for k, we briefly have to argue that W > 0 holds true.
First, we obtain W ≥ 0 by definition of W . Furthermore, if W = 0 then we obtain w(π) = 0,
which contradicts w(π) ≤ −(ns − 1)W − 1 = −1. Hence, we indeed have W > 0, which
yields k > (ns− 1) via the above inequality. In particular, this implies that there exist at
least ns + 1 positions at which the accumulated weight of the infix so far attains a new
minimum, since we start counting the number of positions at zero.

Due to the pigeon-hole-principle, we obtain that there exist indices `, `′ with 0 ≤ ` <
`′ ≤ k such that vj` = vj`′ and such that upd+(v0 · · · vj`) = upd+(v0 · · · vj`′). Thus, the
play v0 · · · vj · · · vj`(vj`+1 · · · vj`′)

ω obtained by repeating the loop between vj` and vj`′ ad
infinitum is consistent with the strategy σ and violates the energy condition. This, however,
contradicts σ being a winning strategy from v0 for Player 0.

Moreover, Chatterjee and Doyen gave an upper bound on the complexity of solving
energy parity games, which was recently supplemented by Daviaud et al. [DJL18] with an
algorithm solving them in pseudo-quasi-polynomial time.

Proposition 5.4 [CD12, DJL18]. The following problem is in NP ∩ co-NP and can be
solved in pseudo-quasi-polynomial time: “Given an energy parity game G and a vertex v
in G, does Player 0 win G from v?”

5.2. From Bounded Parity Games with Weights to Energy Parity Games. Let
G = (A,BndWeightParity(Ω, w)) be a bounded parity game with weights with vertex set V .
Without loss of generality, we assume Ω(v) ≥ 2 for all v ∈ V . We construct, for each
vertex v∗ of A, an energy parity game Gv∗ with the following property:

Player 1 wins Gv∗ from some designated vertex induced by v∗ if and only if
she is able to unbound the amplitude for the request of the initial vertex of
the play when starting from v∗.

This construction is the technical core of the fixed-point algorithm that solves bounded
parity games with weights via solving energy parity games.

The main obstacle towards this is that, in the bounded parity game with weights G,
Player 1 may win by unbounding the amplitude for a request from above or from below,
while she can only win the energy parity game Gv∗ by unbounding the costs from below. We
model this in Gv∗ by constructing two copies of A. In one of these copies the edge weights
are copied from G, while they are inverted in the other copy. We allow Player 1 to switch
between these copies arbitrarily. To compensate for Player 1’s power to switch, Player 0 can
increase the energy level in the resulting energy parity game during each switch.

First, we define the set of polarities P = {+,−} as well as + = − and − = +. Given a
vertex v∗ of A, define the “polarized” arena Av∗ = (V ′, V ′0 , V

′
1 , E

′) of A = (V, V0, V1, E) with

• V ′ = (V × P) ∪ (E × P × {0, 1}),
• V ′i = (Vi × P) ∪ (E × P × {i}) for i ∈ {0, 1}, and
• E′ contains the following edges for every edge e = (v, v′) ∈ E with Ω(v) /∈ Ans(Ω(v∗))

and every polarity p ∈ P :
– ((v, p), (e, p, 1)): The player whose turn it is at v picks a successor v′. The edge e = (v, v′)

is stored as well as the polarity p.

20:12 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

– ((e, p, 1), (v′, p)): Then, Player 1 can either keep the polarity p unchanged and execute
the move to v′, or

– ((e, p, 1), (e, p, 0)): she decides to change the polarity, and another auxiliary vertex is
reached.

– ((e, p, 0), (e, p, 0)): If the polarity is to be changed, then Player 0 is able to use a self-loop
to increase the energy level (see below), before

– ((e, p, 0), (v′, p)): he can eventually complete the polarity switch by moving to v′.
• Furthermore, for every vertex v with Ω(v) ∈ Ans(Ω(v∗)) and every polarity p ∈ P , E′

contains the self-loop ((v, p), (v, p)).2

Thus, a play in Av∗ simulates a play in A, unless Player 0 stops the simulation by using
the self-loop at a vertex of the form (e, p, 0) ad infinitum, and unless an answer to Ω(v∗)
is reached. We define the coloring and the weighting for Av∗ so that Player 0 loses in the
former case and wins in the latter case. Furthermore, the coloring is defined so that all
simulating plays that are not stopped have the same color sequence as the simulated play
(save for irrelevant colors on the auxiliary vertices in E × P × {0, 1}). Hence, we define

Ωv∗(v) =

Ω(v′) if v = (v′, p) with v′ /∈ Ans(Ω(v∗)) ,

0 if v = (v′, p) with v′ ∈ Ans(Ω(v∗)) ,

1 otherwise .

As desired, due to our assumption that Ω(v) ≥ 2 for all v ∈ V , the vertices from E×P×{0, 1}
do not influence the maximal color visited infinitely often during a play, unless Player 0 opts
to remain in some (e, p, 0) ad infinitum (and thereby violates the parity condition) or an
answer to the color of v∗ is reached (and thereby satisfies the parity condition).

Moreover, recall that our aim is to allow Player 1 to choose the polarity of edges by
switching between the two copies of A occurring in Av∗ . Intuitively, Player 1 should opt for
positive polarity in order to unbound the costs incurred by the request posed by v∗ from
above, while she should opt for negative polarity in order to unbound these costs from below.
Since it is, broadly speaking, beneficial for Player 1 to move along edges of negative weight
in an energy parity game, we negate the weights of edges in the copy of A with positive
polarity. Thus, we define

wv∗(e) =

−w(v, v′) if e = ((v,+), ((v, v′),+, 1)) ,

w(v, v′) if e = ((v,−), ((v, v′),−, 1)) ,

1 if e = ((e, p, 0), (e, p, 0)) ,

0 otherwise .

This definition implies that the self-loops at vertices of the form (v, p) with Ω(v) ∈ Ans(Ω(v∗))
have weight zero. Combined with the fact that these vertices have color zero, this allows
Player 0 to win Gv∗ by reaching such a vertex. Intuitively, answering the request posed at
v∗ is beneficial for Player 0. In particular, if Ω(v∗) is even, then Player 0 wins Gv∗ trivially
from (v∗, p), as we then have Ω(v∗) ∈ Ans(Ω(v∗)).

Finally, define the energy parity game Gv∗ = (Av∗ ,Ωv∗ , wv∗). In the following, we are
only interested in plays starting in vertex (v∗,+) in Gv∗ .

2This definition introduces some terminal vertices, i.e., those of the form ((v, v′), p, i) with Ω(v) ∈
Ans(Ω(v∗)). However, these vertices also have no incoming edges. Hence, to simplify the definition, we just
ignore them.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:13

v0/5

v1/4

v2/4

v3/6

0

0

+1

0

−1

0

0

v0,+/5

v1,+/4

v2,+/4

v3,+/0

v0,−/5

v1,−/4

v2,−/4

v3,−/0

+1

+1

+1

+1

+1

+1
+1

+1

-1

+1

+1

+1

+1

+1

-1

+1

Figure 3: A bounded parity game with weights G (left) and the associated energy parity
game Gv0 (right). The unnamed vertices of Player 1 (Player 0) are of the form
((v, v′), p, 1) (of the form ((v, v′), p, 0)) when between the vertices (v, p) and (v′, p′).
All missing edge weights in Gv0 are 0.

Example 5.5. Consider the bounded parity game with weights depicted on the left hand
side of Figure 3 and the associated energy parity game Gv0 on the right side. First, let
us note that all other Gv for v 6= v0 are trivial in that they all consist of a single vertex
(reachable from (v,+)), which has even color with a self-loop of weight zero. Hence, Player 0
wins each of these games from (v,+).

Player 1 wins G from v0, where a request for color 5 is opened, which is then kept
unanswered with infinite cost by using the self-loop at v1 or v2 ad infinitum, depending on
which successor Player 0 picks.

We show that Player 1 wins Gv0 from (v0,+): the outgoing edges of (v0,+) correspond
to picking the successor v1 or v2 as in G. Before this is executed, however, Player 1 gets
to pick the polarity of the successor: she should pick + for v1 and − for v2. Now, Player 0
may use the self-loop at her “tiny” vertices ad infinitum. These vertices have color one, i.e.,
Player 1 wins the resulting play. Otherwise, we reach the vertex (v1,+) or (v2,−). From
both vertices, Player 1 can enforce a loop of negative weight, which allows him to win by
violating the energy condition.

Note that the winning strategy for Player 1 for G from v0 is very similar to that for her
for Gv0 from (v0,+). We show that one direction holds in general: A winning strategy for
Player 0 for Gv from (v,+) is “essentially” one for him in G from v.

The other direction does, in general, not hold. This can be seen by extending G in
Figure 3 by a vertex v−1 of color 3 with a single outgoing edge to v0 (with arbitrary weight)
and no incoming edges. We call this extended bounded parity game with weights G′. In
the resulting energy parity game G′v−1

, vertices of the form (vi, p) with i ∈ {1, 2} in Gv−1

are winning sinks for Player 0. Also, Player 0 has a strategy to ensure that such a sink is
reached when starting in (v−1,+). Hence, he wins G′v−1

from (v−1,+). However, he does

not win the extended bounded parity game with weights G′ from v−1, as Player 1 can still
win by remaining in either v1 or v2 ad infinitum. By doing this, she keeps the request of
color 5, which is opened when visiting v0 at the second position of every play starting in v−1,
unanswered with infinite cost.

20:14 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

The reason for the other direction failing is the special role the initial request of the
vertex v inducing Gv plays in the construction: It is the request Player 1 aims to keep
unanswered with infinite cost. To overcome this and to complete our construction, we show
a statement reminiscent of Lemma 4.1: If Player 0 wins Gv from (v,+) for every v, then
she also wins G from every vertex. With this relation at hand, one can again construct a
fixed-point algorithm solving bounded parity games with weights using an oracle for solving
energy parity games that is very similar to Algorithm 1.

Formally, we have the following lemma, which forms the technical core of our algorithm
that solves bounded parity games with weights by solving energy parity games.

Lemma 5.6. Let G be a bounded parity game with weights with vertex set V .

(1) Let v∗ ∈ V . If Player 1 wins Gv∗ from (v∗,+), then v∗ ∈ W1(G).
(2) If Player 0 wins Gv∗ from (v∗,+) for all v∗ ∈ V , then W1(G) = ∅.

Before we prove this lemma, we first note that it is the main building block for the algorithm
that solves bounded parity games with weights by repeatedly solving energy parity games,
which is very similar to Algorithm 1. Indeed, we just swap the roles of the players: We
compute 1-attractors instead of 0-attractors and we change the definition of Xk. Hence, we
obtain Algorithm 2.

Algorithm 2 A fixed-point algorithm computing W1(A,BndWeightParity(Ω, w)).

Input: Bounded parity game with weights G with arena A, coloring Ω and weighting w
1: k = 0; W k

1 = ∅; Ak = A
2: repeat
3: k = k + 1
4: Xk = {v∗ | Player 1 wins the energy parity game ((Ak−1)v∗ ,Ωv∗ , wv∗) from (v∗,+)}
5: W k

1 = W k−1
1 ∪Attr

Ak−1

1 (Xk)

6: Ak = Ak−1 \Attr
Ak−1

1 (Xk)
7: until Xk = ∅
8: return W k

1

Algorithm 2 terminates after solving at most a quadratic number of energy parity
games of polynomial size. Furthermore, the proof of correctness is analogous to the one for
Algorithm 1, relying on Lemma 5.6. We only need two further properties: the 1-extendability

of BndWeightParity(Ω, w), and an assertion that Attr
Ak−1

1 (Xk) is a trap for Player 0 in Ak−1.
Both are easy to verify.

After plugging Algorithm 2 into Algorithm 1, Proposition 5.4 yields our main theorem,
settling the complexity of solving parity games with weights.

Theorem 5.7. The following problem is in NP∩co-NP and can be solved in pseudo-quasi-
polynomial time:

“Given a parity game with weights G and a vertex v in G, does Player 0
win G from v?”

It remains to prove Lemma 5.6. We do so in the following section.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:15

5.3. Proof of Lemma 5.6. We prove the two assertions of Lemma 5.6 separately from
each other: We first show Item 1 of Lemma 5.6, before continuing to show Item 2. In order
to prepare for this, however, we first introduce some notation. Let v∗ ∈ V and consider Gv∗ .
We distinguish three types of plays in Gv∗ :
Type -1: Plays that have a suffix (e, p, 0)ω for some e ∈ E and some p ∈ P .
Type 0: Plays that visit infinitely many vertices from both V × P and E × P × {0, 1}.
Type 1: Plays that have a suffix (v, p)ω. Note that this implies Ω(v) ∈ Ans(Ω(v∗)).

Clearly, plays of Type −1 are losing for Player 0 due to the coloring of G′v∗ labeling
vertices of the form (e, p, 0) with the odd color one. Dually, plays of Type 1 are losing for
Player 1, since Ω(v) ∈ Ans(Ω(v∗)) implies that (v, p) carries color zero and its only outgoing
edge is a self-loop of weight 0. We formalize this observation in the following remark.

Remark 5.8. Let ρ′ be a play in Gv∗ that starts in (v∗, p).

(1) If ρ′ is consistent with a winning strategy for Player 0 from (v∗, p), then ρ′ is not a play
of Type −1.

(2) If ρ′ is consistent with a winning strategy for Player 1 from (v∗, p), then ρ′ is not a play
of Type 1.

In order to remove the added vertices of the form E × P × {0, 1} from plays in Gv∗ , we
define the homomorphism unpol : (V ′)∗ ∪ (V ′)ω → V ∗ ∪ V ω induced by unpol(v, p) = v
and unpol(e, p, i) = ε for v ∈ V , e ∈ E, p ∈ P , and i ∈ {0, 1}. Let ρ′ ∈ (V ′)∗ ∪ (V ′)ω. We
call unpol(ρ′) the unpolarization of ρ′.

Remark 5.9. Let ρ′ be a play of Type 0 in some Gv∗ . We have ρ′ ∈ Parity(Ωv∗) if and only
if unpol(ρ′) ∈ Parity(Ω).

5.3.1. Proof of Item 1 of Lemma 5.6. Recall that we need to show that Player 1 wins the
bounded parity game with weights G from v∗ if she wins the energy-parity game Gv∗ from
(v∗,+). Thus, let τv∗ be a winning strategy for Player 1 from (v∗,+) in Gv∗ . We define a
winning strategy τ for her from v∗ in G such that τ mimics the moves made by τv∗ . To this
end, τ keeps track of a play prefix Gv∗ . Formally, we define τ together with a simulation
function h that satisfies the following invariant:

If π is a nonempty play prefix in A that starts in v∗, is consistent with τ ,
and ends in some v, then h(π) is a play prefix in Av∗ that starts in (v∗,+), is
consistent with τv∗ , and ends in some (v, p). Furthermore, unpol(h(π)) = π.

Recall that, if h has the properties described above, then, due to the structure of Av∗ ,
for each π, given h(π), the strategy τv∗ prescribes a move to some vertex ((v, v′), p, 1),
where (v, v′) ∈ E. We can mimic this choice by moving to v′ in G.

We now define h and τ formally and begin with h(v∗) = (v∗,+), which clearly satisfies
the invariant. Now let π = v0 · · · vj be some nonempty play prefix in A beginning in v∗ and
consistent with τ such that h(π) is defined. Due to the invariant, h(π) ends in (vj , pj) for
some pj ∈ P .

If vj ∈ V1, there is a unique vertex vj+1 such that h(π) · ((vj , vj+1), pj , 1) is consistent
with τv∗ . We define τ(π) = vj+1. Such a vj+1 exists, because (vj , pj), the last vertex of h(π),
satisfies Ω(vj) /∈ Ans(Ω(v∗)) due to the invariant, Item 2 of Remark 5.8, and because the
answering vertices are sinks. If, however, vj ∈ V0, then let vj+1 be an arbitrary successor
of vj in A. In either case, it remains to define h(π · vj+1).

20:16 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

Since we want to simulate the move from vj to vj+1 in h(π · vj+1), we first move
from (vj , pj) to ((vj , vj+1), pj , 1). Moreover, in order to satisfy the invariant, we aim to
simulate the play prefix π · vj+1 such that h(π · vj+1) is consistent with τv∗ . This strategy
may prescribe for Player 1 to either preserve the polarity pj , or to switch it during the
simulated move from vj to vj+1.

In the former case, i.e., if τv∗(h(π) · ((vj , vj+1), pj , 1)) = (vj+1, pj), we define

h(π · vj+1) = h(π) · ((vj , vj+1), pj , 1) · (vj+1, pj) .

In the latter case, Player 0 gets an opportunity to recharge the energy by taking the self-loop
of the vertex ((vj , vj+1), pj , 0) finitely often. We opt to let her recover the energy lost so far
in the play prefix, i.e., we pick cj = max{0,−w(h(π) · ((vj , vj+1), pj , 1))} and define

h(π · vj+1) = h(π) · ((vj , vj+1), pj , 1) · ((vj , vj+1), pj , 0)cj+1 · (vj+1, pj)

in this case. Since h(π · vj+1) is consistent with τv∗ in either case, we satisfy the invariant in
either case. This completes the definition of τ and h.

It remains to show that τ is indeed winning from v∗ in G. To this end, let ρ = v0v1v2 · · ·
be a play in A that starts in v∗ and that is consistent with τ . We need to show ρ /∈
BndWeightParity(Ω, w).

Note that h(v0 · · · vj) is a strict prefix of h(v0 · · · vj + 1) for every j. As each such
h(v0 · · · vj) is a play prefix in Av∗ , there is a unique infinite play ρ′ in Av∗ such that each
h(v0 · · · vj) is a prefix of ρ′, i.e, ρ′ is the limit of the h(v0 · · · vj) for increasing prefixes v0 · · · vj
of ρ. Due to the invariant, ρ′ starts in (v∗,+) and is consistent with τv∗ . Moreover, due to
the construction of h, we obtain unpol(ρ′) = ρ. Finally, we have that ρ′ is a play of Type 0
in Gv∗ . Hence, due to Remark 5.9, ρ satisfies the parity condition if and only if ρ′ satisfies
the parity condition.

As the play ρ′ is consistent with the winning strategy τv∗ for Player 1, we have ρ′ /∈
EnergyParity(Ωv∗ , wv∗), i.e., ρ′ either violates the parity condition or the energy condition.
Hence, as argued above, if ρ′ violates the parity condition, then so does ρ, i.e., ρ is indeed
winning for Player 1.

Now assume that ρ′ violates the energy condition. Due to the structure of Av∗ and the
construction of h we have

ρ′ = Πj=0,1,2,...(vj , pj) · ((vj , vj+1), pj , 1) · ((vj , vj+1), pj , 0)mj

for some mj ∈ N. Since ρ′ violates the energy condition, we have infj∈Nw((v0, p0) · · · (vj , pj) ·
((vj , vj+1), pj , 1)) = −∞. The restriction to play prefixes of this form suffices due to the
structure of Av∗ and, in turn, the structure of ρ′. Moreover, since Player 1 wins Gv∗
from (v∗,+), the initial vertices v∗ and (v∗,+) of ρ and ρ′, respectively, have the same odd
color. Also, as ρ′ is a play of Type 0, the request for the color Ω(v∗) is never answered
in ρ or ρ′. We show that the request for Ω(v∗) in ρ is unanswered with infinite cost, which
concludes the proof.

To this end, we split ρ′ into infixes of constant polarity. Given a vertex v = (v′, p)
or v = ((v′, v′′), p, i), we call p the polarity of v. Let ρ′ = µ′0µ

′
1µ
′
2 · · · , where each µ′j is a

maximal finite (or infinite) infix (or suffix) of ρ′, such that all vertices in µ′j have the same

polarity. We call an infix µ′j of ρ′ an equi-polarity infix (EPI) of ρ′.

Since the polarity remains constant throughout each µ′j , Player 0 only resets the energy

via repeatedly traversing a self-loop of a vertex in Av∗ at the last vertex visited in µ′j , if at

all. Hence, the energy levels attained during µ′j and unpol(µ′j) are closely related.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:17

Remark 5.10. Let µ′ be an EPI beginning in (vj , pj) and let µ = unpol(µ′) = vjvj+1vj+2 · · · .
For each j′ with j ≤ j′ < j + |µ|, we have |w(vj · · · vj′)| = |w((vj , pj) · · · (vj′ , pj′))|.

In particular, Remark 5.10, the structure of Av∗ , and the definition of h imply that we
have Ampl(unpol(µ′)) = Ampl(µ′) for all EPIs µ′ of ρ′. Thus, if there exist only finitely
many EPIs of ρ′, let µ′ be the infinite final EPI of ρ′, let µ = unpol(µ′), and note that, due
to Ampl(ρ′) =∞, we have Ampl(µ′) =∞. Due to Remark 5.10, we obtain Ampl(µ) =∞,
which implies that the request posed at the initial position of ρ is unanswered with infinite
cost due to the reasoning above, as µ is a suffix of ρ.

If, however, there exist infinitely many EPIs of ρ′, assume towards a contradiction that
the cost of answering the request posed at the initial position of ρ is finite. By construction
of ρ′, the energy level is nonnegative at the end of each EPI. Since ρ′ violates the energy
condition, for each bound b ∈ N there exists an EPI µ′ of ρ′ with a prefix of weight strictly
smaller than −b. We obtain Ampl(unpol(µ′)) > b via Remark 5.10. This contradicts the
cost of answering the request posed at the initial position of ρ being bounded and concludes
the proof of Item 1 of Lemma 5.6.

5.3.2. Proof of Item 2 of Lemma 5.6. To prove Item 2 of Lemma 5.6, we show that Player 0
wins the bounded parity game with weights G from every vertex, if he wins each energy-parity
game Gv∗ from (v∗,+). To this end, we construct a strategy σ for Player 0 in G that is
winning for him from each vertex v ∈ V . As winning regions are disjoint, this implies the
desired result.

For each energy parity game Gv = (Av,Ωv, wv) we have n′ = |Av| ∈ O(|A|2), we
have d′ = |Ωv(V

′)| = |Ω(V)| + 2, and we have W ′ = max(w(E′)) = max(w(E) ∪ {1}),
where E and E′ are the sets of edges in A and the Av, respectively. Note that the
values n′, d′, and W ′ of Gv are independent of the vertex v, which explains our notation.
Due to the assumption of the statement and Proposition 5.2, for each v ∈ V , there exists a
finite-state strategy σv with at most n′d′W ′ states that is winning for Player 0 from (v,+)
in Gv.

We construct the winning strategy σ for Player 0 in G by “stitching together” the
individual σv. To this end, given a play prefix, we identify the request which should be
answered most urgently. Say this request was opened by visiting vertex v. The strategy σ
then mimics the moves made by σv when starting in (v,+). Once the request for Ω(v) is
answered, σ makes arbitrary moves until a new request is opened.

Formally, given a play prefix π = v0 · · · vj , we say that a request for color c is open in π
if there exists a position j′ with 0 ≤ j′ ≤ j such that Ω(vj′) = c and, for all positions j′′

with j′ ≤ j′′ ≤ j, we have Ω(vj′′) /∈ Ans(Ω(vj′)). Clearly there is never an open request for
an even color.

Due to monotonicity, answering an open request of color c also answers all smaller open
requests. Hence, the most relevant request, i.e., the largest color with an open request, is of
special interest during a play. As alluded to above, it is this color that guides the strategy
we are about to construct. To define it formally, we need to introduce some notation to refer
to the position where the most relevant request has been opened.

If there is no open request in π, the position of the most relevant request is undefined
and we write posMRR(π) = ⊥. Otherwise, let c be the maximal color for which there is an
open request in π. We define posMRR(π) as the smallest position j′, such that the request
for color c is open in all prefixes of π of length greater than j′.

20:18 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

v0/0 v1/0 v2/2 v3/1 v4/0 v5/1 v6/3 v7/1 v8/4 v9/0 v10/2 v11/1 v12/1 · · ·

µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ7µ7

Figure 4: A play ρ, its induced color sequence, its most relevant requests, and the ESIs of ρ.

As an example, consider the play prefix shown in Figure 4 using the notation v/Ω(v).
We mark a position j with solid background if posMRR(v0 · · · vj) = j and with dashed
background if posMRR(v0 · · · vj) = ⊥. Otherwise, i.e., if ⊥ 6= posMRR(v0 · · · vj) < j, we
leave j unmarked. For those positions, posMRR(v0 · · · vj) is equal to the largest (i.e., last
visited) earlier position marked in solid background. We furthermore denote the value
of posMRR(v0 · · · vj) by an arrow going from position j to position posMRR(v0 · · · vj).

In order to leverage the moves made by the strategies for the Gv in G, we need to
simulate play prefixes in the latter game in the former ones. To this end, we again define σ
together with a simulation function h. This function h maps a play prefix consistent with σ
to a sequence of vertices from V ′ (not necessarily a play prefix) such that we are able to
leverage the choices made by the σv in order to define σ. Our aim is to define h such that it
satisfies the following invariant:

Let π = v0 · · · vj be a play prefix in A consistent with σ. Then h(π) ends in
some (vj , pj). Moreover, if posMRR(π) = j′ 6= ⊥, then h(π) has a (unique)
suffix π′ = (vj′ ,+)(vj′+1, pj′+1) · · · (vj , pj) that is consistent with σvj′ and

satisfies unpol(π′) = vj′ · · · vj .
We define h and σ inductively and begin with h(v) = (v,+) for each v ∈ V , which clearly
satisfies the invariant. Now let π = v0 · · · vj be a nonempty play prefix in A and consistent
with σ such that h(π) is defined. We again first determine a successor of vj , defining σ(π)
along the way if vj is a vertex of Player 0.

If vj ∈ V1, let vj+1 be an arbitrary successor of vj in A, as Player 1 may move to
any successor of vj . If, however, vj ∈ V0, we distinguish two cases based on whether or
not posMRR(π) is defined. If posMRR(π) = ⊥, again let vj+1 be an arbitrary successor
of vj . This reflects the fact that Player 0 may move to an arbitrary successor if there
is no open request. If, however, posMRR(π) = j′ 6= ⊥, then the invariant of h yields a
suffix (vj′ ,+) · · · (vj , pj) of h(π) that is consistent with σvj′ . Let vj+1 be the unique vertex

such that (vj′ ,+) · · · (vj , pj) · ((vj , vj+1), pj , 1) is consistent with σvj′ . Such a vertex vj+1

exists, because the request posed by visiting vj′ is open in π due to posMRR(π) = j′ and
since the color sequences induced by vj′ · · · vj and (vj′ ,+) · · · (vj , pj) coincide, save for the
irrelevant intermediate vertices of colors zero and one. Hence, (vj , pj) is not an accepting
sink in Gvj′ . Since vj ∈ V0, the vertex vj+1 is unique. In both cases, we define σ(π) = vj+1.

This concludes the definition of σ.
It remains to define h(π · vj+1) such that it satisfies the above invariant. To this end,

we use one of two operations. Firstly, we define the discontinuous extension of h(π)
with vj+1 as

h(π) · (vj+1,+) .

Secondly, we define a simulated extension of h(π) such that we obtain h(π ·vj+1) by simulating
the move from vj to vj+1 in some Gv. Formally, we define the simulated extension of h(π)

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:19

with vj+1 and charge m as

h(π) · ((vj , vj+1), pj , 1) · ((vj , vj+1), pj , 0)m · (vj+1, pj+1) ,

where pj+1 = pj if m = 0 and pj+1 = pj otherwise. This ensures that the extension is a play
infix in some Gv.

In order to define h(π · vj+1) we again distinguish whether or not posMRR(π) is defined.
If posMRR(π) = ⊥, we define h(π ·vj+1) to be the discontinuous extension of h(π) with vj+1.
This clearly satisfies the first condition of the invariant. Moreover, the second condition
of the invariant is satisfied as well: If posMRR(π · vj+1) = ⊥, this condition holds true
vacuously. Otherwise, we have posMRR(π ·vj+1) = j+1 and observe that the suffix (vj+1,+)
of h(π · vj+1) satisfies the second condition of the invariant.

If, however, posMRR(π) 6= ⊥, then let posMRR(π) = j′. By definition of posMRR we
have posMRR(π·vj+1) ∈ {⊥, j′, j+1}. We distinguish two sub-cases and first define h(π·vj+1)
for the case that posMRR(π · vj+1) ∈ {⊥, j + 1}. In this case, the move to vj+1 either
answers the most relevant request in π, or the request posed by visiting vj+1 is itself the
most relevant request of π · vj+1: We have posMRR(π · vj+1) = ⊥ in the former case
and posMRR(π · vj+1) = j + 1 in the latter one. In either case, we define h(π · vj+1) to be
the discontinuous extension of h(π) with vj+1 and observe that the first condition of the
invariant holds true. If posMRR(π · vj+1) = ⊥, the second condition of the invariant holds
true vacuously. If, however, posMRR(π · vj+1) = j + 1, then the suffix (vj+1,+) witnesses
that the second condition of the invariant holds true.

Now assume that the move to vj+1 neither opens a new most relevant request, nor
answers the existing one, i.e., that we have posMRR(π · vj+1) = j′. In this case, we extend
the suffix of h(π) that is consistent with σvj′ by simulating the move from vj to vj+1. Recall

that we picked the vertex vj+1 such that (vj′ ,+) · · · (vj , pj) · ((vj , vj+1), pj , 1) is consistent
with σvj′ . As we can freely choose whether or not Player 1 switches the polarity in the

simulation, we follow the intuition stated during the construction of the polarized arena:
Recall that both players currently play “with respect to” the request for Ω(vj′) opened by
visiting vj′ . Hence, we opt to let Player 1 move to positive polarity if the cost of the request
for Ω(vj′) so far is nonnegative, and let him move to negative polarity otherwise. To this
end, we use the sign function Sgn, which is defined as

Sgn(n) =

{
+ if n ≥ 0 ,

− otherwise .

If Sgn(w(vj′ · · · vj+1)) = pj , we define h(π · vj+1) to be the simulated extension of h(π)
with vj+1 and charge 0, thus implementing the intuition as described above. Otherwise,
i.e., if Sgn(w(vj′ · · · vj+1)) = pj , let m > 0 such that (vj′ ,+) · · · (vj , pj) · ((vj , vj+1), pj , 1) ·
((vj , vj+1), pj , 1)m · (vj+1, pj) is consistent with σvj′ . Such an m exists, as otherwise the

play (vj′ ,+) · · · (vj , pj) · ((vj , vj+1), pj , 1) · ((vj , vj+1), pj , 0)ω of Type −1 that starts in (vj′ ,+)
would be consistent with the winning strategy σvj′ from (vj′ ,+) for Player 0, contradicting

Item 1 of Remark 5.8. We define h(π · vj+1) to be the simulated extension of h(π) with vj+1

and charge m. Since we have posMRR(v0 · · · vj+1) = j′ by assumption, either definition
of h(π · vj+1) satisfies the invariant. This completes the definition of h.

It remains to show that the strategy σ is indeed winning for Player 0 from v∗. To this
end, fix some play ρ = v0v1v2 · · · consistent with σ starting in v∗. Further, let ρ′ be the limit
of the h(π) for increasing prefixes π of ρ, i.e., the unique infinite sequence with prefix h(π)
for every prefix π of ρ.

20:20 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

By the construction of h and ρ′ we obtain unpol(ρ′) = ρ. Hence, ρ′ is of the form
(v0, p0) · · · (v1, p1) · · · (v2, p2) · · · . We call a position j of ρ a discontinuity of ρ if either j = 0
or if h(v0 · · · vj) is the discontinuous extension of h(v0 · · · vj−1) by vj .

Let j and j′ be adjacent discontinuities of ρ. We call the infix vj · · · vj′−1 of ρ an
equi-strategic infix (ESI) of ρ. Moreover, if there only exist finitely many discontinuities
of ρ, let j∗ be its final discontinuity. We call the suffix vj∗vj∗+1vj∗+2 · · · of ρ the terminal
ESI of ρ.

Remark 5.11. Let µ = vjvj+1vj+2 · · · be an ESI of ρ.

(1) If µ is finite, then the infix µ′ of ρ′ starting at position |h(v0 · · · vj)| − 1 and ending at
position |h(v0 · · · vj+|µ|−1)| starts in (vj ,+), ends in some (vj+|µ|−1, p), and is consistent
with σvj .

(2) If µ is infinite, then the suffix µ′ of ρ′ starting at position |h(v0 · · · vj)|−1 starts in (vj ,+)
and is consistent with σvj .

For each position j of ρ we define ESI(j) = k if the k-th ESI of ρ contains vj . Moreover,
if µ = vjvj+1vj+2 · · · is an ESI of ρ, then we call Ω(vj) the characteristic color of µ.
By the construction of h, if the characteristic color of an ESI µ is even, then µ consists
only of a single vertex. If, however, the characteristic color c of an ESI µ is odd, then we
have Ω(v) ≤ c for all vertices v in µ. Moreover, let c′ be the characteristic color of the ESI
succeeding µ, if µ is not the terminal ESI of ρ. Due to the construction of h, we have c′ > c.
If c′ is even, this observation implies c′ ∈ Ans(Ω(v)) for all vertices v in µ. As the number
of colors in G is finite, this in turn implies that the number of ESIs between a request and
its response (if a response exists at all) is bounded.

Remark 5.12. Let j be some position in ρ and let k = ESI(j). Moreover, let d be the
number of colors in G.

(1) If the request at position j is first answered at position j′, then ESI(j′) < k + d
(2) If the request at position j is unanswered in ρ, then ρ contains less than k + d many

ESIs.

Proof. 1. Let ESI(j′) = k′. If Ω(vj) is even, we obtain k = k′ and the claim is trivial.
Thus, assume that Ω(vj) is odd. Since the request at position j is answered in the k′-th
ESI, define the sequence j0 < · · · < jk′−k inductively such that j0 = posMRR(v0 · · · vj)
and such that, for each ` with 0 ≤ ` ≤ k′ − k the position j` is the unique position in ρ
with ESI(j`) 6= ESI(j`−1). We claim that the requests opened by visiting the vj` are answered
at position j′ at the earliest and show this by induction over `.

First consider ` = 0. Since Ω(vj) is odd, we obtain j0 6= ⊥ and, hence, that Ω(vj0)
is odd. Assume towards a contradiction that the request at position j0 is answered at
position j′′ < j′. If j′′ < j, then this contradicts our choice of j0 as the position of
the most relevant request of the play prefix v0 · · · vj : Since Ω(vj) is odd, we would then
obtain posMRR(v0 · · · vj) > j′′ > 0 = posMRR(v0 · · · vj). If, however, j < j′′ < j′, we
obtain that the request at position j is answered at position j′′, since Ω(vj0) ≥ Ω(vj) by
definition of the most relevant requests. Hence, we obtain j′′ ≥ j′.

Now consider j` for 0 < ` ≤ k′ − k: Since we have Ω(vj`) > Ω(vj`−1
), an answer to the

request posed by vj` would answer the request posed by vj`−1
as well. Via the induction

hypothesis we obtain that vj` is answered at position j′ at the earliest.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:21

Thus, the only possibility to switch the mimicked strategy and enter a new ESI is by
visiting a vertex of larger odd color than the vertex at the initial position of the current ESI.
Hence, the color of the vj` is strictly monotonically increasing, which implies k′ < k + d.

2. Since the request at position j is unanswered, we obtain that Ω(vj) is odd. Again
define the sequence j0 < j1 < j2 < · · · inductively such that j0 = posMRR(v0 · · · vj) and
such that, for each ` > 0, the position j` is the unique position in ρ with ESI(j`) 6= ESI(j`−1).
Due to similar reasoning as in the previous case, we obtain that the request posed at each j`
is unanswered. Thus, the only possibility to enter a new ESI is again by visiting a vertex
of higher odd color than the vertex at the initial position of the current ESI, which again
implies that the number of ESIs in ρ is bounded by k + d.

Recall that the bounded parity condition with weights requires the play ρ to not only
satisfy the parity condition, but also that the cost of almost all requests is bounded and
that there exists no unanswered request with infinite cost in ρ. We first show that ρ satisfies
the classical parity condition. In a second step, we then show that there exists a bound on
the cost of each (answered or unanswered) request in ρ. The former condition, i.e., that ρ
satisfies the parity condition, is in large parts implied by Remark 5.12.

Lemma 5.13. The play ρ satisfies the parity condition.

Proof. If ρ contains no unanswered requests, then it vacuously satisfies the parity condition.
Hence, let j be the position of such an unanswered request in ρ. Due to Remark 5.12,
we obtain that there exist only finitely many ESIs in ρ. Let µ = vj∗vj∗+1vj∗+2 · · · be the
terminal ESI of ρ. By the construction of h, there exists a suffix µ′ of ρ′ with unpol(µ′) = µ.
Due to Item 2 of Remark 5.11, the suffix µ′ begins in (vj∗ ,+) and is consistent with the
winning strategy σvj∗ for Player 0 from (vj∗ ,+) in Gvj∗ . Moreover, µ′ is a play of Type 0

due to µ′ being the terminal ESI of ρ and due to being consistent with σvj∗ . Hence, we
obtain that µ satisfies the parity condition via Remark 5.9, which in turn implies that ρ
satisfies the parity condition.

It remains to show that the costs of requests in ρ are bounded. Recall that we defined
n′ = |Av|, d′ as the largest color of a vertex in the Gv, and W ′ as the largest absolute
weight of an edge. We claim that the costs of the most relevant requests in ρ are bounded
by (n′d′W ′)2. This implies that the cost of all requests is bounded: Due to Remark 5.12 we
obtain that the number of ESIs between a request and its response, if one exists, is bounded
by d. Hence, it suffices to show that each ESI contributes at most a bounded amount to the
cost of answering a request.

Lemma 5.14. Let µ = vjvj+1vj+2 · · · be an ESI of ρ. For each j′ with j ≤ j′ < j + |µ| we

have |w(vj · · · vj′)| ≤ d′(n′W ′)2.

Proof. Since µ is an ESI, Player 0 mimicks the choices of the strategy σvj , which is a
winning strategy for him in the induced energy parity game Gvj . Recall that σvj is of size at
most n′d′W ′. For the sake of readability, we define s = n′d′W ′.

Now, towards a contradiction, let j′ be a position with j ≤ j′ < j + |µ|, such that we

have |w(vj · · · vj′)| > d′(n′W ′)2 = n′sW ′. We define π = vj · · · vj′ and assume w(π) > n′sW ′,
i.e., that the infix π violates the claimed bound from above. The other case is dual. Let j′′

be the minimal position in µ such that the weight accrued by the ESI is strictly positive
starting at j′′ until it reaches j′. Formally, we define j′′ as the minimal position that
satisfies w(vj · · · vk) > 0 for all k ∈ {j′′, . . . , j}.

20:22 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

w

0 ρ

∆

∆

µj

∆

∆

µj+1

∆

∆

µj+2

∆

∆

µj+3

∆

∆

µj+4

Figure 5: Bounds on the cost of a request over time given by Lemma 5.14. We write ∆ =
d′(n′W ′)2.

Due to the definition of W we obtain w(vj · · · vj′′) ≤ W . Since we furthermore
have w(π) = w(vj · · · vj′) > n′sW ′ by assumption, we obtain

w(vj′′ · · · vj′) = w(vj · · · vj′)− w(vj · · · vj′′) > n′sW ′ −W ′ ≥ n′sW ′ −W ′ + 1 .

Now consider the unique infix π′ = (vj , pj) · · · (vj′ , pj′) of ρ′ that corresponds to the infix π
of ρ. Since π is an infix of a single ESI, π′ is a play prefix in the energy parity game Gvj that
is consistent with the strategy σvj , which is winning for Player 0 from (vj , pj). Furthermore,
since we have w(vj · · · vk) > 0 for all k ∈ {j′′, . . . , j′}, the polarity of (vj′′ , pj′′) · · · (vj′ , pj′) is
constant and positive. Hence, by construction of ρ′, we obtain

wvj ((vj′′ , pj′′) · · · (vj′ , pj′)) = −w(vj′′ · · · vj′) .

Due to the above inequality, this implies

wvj ((vj′′ , pj′′) · · · (vj′ , pj′)) ≤ −n′sW ′ +W ′ − 1 = −(n′s− 1)W − 1 .

As argued above, the infix (vj′′ , pj′′) · · · (vj′ , pj′) is an infix of a play in the energy parity
game Gvj that starts in (vj , pj) and is consistent with the strategy σvj for Player 0. Fur-
thermore, σvj is winning for Player 0 from (vj , pj) and is of size s. This yields the desired
contradiction to Lemma 5.3 on Page 10.

Due to Lemma 5.14, each ESI strictly in-between a request and its response contributes
at most d′(n′W ′)2 to the cost incurred by the request. Similarly, the ESI containing the

request and its response also contribute at most d′(n′W ′)2 each to the cost of answering
the given request. Hence, via Remark 5.12, we obtain that each (answered or unanswered)

request in ρ incurs a cost of at most (d′n′W ′)2. We illustrate this argument in Figure 5.
Hence, σ is a winning strategy for Player 0 from v∗ in G, as each play that starts in v∗ and
is consistent with σ satisfies the parity condition due to Lemma 5.13 and because no such
play contains a request that is unanswered with infinite cost, which concludes the proof of
Item 2 of Lemma 5.6.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:23

Before we conclude this section, we formalize the above observation about the winning
strategy for Player 0 uniformly bounding the costs of requests in the following corollary. To
this end, we use the upper bounds n′ ≤ 2n+ 4n2, d′ ≤ d+ 2, and W ′ ≤W + 1.

Corollary 5.15. Let G be a bounded parity game with weights with n vertices, d colors, and
largest absolute weight W . There exists a strategy σ for Player 0 that is winning from W0(G),
such that in each play ρ consistent with σ, each request is answered or unanswered with cost

at most ((d+ 2)(2n+ 4n2)(W + 1))
2
.

Using arguments from Section 7, this bound can be improved to ((d+ 2)(6n)(W + 1))2.
However, as we only use Corollary 5.15 later to obtain some upper bound on the quality of
such strategies, we refrain from repeating these arguments here.

6. Memory Requirements

We now discuss the upper and lower bounds on the memory required to implement winning
strategies for either player. Recall that we use binary encoding to denote weights, i.e., weights
may be exponential in the size of the game. In this section we show pseudo-polynomial
bounds on the necessary and sufficient memory for Player 0 to win parity games with weights.
In contrast, Player 1 requires infinite memory.

Theorem 6.1. Let G be a parity game with weights with n vertices, d colors, and largest
absolute weight W assigned to any edge in G.

(1) Player 0 has a winning strategy σ from W0(G) with |σ| ∈ O(nd2W). This bound is tight.
(2) There exists a parity game with weights G, such that Player 1 has a winning strategy

from each vertex v in G, but she has no finite-state winning strategy from any v in G.

The proof of the second item of Theorem 6.1 is straightforward, since Player 1 already
requires infinite memory to implement winning strategies in finitary parity games [CHH09].
Since parity games with weights subsume finitary parity games, this result carries over to our
setting. We show the game witnessing this lower bound on the right-hand side of Figure 2
on Page 9.

In contrast, pseudo-polynomial memory is sufficient, but also necessary, for Player 0.
To show this claim, we first prove that the winning strategy for him in a bounded parity
game with weights constructed in the proof of Item 2 of Lemma 5.6 suffers at most a linear
blowup in comparison to his winning strategies in the underlying energy parity games. This
is sufficient as we have argued in Section 4 that the construction of a winning strategy for
Player 0 in a parity game with weights suffers no blowup in comparison to the underlying
bounded parity games with weights.

Lemma 6.2. Let G be a bounded parity game with weights and let n, d, and W be de-
fined analogously to Theorem 6.1. Player 0 has a finite-state winning strategy of size at
most d(6n)(d+ 2)(W + 1) from W0(G).

Proof. Let V and E be the vertex and edge sets of G and recall that we have defined P =
{+,−}. In the proof of Item 2 of Lemma 5.6, we have constructed an energy parity game Gv
with vertices (V × P)∪ (E × P × {0, 1}) for each vertex v of G. We have then constructed a
winning strategy σ for Player 0 for G out of winning strategies for him in the Gv. As it is
straightforward to implement σ via the disjoint union of memory structures implementing
the constituent strategies, this approach yields an upper bound of n(2n+ 4n2)(d+ 2)(W + 1)

20:24 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

vreq/3 v′req,1/1 v′req,n/1 vdel/1 v′ans/2 vans/4
0 W

· · ·
WW

· · ·
WW

· · ·
W W

−1

0 0

n vertices

0

0

Figure 6: A game of size O(n) in which Player 0 only wins with strategies of size at
least nW + 1.

on the size of σ due to the upper bound on the size of winning strategies for Player 0 in
energy parity games from Proposition 5.2.

In the construction of the Gv, however, we only store the edges chosen by the players in
the vertices of the form E × P × {0, 1} for didactic purposes. In fact, it suffices to store the
target vertex of an edge instead, resulting in a vertex set of size 6n of the Gv. Moreover,
recall that the definition of the Gv only takes the color of v into account: If the vertices v
and v′ have the same color, then the games Gv and Gv′ are isomorphic. Further, Chatterjee
and Doyen have shown that, if Player 0 wins an energy parity game G′ with n′ vertices, d′

colors, and largest absolute weight W ′, then he has a uniform strategy of size n′d′W ′ that is
winning from all vertices from which he wins G′ [CD12]. Hence, it suffices to combine at
most d strategies, each of size (6n)(d+ 2)(W + 1), in order to obtain a winning strategy for
Player 0 in G.

Having established an upper bound on the memory required by Player 0, we now proceed
to show that this bound is tight.

Lemma 6.3. Let n,W ∈ N. There exists a parity game with weights Gn,W with O(n)
vertices and largest absolute weight W such that Player 0 wins Gn,W from every vertex, but
each winning strategy for him is of size at least nW + 1.

Proof. We show the game Gn,W in Figure 6. This game has n+ 4 vertices and the largest
absolute weight of an edge is W as required. The only vertices with more than one successor
are vdel ∈ V0 and v′ans ∈ V1. Thus, the only choice of Player 0 in Gn,W consists in determining
how often to take the self-loop of vertex vdel upon each visit. Dually, the only choice of
Player 1 consists of deciding whether or not to move from v′ans to v′req,1, or to continue
to vans.

Player 0 wins Gn,W from each vertex by taking the self-loop of vdel nW times upon each
visit to vdel and by subsequently moving to v′ans. Each request in each play that is consistent
with this strategy is answered or unanswered with cost at most nW , independent of the
choices of Player 1 in v′ans. Moreover, as the only way to visit vreq is to move there from vans,
the play visits vans infinitely often if and only if it visits vreq infinitely often. Further, the
play visits v′req,1 and v′ans infinitely often. Hence, almost all requests are answered, i.e., this
strategy is winning for Player 0 from all vertices. This strategy can be implemented by a
counter that counts the number of self-loops of vdel taken so far, which is reset to zero upon
leaving vdel. As this counter is bounded by nW , the strategy is of size nW + 1.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:25

It remains to show that each finite-state winning strategy for Player 0 has at least nW+1
memory states. Towards a contradiction, let σ be a winning strategy for Player 0 from
some vertex v with less than nW + 1 memory states. We implement a strategy for Player 1
using a counter κ that is initialized with one if v = vreq and with zero otherwise. Upon
each visit to vreq we increment κ. After each visit to vreq, the strategy τ prescribes moving
from v′ans to v′req,1 for the first κ visits to v′ans, and it prescribes moving from v′ans to vans at

the (κ+ 1)-th visit to v′ans. Hence, after the (κ+ 1)-th visit to v′ans, the vertex vreq is visited
again, κ is incremented, and the behavior of τ described above repeats with incremented κ.

Let ρ be a play consistent with σ and τ . Since σ is winning for Player 0, the play ρ
does not remain in vdel from some point onwards ad infinitum, as this would violate the
parity condition and thus contradict σ being winning from v for Player 0. Hence, playing
consistently with τ , Player 1 enforces a play that starts with a (possibly empty) finite prefix
that ends before the first visit to vreq and that continues with infinitely many rounds, each
starting in vreq. The j-th round is of the form

vreq ·Πk=0,...,j(v
′
req,1 · · · v′req,n · (vdel)

`j,k · v′ans) · vans .

We first show `j,k < nW + 1 for all j, k. Towards a contradiction, assume `j,k ≥ nW + 1
for some j, k ∈ N. Since σ is of size less than nW + 1, a straightforward pumping argument
shows that the play ρ′ consisting of the finite prefix of ρ ending before the first visit to vreq

concatenated with the first j − 1 rounds of ρ, but ending with the infinite suffix

vreq ·Πk′=0,...,k−1(v′req,1 · · · v′req,n · (vdel)
`j,k′ · v′ans) · v′req,1 · · · v′req,n · (vdel)

ω ,

is consistent with σ. This, however, contradicts σ being a winning strategy for Player 0
from v as vdel has the odd color one, i.e., as the resulting play violates the parity condition.

Hence, we obtain `j,k < nW + 1 for all j, k, which, in turn, yields w((vdel)
`j,k) > −nW .

Since each edge (v′req,n′ , v
′
req,n′+1) for 1 ≤ n′ < n as well as the edge (v′req,n, v

′
del) has

weight W , we obtain

w(v′req,1 · · · v′req,n · (vdel)
`j,k · v′ans) > 0

for all j, k. This, in turn, implies

w(vreq ·Πk=0,...,j(v
′
req,1 · · · v′req,n · (vdel)

`j,k′ · v′ans)) ≥ j + 1

for each j. Since, as argued above, the play ρ consistent with σ consists of infinitely
many rounds, we obtain that for each b ∈ N there exist infinitely many requests in ρ that
are answered with cost at least b. Hence, the costs-of-requests along ρ diverge, which
contradicts σ being a winning strategy for Player 0.

This concludes the study of memory requirements for both players in parity games
with weights. For Player 0, the results from Theorem 6.1 also hold true for bounded parity
games with weights: Lemma 6.2 directly yields an upper bound on the memory required by
Player 0 in order to win in bounded parity games with weights, while it is easy to see that
Player 0 also wins the games constructed in the proof of Lemma 6.3 when interpreting them
as bounded parity games with weights, but only using a strategy of size nW + 1.

For Player 1, however, these results do not directly carry over to the setting of bounded
parity games with weights. She has, in fact, a positional winning strategy for the game
witnessing necessity of infinite memory for her in parity games with weights shown in Figure 2
on Page 9, when interpreted as a bounded parity game with weights. Recall that, in the
proof of the first item of Lemma 5.6, for a given parity game with weights G, we construct a

20:26 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

strategy τ that is winning for Player 1 from a vertex v out of a winning strategy τv for her
in an induced energy parity game Gv from a designated vertex v′.

While τv can be assumed to be positional as shown by Chatterjee and Doyen [CD12]
(cf. Proposition 5.1), the strategy τ keeps track of play prefixes in Gv and thus requires
potentially infinitely many memory states. In particular, in order to win Gv from v′, recall
that it may be necessary to switch between two copies of the arena of G. Whether or not to
perform this switch is governed by the accumulated weight of the play prefix in G thus far.

Hence, our construction from the proof of that lemma does not directly allow us to
obtain positional or finite-state winning strategies for Player 1 in bounded parity games with
weights. It remains open whether Player 1 requires infinite memory to win in bounded parity
games with weights. Since she, however, has finite-state winning strategies in the special
case of bounded parity games with costs as shown by Fijalkow and Zimmermann [FZ14], we
conjecture that she requires at most finite memory for winning strategies in bounded parity
games with weights as well.

We now turn our attention to the quantitative properties of this winning condition. To
this end, we provide tight bounds on the costs of requests that Player 0 can guarantee in a
parity game with weights G, if she wins G at all.

7. Quality of Strategies

We have shown in the previous section that finite-state strategies of bounded size suffice for
Player 0 to win in parity games with weights, while Player 1 clearly requires infinite memory.
However, as we are dealing with a quantitative winning condition, we are not only interested
in the size of winning strategies, but also in their quality. More precisely, we are interested
in an upper bound on the cost of requests that Player 0 can ensure. In this section, we show
that he can guarantee a pseudo-polynomial upper bound on such costs. Dually, Player 1 is
required to unbound the cost of responses.

Theorem 7.1. Let G be a parity game with weights with n vertices, d colors, and largest
absolute weight W .

There exists a b ∈ O((ndW)2) and a strategy σ for Player 0 such that, for all plays ρ
beginning in W0(G) and consistent with σ, we have lim supj→∞Cor(ρ, j) ≤ b. This bound is
tight.

We first show that Player 0 can indeed ensure an upper bound as stated in Theorem 7.1.
We obtain this bound via a straightforward pumping argument leveraging the upper bound
on the size of winning strategies obtained in Lemma 6.2.

Lemma 7.2. Let G, n, d, and W be as in the statement of Theorem 7.1 and let s =
d(6n)(d+ 2)(W + 1). Player 0 has a winning strategy σ such that, for each play ρ that starts
in W0(G) and is consistent with σ, we have lim supj→∞Cor(ρ, j) ≤ nsW .

Proof. Let σ be a winning strategy for Player 0 in G from W0(G) of size at most s. Due to
Lemma 6.2, such a strategy exists. Let ρ = v0v1v2 · · · be a play that starts in W0(G) and
is consistent with σ. We call a position j ∈ N sumptuous if nsW < Cor(ρ, j) <∞. Each
sumptuous position j has some odd color c, and the request for c posed by visiting vj is
eventually answered.

Assume towards a contradiction that there exist infinitely many sumptuous positions.
We define a sequence of positions that begins with the first sumptuous position j0. Let j′0

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:27

w

ρj0 j′0

j1

j′1 j2 j′2

nsW

−nsW
Positively
sumptuous

Negatively
sumptuous

Positively
sumptuous

`0

`′0

`1

`′1

`2

`′2

Figure 7: Illustration of the approach to the proof of Lemma 7.2.

be the minimal position that satisfies Ω(vj′0) ∈ Ans(Ω(vj0)). This position exists since

Cor(ρ, j0) < ∞ due to the definition of sumptuous positions. We continue by defining j1
as the smallest sumptuous position greater than j′0 and by defining j′1 as the minimal
position that satisfies Ω(vj′1) ∈ Ans(Ω(vj1)). Continuing in this manner, we obtain a

sequence j0 < j′0 < j1 < j′1 < j2 < j′2 < · · · , where j0 is the first sumptuous position of ρ,
each j′k for k ≥ 0 is the minimal position that satisfies both j′k > jk and Ω(vj′k) ∈ Ans(Ω(vjk)),

and each jk for k > 0 is the smallest sumptuous position greater than j′k−1. Since there
exist infinitely many sumptuous positions by assumption and since each request posed at a
sumptuous position is answered by definition, the sequence j0 < j′0 < j1 < j′1 < j2 < j′2 < · · ·
is indeed infinite.

Due to the definition of sumptuous positions and the j′k, we have Ampl(vjk · · · vj′k) > nsW

for each k ∈ N. Since ρ is consistent with the finite-state strategy σ of size s, we claim
that in each such vjk · · · vj′k there exists an infix that can be repeated arbitrarily often while

retaining consistency with σ. To identify such infixes, we partition the sumptuous positions jk:
We call a position jk positively sumptuous if there exists a j′ with jk ≤ j′ ≤ j′k such
that w(vjk · · · vj′) > nsW and negatively sumptuous otherwise. In the latter case, there
exists a j′ with jk ≤ j′ ≤ j′k such that w(vjk · · · vj′) < −nsW . See Figure 7 for an illustration.
In particular, note that the third sumptuous position is positively sumptuous, although it
exceeds both the bounds nsW and −nsW .

Let σ be implemented by (M, init, upd). As each edge contributes cost at most W to
Ampl(vjk · · · vj′k), this implies that there exist positions `k and `′k with jk < `k < `′k < j′k
such that

• v`k = v`′k ,

• upd+(v0 · · · v`k) = upd+(v0 · · · v`′k),

• w(v`k · · · v`′k−1) > 0, if jk is positively sumptuous, and such that

• w(v`k · · · v`′k−1) < 0, if jk is negatively sumptuous.

The positions jk, `k, `
′
k, and j′k split ρ into infixes ρ = Πk=0,1,2,...πk,I · πk,II · πk,III · πk,IV ,

where πk,I , πk,II , πk,III , and πk,IV start at jk, `k, `
′
k, and j′k, respectively. Due to the

definition of `k and `′k, the play ρ′ = Πk=0,1,2,...πk,I · (πk,II)k · πk,III · πk,IV is consistent
with σ. The costs-of-response of the requests opened by visiting the vjk , however, diverge
due to |w(πk,II)| = |w(v`k · · · v`′k−1)| > 0. Hence, ρ′ violates the parity condition with

weights, which contradicts that σ is a winning strategy of Player 0.

20:28 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

v1/1 v2/0 · · · vn−1/0 vn/2
W W W W

W

Figure 8: The game Gn,W witnessing a pseudo-polynomial lower bound on the cost that
Player 0 can ensure.

Having thus shown that Player 0 can indeed ensure a pseudo-polynomial upper bound
on the incurred cost, we now proceed to show that this bound is tight. A simple example
shows that there exists a series of parity games with weights in which Player 0 wins from
every vertex, but in which he cannot enforce a sub-pseudo-polynomial cost of any request.

Lemma 7.3. Let n,W ∈ N. There exists a parity game with weights Gn,W with n vertices
and largest absolute weight W such that for each vertex v ∈ W0(G) and for each winning
strategy for Player 0 from v there exists a play ρ starting in v and consistent with σ
with lim supj→∞Cor(ρ, j) ≥ (n− 1)W .

Proof. We show the game Gn,W in Figure 8. The arena of Gn,W is a cycle with n vertices of
Player 1, where each edge has weight W . Moreover, one vertex is labeled with color two, its
directly succeeding vertex is labeled with color one. All remaining vertices have color zero.

Player 0 only has a single strategy in this game and there exist only n plays in Gn,W ,
each starting in a different vertex of Gn,W . In each play, each request for color one is only
answered after n− 1 steps, each contributing a cost of W . Hence, this request incurs a cost
of (n− 1)W . Moreover, as this request is posed and answered infinitely often in each play,
we obtain the desired result.

While Player 0 is able to bound the costs from above by

d(6n2)(d+ 2)W (W + 1) ∈ O((ndW)2) ,

due to Lemma 7.2, we only obtain a sequence of examples witnessing a lower bound
of (n− 1)W ∈ Ω(nW) on these costs due to Lemma 7.3. Thus, while both the upper and
the lower bound are pseudo-polynomial in the size of the game, there remains a polynomial
gap between the two bounds.

The upper bound on the costs is due to the pumping argument presented in Lemma 7.2
leveraging the upper bound on the memory Player 0 requires to implement a winning strategy
due to Lemma 6.2. We have a lower bound of (n− 4)W ∈ Ω(nW) on the memory required
by Player 0 to implement a winning strategy due to Lemma 6.2. Thus, even if we are able to
improve the upper bounds on the memory requirements for Player 0, the pumping argument
leveraged in the proof of Lemma 7.2 can only improve the upper bound on the cost incurred
by Player 0 to d(n− 4)W 2 ∈ O(ndW 2). Hence, the proof methods used in this section do
not enable us to completely close this gap between the upper and the lower bound on the
cost Player 0 is able to enforce.

All bounds obtained in this section also hold for bounded parity games with weights:
The upper bound from Lemma 7.2 holds for bounded parity games with weights since the
bounded parity condition with weights strengthens its unbounded variant. Analogously, the
games constructed for the proof of the lower bound on the incurred cost in Lemma 7.3 yield
the same lower bound for bounded parity games with weights.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:29

8. From Energy Parity Games to (Bounded) Parity Games with Weights

We have discussed in Sections 4 and 5 how to solve parity games with weights via solving
bounded parity games with weights and how to solve the latter games by solving energy
parity games, both steps with a polynomial overhead. An obvious question is whether one
can also solve energy parity games by solving (bounded) parity games with weights. In this
section, we answer this question affirmatively: We show how to transform an energy parity
game into a bounded parity game with weights so that solving the latter also solves the
former. We then show how to transform a bounded parity game with weights into a parity
game with weights with the same relation: solving the latter also solves the former. Both
constructions here are gadget based and increase the size of the arenas only quadratically.
Hence, all three types of games are interreducible with at most polynomial overhead.

8.1. From Energy Parity Games to Bounded Parity Games with Weights. In an
energy parity game, Player 0 wins if the energy increases without a bound, as long as there
is a lower bound. In a bounded parity game, in contrast, he has to ensure both an upper
and a lower bound. Thus, we show in a first step how to modify an energy parity game
so that Player 0 still has to ensure a lower bound on the energy, but can also throw away
unnecessary energy during each transition, thereby also ensuring an upper bound. The most
interesting part of this construction is to determine when energy becomes unnecessary to
ensure a lower bound. Here, we rely on Lemma 5.3.

Formally, let G = (A,Ω, w) be an energy parity game with A = (V, V0, V1, E) where we
assume w.l.o.g. that the minimal color in Ω(V) is strictly greater than 1. Now, we define
G′ = (A′,Ω′, w′) with A = (V, V0, V1, E) where

• V ′ = V ∪ E, V ′0 = V0 ∪ E, and V ′1 = V1,
• E′ = {(v, e), (e, e), (e, v′) | e = (v, v′) ∈ E},
• Ω′(v) = Ω(v) and Ω′(e) = 1, and
• w′(v, e) = w(e), w′(e, e) = −1, and w(e, v′) = 0 for every e = (v, v′) ∈ E.

Intuitively, every edge of A is subdivided and a new vertex for Player 0 is added, where he
can decrease the energy level. The negative weight also ensures that he eventually leaves
this vertex in order to satisfy an energy condition.

We say that a strategy σ for Player 0 in A′ is corridor-winning for him from some v ∈ V ,
if there is a b ∈ N such that every play ρ, which starts in v and is consistent with σ, satisfies
the parity condition and Ampl(ρ) ≤ b. Hence, instead of just requiring a lower bound on
the energy level as in the energy parity condition, we also require a uniform upper bound on
the energy level (where we assume w.l.o.g. these bounds to coincide).

Lemma 8.1. Let G and G′ be as above and let v ∈ V . Player 0 has a winning strategy for G
from v if and only if he has a corridor-winning strategy for G′ from v.

Proof. We first show the direction from left to right. To this end, assume that Player 0
wins G from v. Due to Proposition 5.2, he has a finite-state winning strategy σ for G from v,
say of size s. Furthermore, there is an initial credit c0 such that every play prefix π that
starts in v and is consistent with σ satisfies w(π) ≥ −c0. Finally, define b = Wns, where
n and W denote the number of vertices and the largest absolute weight occurring in G,
respectively.

We define a strategy σ′ for Player 0 in G′ such that it mimics the behavior of σ
and additionally ensures that the energy level of a play prefix never exceeds b by more

20:30 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

than W . Formally, consider a play prefix π′ in G′ starting in v. If π′ ends in some v′ ∈ V ,
then we define σ′(π) = (v′, σ(f(π))) where f : (V ∪ E)∗ ∪ (V ∪ E)ω → V ∗ ∪ V ω is the
homomorphism induced by f(v) = v and f(e) = ε. On the other hand, assume π′ ends
in some e = (v′, v′′) ∈ E. If w(π′) ≤ b, then we define σ′(π′) = v′′, otherwise, we define
σ′(π′) = e, i.e., the self-loop is used until the energy level of the play prefix is exactly b. This
completes the definition of σ′.

Now, consider a play ρ′ in G′ that starts in v and is consistent with σ′. By definition
of σ′, ρ′ visits infinitely many vertices in V . Hence, by construction of A, ρ = f(ρ′) is a play
in G that starts in v. Further, ρ is consistent with σ, as σ′ mimics σ. Hence, f(ρ′) satisfies
the parity condition. As the vertices removed from ρ′ all have color one, and as all colors
in Ω(V) are greater than one, we conclude that ρ′ satisfies the parity condition as well.

To conclude, we show that every prefix π′ of ρ′ satisfies −c0 ≤ w′(π′) ≤ b + W . This
implies that σ′ is indeed a corridor-winning strategy from v. The upper bound b + W is
satisfied by construction of σ′: As soon as the weight exceeds b, it is decreased to b by the
strategy. As this correction happens after each transition, the bound b can be exceeded by
at most W , the largest absolute weight of an edge.

To conclude, we consider two cases: first, assume ρ′ has no prefix whose energy level
exceeds b, then we have w′(π′) = w(f(π)) ≥ −c0 for every prefix π′ of ρ′. Second, assume
that ρ′ has at least one prefix whose weight exceeds b. Let π be the shortest such prefix.
For every prefix π′ shorter than π we obtain −c0 ≤ w′(π′) ≤ b+W via the above argument.
We show that every prefix longer than π has nonnegative weight, which concludes the proof.

Towards a contradiction, assume that there is a longer suffix with negative weight. Then
there is an infix of ρ′ of weight strictly smaller than −b, such that Player 0 never uses a
self-loop in A′ to throw away energy. Hence, f(ρ) also has an infix with weight strictly
smaller than −b. This, however, contradicts Lemma 5.3 and thus concludes the proof of this
direction.

We now show the other direction of the lemma. To this end, let σ′ be a corridor-winning
strategy for Player 0 in G′ from v. Further, let f be defined as above.

We define a strategy σ for Player 0 from v in G that is obtained by simulating play prefixes
in G′. To this end, we again use a simulation function h that maps a play prefix v0 · · · vj
in G that starts in v and is consistent with σ to a play prefix h(v0 · · · vj) in G′ that starts in
v, is consistent with σ′, and ends in vj .

Hence, we define h(v) = v. Now, assume we have a play prefix v0 · · · vj in G that starts
in v and is consistent with σ. From our construction, we obtain a play prefix h(v0 · · · vj)
in G′ that starts in v, is consistent with σ′, and ends in vj . If vj ∈ V0 ⊆ V ′0 , then let
σ′(h(v0 · · · vj)) = (vj , vj+1). We define σ(v0 · · · vj) = vj+1, which is a legal move due to the
construction of A′. If vj ∈ V1, then let vj+1 be an arbitrary successor of vj in A.

In both cases, we have to define h(v0 · · · vjvj+1). As σ′ is a corridor-winning strategy
for Player 0 from v in G′, there is a unique play of the form h(v0 · · · vj)(vj , vj+1)mvj+1 that
is consistent with σ′. We define h(v0 · · · vjvj+1) to be equal to this play, which satisfies the
properties required above.

Let b be the uniform bound on the amplitude of plays in G′ consistent with σ′ starting
in v. Now, fix a play ρ in G starting in v and consistent with σ. Furthermore, let ρ′ be the
limit of the h(π) for increasing prefixes of ρ. By construction, ρ′ starts in v as well and is
consistent with σ′. Hence, ρ′ visits infinitely many vertices from V and never gets stuck in
a self-loop throwing away energy. This implies f(ρ′) = ρ. Furthermore, as ρ′ satisfies the

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:31

parity condition, ρ does as well: the colors removed by applying f are inconsequential in
this situation.

Let πj be the prefix of length j of ρ. A straightforward induction proves that the energy
level of πj is greater or equal to that of h(πj). As the latter is bounded from below by b, we
conclude that σ is winning for Player 0 in G from v with initial credit b.

Now, we turn G′ into a bounded parity game with weights. In such a game, the cost-of-
response of every request has to be bounded, but the overall energy level of the play may
still diverge to −∞. To rule this out, we open one unanswerable request at the beginning
of each play, which has to be unanswered with finite cost in order to satisfy the bounded
parity condition with weights. If this is the case, then the energy level of the play is always
in a bounded corridor, i.e., we obtain a corridor-winning strategy.

Formally, for every vertex v ∈ V , we add a vertex v to A′ of an odd color c∗ that is
larger than every color in Ω(V), i.e., the request can never be answered. Furthermore, v
has a single outgoing edge to v of weight 0, i.e., it is irrelevant whose turn it is. Call
the resulting arena A′′, the resulting coloring Ω′′, and the resulting weighting w′′, and let
G′′ = (A′′,BndWeightParity(Ω′′, w′′)).

Lemma 8.2. Let G′ and G′′ be as above and let v ∈ V . Player 0 has a corridor-winning
strategy for G′ from v if and only if v ∈ W0(G′′).

Proof. We again first show the direction from right to left. To this end, let σ′ be a corridor-
winning strategy for Player 0 in G′ from v. Further, let b be the corresponding uniform
bound on the amplitude of plays that start in v and are consistent with σ′. We define a
strategy σ′′ for Player 0 from v via σ′′(vπ) = σ′(π).

Let vρ be a play that is consistent with σ′′. By construction, ρ starts in v and is
consistent with σ′. Hence, it satisfies the parity condition and its amplitude is bounded by b.
Thus, almost all requests in ρ are answered with cost at most b and there is no unanswered
request of infinite cost. This implies that vρ satisfies the bounded parity condition with
weights. Hence, v ∈ W0(G′′).

We now show the obverse direction of the lemma. To this end, let σ′′ and b be a
winning strategy for Player 0 in G′′ from v and a bound such that every request in a play
starting in v and consistent with σ′′ is answered or unanswered with cost at most b. Due to
Corollary 5.15, such a strategy σ′′ exists. We define a strategy σ′ for Player 0 from v in G′
via σ′(π) = σ′′(vπ).

Let ρ be a play starting in v that is consistent with σ′. By construction, vρ is consistent
with σ′′. Hence, vρ satisfies the parity condition and every request is answered or unanswered
with cost at most b. In particular, this holds true for the unanswered request posed by
visiting v. Hence, the amplitude of vρ (and thus also that of ρ) is bounded by b.

Thus, ρ satisfies the parity condition and the energy level of all its prefixes is between −b
and b. As ρ is picked arbitrarily, we have that σ′ is corridor-winning from v.

8.2. From Bounded Parity Games with Weights to Parity Games with Weights.
Next, we show how to turn a bounded parity game with weights into a parity game with
weights so that solving the latter also solves the former. The construction here uses the
same restarting mechanism that underlies the proof of Lemma 4.1: as soon as a request has
incurred a cost of b, restart the play and enforce a request of cost b+ 1, and so on. Unlike
the proof of Lemma 4.1, however, where Player 1 could restart the play at any vertex, here

20:32 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

we always have to return to a fixed initial vertex we are interested in. While resetting, we
have to answer all requests in order to prevent Player 1 to use the reset to prevent requests
from being answered. Assume v∗ ∈ V is the initial vertex we are interested in. Then, we
subdivide every edge in to allow Player 1 to restart the play by answering all open requests
and then moving back to v∗.

Formally, fix a bounded parity game with weights G = (A,BndWeightParity(Ω, w))
with A = (V, V0, V1, E) and a vertex v∗ ∈ V . We define the parity game with weights Gv∗ =
(Av∗ ,WeightParity(Ωv∗ , wv∗)) with Av∗ = (V ′, V ′0 , V

′
1 , E

′) where

• V ′ = V ∪ E ∪ {>}, V ′0 = V0, and V ′1 = V1 ∪ E ∪ {>},
• E′ = {(v, e), (e,>), (e, v′) | e = (v, v′) ∈ E} ∪ {(>, v∗)},
• Ωv∗(v) = Ω(v), Ωv∗(e) = 0 for every e ∈ E, and Ωv∗(>) = 2 max(Ω(V)), and
• wv∗(v, e) = w(e) for (v, e) ∈ V × E and wv∗(e

′) = 0 for every other edge e′ ∈ E′.

Lemma 8.3. Let G and Gv∗ as above. Then, v∗ ∈ W0(G) if and only if v∗ ∈ W0(Gv∗).

Proof. First, we show the direction from left to right. To this end, let σ be a winning
strategy for Player 0 for G from v∗ such that there is a b, such that every request in a play
that starts in v∗ and is consistent with σ is answered or unanswered with cost at most b.
Due to Corollary 5.15, such a strategy σ exists.

We define a winning strategy σ′ for Player 0 from v∗ in G′v∗ as follows: Given a play
or a play prefix π′ in Av∗ that does not end in vertex >, let sfx>(π′) be the longest suffix
of π′ that does not contain >. Hence, if π′ starts in v∗, then sfx>(π′) starts in v∗ as well,
as v∗ is the unique successor of >. Further, let f : (V ∪ E)∗ ∪ (V ∪ E)ω → V ∗ ∪ V ω be the
homomorphism induced by f(v) = v for v ∈ V and f(e) = ε for e ∈ E. Now, if π′ is a play
(prefix) in Av∗ that does not visit >, then f(π′) is a play (prefix) in A of the same weight
that induces the same sequence of colors (save for the occurrences of the inconsequential
minimal color zero at the vertices from E that are deleted by f).

Let π′ be a play prefix in Av∗ that ends in a vertex v ∈ V ′0 = V0. We define σ′(π′) =
(v, σ(f(sfx>(π′)))) and show that σ′ is winning for Player 0 in Gv∗ from v∗. To this end,
let ρ′ be a play in Av∗ starting in v∗ that is consistent with σ′. We consider two cases,
depending on whether or not the play ρ′ visits the vertex > infinitely often.

If ρ′ visits > only finitely often, then sfx>(ρ′) is an infinite play in G′v∗ starting in v∗.
By definition of f and construction of σ′, the infinite play f(sfx>(ρ′)) in A starts in v∗

and is consistent with σ. Hence, f(sfx>(ρ′)) satisfies the bounded parity condition with
weights. Since this condition strengthens the parity condition with weights and since the
latter condition is 0-extendable, we conclude that f(ρ′) satisfies the parity condition with
weights as well. This, in turn, implies that the complete play ρ′ satisfies the parity condition
with weights due to the construction of Av∗

Now, assume that the play ρ′ visits > infinitely often. Then, ρ′ is of the form
π′0>π′1>π′2> · · · , where none of the π′j visits >. Hence, by definition of A′, f , and σ′,

each play prefix f(π′j) in A starts in v∗ and is consistent with σ. Furthermore, every request

in each π′j is answered by the next visit to the vertex > at the latest, i.e., ρ′ satisfies the parity

condition. Thus, it suffices to show that the cost-of-response of all requests in ρ′ is bounded.
This follows immediately from the fact that σ only admits answered or unanswered requests
of cost at most b when starting in v∗ and that each f(π′j) starts in v∗ and is consistent

with σ. This property is inherited by the π′j due to the construction of Av∗ . Thus, ρ′ satisfies

the parity condition with weights, i.e., σ′ is indeed winning for Player 0 from v∗.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:33

To show the direction from right to left, we proceed by contraposition. Due to the
determinacy of both games, it suffices to show that v∗ ∈ W1(G) implies v∗ ∈ W1(Gv∗). Hence,
let τ be a winning strategy for Player 1 in G from v. Further, let sfx> and f be defined as
above.

Now, we define a strategy τ ′ for Player 1 from v∗ in Gv∗ that is controlled by a counter κ,
which is initialized with zero, and which is incremented during a play every time the costs of
some request exceed κ. We construct our strategy such that each time κ is updated, Player 1
restarts the play by moving to > and then to v∗.

Assume we have a play prefix π′ in Av∗ that ends in a vertex of Player 1 and have to
define τ ′(π′). We consider several cases depending on the last vertex of π′. If π′ ends in >,
then we define τ ′(π′) = v∗, which is the only successor of >.

If π′ ends in v ∈ V1 ⊆ V ′1 , then we define τ ′(π′) = (v, τ(f(sfx>(π′)))), i.e., we discard
everything up to and including the last occurrence of >. Finally, if π′ ends in e = (v, v′) ∈
E ⊆ V ′1 , then we consider two cases. Let κ be the current counter value. If sfx>(π′) contains
a request such that the remaining part of π′ that starts at this request has amplitude greater
than κ, then we define τ ′(π′) = > and increment κ. Otherwise, we define τ ′(π′) = v′ and
leave κ unchanged.

It remains to show that τ ′ is winning in Gv∗ from v∗. To this end, let ρ′ be a play in Gv∗
that starts in v∗ and is consistent with τ ′. If ρ′ visits > infinitely often, then ρ′ contains,
for every b ∈ N, a (different) request that is answered or unanswered with cost at least b.
Hence, ρ′ violates the parity condition with costs.

Finally, if ρ′ visits > only finitely often, then there is a b ∈ N (the final value of κ, which
is incremented only finitely often in this case) such that every request in ρ′ is answered or
unanswered with cost at most b. Furthermore, let ρ be the suffix of ρ′ that starts after the
last occurrence of >. As in the previous case, f(ρ) is a play in A that starts in v∗ and is
consistent with τ . As ρ and f(ρ) have essentially the same evolution of the weights (save
for the removed edges of weight zero) and the same color sequence (save for the removed
vertices of color zero), every request in f(ρ) is answered or unanswered with cost at most b.
However, as ρ is consistent with τ , it violates the bounded parity condition with weights.
This is, in this situation, only possible by violating the parity condition. Hence ρ, and thus
also ρ′, violates the parity condition as well. Therefore, ρ′ in particular violates the parity
condition with weights.

In both cases, ρ′ is winning for Player 1, i.e., τ ′ has the desired properties.

8.3. Relation to Mean-Payoff Parity Games. Recall that we have shown in Section 4
and Section 5 how to solve parity games with weights by solving polynomially many energy
parity games of polynomial size. Subsequently, in Section 8.1 and Section 8.2 we have
shown the converse direction, i.e., how to solve energy parity games by solving polynomially
many parity games with weights, again of polynomial size. In summary, we have shown the
problem of solving parity games with weights and that of solving energy parity games with
weights to be polynomial time equivalent.

Due to this strong connection between the two games, we moreover obtain a connection
to another widely used class of games, so-called mean-payoff parity games as introduced by
Chatterjee, Henzinger, and Jurdziński [CHJ05]. A mean-payoff parity game is played on a
colored arena with weights. It is the task of Player 0 to not only satisfy the parity condition
induced by the coloring, but also to ensure that the average weight of the traversed edges is

20:34 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

nonnegative. Formally, given an arena with vertex set V and set of edges E, a coloring Ω
of V , and a weight function w over E, the mean-payoff parity condition is defined as

MeanPayoffParity(Ω, w) = {v0v1v2 · · · ∈ V ω | lim inf
j→∞

1

j
w(v0 · · · vj) ≥ 0} ∩ Parity(Ω) .

A game (A,MeanPayoffParity(Ω, w)) is called a mean-payoff parity game.
Chatterjee and Doyen [CD12] showed that the problem of solving energy parity games

and that of solving mean-payoff parity games are logarithmic space equivalent.

Proposition 8.4 [CD12]. Let G = (A,MeanPayoffParity(Ω, w)) be a mean-payoff parity
game with n vertices and let G′ = (A,EnergyParity(Ω, w′)), where w′(e) = w(e) + 1

1+n for

all edges e of A. Then W0(G) =W0(G′).

Hence, we can use the techniques underlying Theorem 5.7 to reduce the problem of
solving parity games with weights to the problem of solving mean-payoff parity games. In
fact, it is Proposition 8.4 that underpins the proof of the second part of Proposition 5.4, i.e.,
the proof that energy parity games can be solved in pseudo-quasi-polynomial time.

Corollary 8.5. The following decision problems are polynomial time equivalent:

Given a parity game with weights G and a vertex v of G, does Player 0 have
a winning strategy from v in G?

Given a mean-payoff parity game G and a vertex v of G, does Player 0 have
a winning strategy from v in G?

Solving parity games with weights by iteratively solving mean-payoff parity games as sketched
above, however, does not allow us to obtain the memory bounds from Theorem 6.1. This is
due to Player 0, in general, requiring infinite memory in order to win a mean-payoff parity
game [CHJ05].

9. The Threshold Problem

In Section 3, we have defined parity games with weights as a generalization of parity
games with costs. Up to this point, we have only considered the problem of solving parity
games with weights, i.e., deciding for a given parity game with weights G and a vertex v
of G, whether Player 0 has a strategy σ such that all plays ρ starting in v and consistent
with σ satisfy lim supj→∞Cor(ρ, j) < ∞. We have shown this problem to be a member
of NP ∩ co-NP and that it can be solved in pseudo-quasi-polynomial time.

While our algorithm for deciding the above decision problem yields a strategy witnessing
the ability of Player 0 to eventually ensure a finite cost-of-response, it does not provide any
guarantee on the “quality” of the strategy beyond the very general bound b ∈ O((ndW)2)
due to Theorem 7.1. In particular, it may be the case that there exists a strategy σ′ such
that all plays ρ starting in v and consistent with σ satisfy lim supj→∞Cor(ρ, j) ≤ b′ < b.
Hence, in this section, we investigate the so-called threshold problem for parity game with
weights, i.e., the problem to decide, given a parity game with weights G, a vertex v of G,
and a bound b ∈ N, whether there exists a strategy σ for Player 0 such that for all plays ρ
starting in v and consistent with σ satisfy lim supj→∞Cor(ρ, j) ≤ b.

Weinert and Zimmermann [WZ17] have shown that the threshold problem for finitary
parity games as well as for parity games with costs is PSpace-complete and that exponential
memory is both necessary and sufficient for both players to implement witnessing strategies.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:35

In this work, we show that the threshold problem for parity games with weights is ExpTime-
complete and that the memory bounds remain unchanged in comparison to the case of parity
games with costs.

In order to simplify notation for the remainder of this section, if G is clear from the
context, for a given strategy σ for Player 0 and a vertex v of G we define

Costv(σ) = sup
ρ

lim sup
j→∞

Cor(ρ, j) ,

where ρ ranges over all plays ρ of G that start in v and that are consistent with σ. Dually,
for a strategy τ for Player 1 and a vertex v, we define Costv(τ) = infρ lim supj→∞Cor(ρ, j),
where ρ ranges over all plays ρ of G that start in v and that are consistent with τ .

Remark 9.1. Let σ be a strategy for Player 0, let τ be a strategy for Player 1, and let v be
a vertex. Then, Costv(σ) ≥ Costv(τ).

The main theorem of this section settles the complexity of the threshold problem for
parity games with weights.

Theorem 9.2. The following decision problem is ExpTime-complete:

Given a parity game with weights G, some vertex v of G, and a bound b ∈ N,
does Player 0 have a strategy σ with Costv(σ) ≤ b in G?

The remainder of this section is organized as follows: First, in Section 9.1 we show the
threshold problem for parity games with weights to be in ExpTime, before showing ExpTime-
hardness of the problem in Section 9.2. We conclude this section by showing tight bounds
on the memory requirements of witnessing strategies for both players in Section 9.3.

9.1. ExpTime-Membership. In order to solve the threshold problem for parity games
with weights, we follow the approach used by Weinert and Zimmermann [WZ17] to solve
the same problem for parity games with costs. Given a parity game with costs G and a
threshold b, they construct a classical parity game Gb that satisfies the following property:

Player 0 has a strategy of cost at most b from some vertex v in G if and only
if he has a winning strategy from some designated vertex v′ in Gb.

We show how to lift the construction of Weinert and Zimmermann to the setting of parity
games with weights and show that this construction yields ExpTime-membership of the
threshold problem for parity games with weights. For the remainder of this section, we fix
some parity game with weights G with n vertices, d odd colors and a threshold b ∈ N.

The idea behind the construction of Gb is to track, for each odd color c of G, an
overapproximation of the costs incurred by all open requests for c in the current play prefix.
The authors then showed that, if Player 1 is able to violate the bound b at least n times,
then she can do so infinitely often. Thus, by additionally equipping Gb with an n-bounded
counter that counts the number of violations of the given threshold, we obtain the desired
property given above.

Recall that, in parity games with costs, all weights are nonnegative. Hence, it suffices to
track an upper bound on the cost of open requests, as these costs are implicitly bounded
from below by zero. In the setting of parity games with weights, in contrast, we have to
track both an upper as well as a lower bound on the cost of open requests. To this end, we
first define the set of intervals

I = {(l, h) | −b ≤ l ≤ h ≤ b} .

20:36 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

Clearly, we have

|I| = (2b+ 1) + · · ·+ 1 = (2b+ 1)(2b+ 2)/2 = (4b2 + 4b+ 2b+ 2)/2 = 2b2 + 3b+ 1 .

Using the set of intervals, we now define request functions that enable the overapproximation
of the costs of open requests described above. To this end, we denote the set of odd colors
occurring in G by D. A (b-bounded) request function r : D → {⊥}∪ I is a function mapping
each odd color of G either to

• ⊥, denoting that currently no request for color c is open, or to
• some (l, h) ∈ I, denoting that

– there exists an open request for color c that has accumulated weight l, that
– there exists an open request for color c that has accumulated weight h, and that
– all requests for color c have accumulated weight at least l and at most h.

Given some request function r, we define the lower and upper residual request functions
r↓ and r↑ as r↓(c) = l and r↑(c) = h, if r(c) = (l, h), and as r↓(c) = r↑(c) = ⊥ if r(c) = ⊥.

We write R to denote the set of all request functions. We have |R| = (|I|+ 1)|D| =

(2b2 + 3b+ 2)
d
, i.e., there exist exponentially many request functions when measured in the

size of the game G, but only polynomially many when measured in the bound b.
As stated above, Weinert and Zimmermann [WZ17] showed that it suffices for Player 1

to violate the threshold b n times in order to witness that she can do so infinitely often.
Hence, we now define a memory structure comprising request functions and an “overflow
counter” that, together with the game G, induces the desired parity game Gb.

Recall that we fixed some parity game with weights G with n vertices and d odd colors
as well as a bound b ∈ N. Using the set R of request functions defined above, we define the
set of memory states M = {0, . . . , n} × R. As we aim to track the cost of open requests
using the functions from R, we define the initial memory element init(v) = (0, rv), where rv
is defined as

rv(c) =

{
(0, 0) if Ω(v) is odd and c = Ω(v), and

⊥ otherwise.

We define the update function upd: M × E → M implementing the above intuition.
Let m = (o, r) ∈M and let e = (v, v′) ∈ E with w(e) = w. This update function updates
the memory state via upd(m, e) = (o′, r′) by performing the following steps in order:

Weight: First, we resolve the effect of traversing the edge e with weight w by defining r′I as

r′I (c) =

{
(r↓(c) + w(e), r↑(c) + w(e)) if r(c) 6= ⊥, and

⊥ otherwise.

Overflow: In a second step, we check whether some request has violated the bound b during
the move to v′ and update the overflow counter if this is the case. Thus, if there exists
a color c such that either (r′I)↓(c) < −b or (r′I)↑(c) > b, then we define r′II (c) = ⊥ for

all c ∈ D and set o′ to the minimum of o + 1 and n. Otherwise, we define r′II = r′I
and o′ = o.

Request: Finally, we resolve the effect of moving to the vertex v′ with color Ω(v′) as follows:
If Ω(v′) is even, then we define

r′III (c) =

{
⊥ if c ≤ Ω(v′), and

r′II (c) otherwise.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:37

If, however, Ω(v′) is odd, then we define

r′III (c) =

{
(min{(r′II)↓(Ω(v′)), 0},max{(r′II)↑(Ω(v′)), 0}) if c = Ω(v′), and

r′II (c) otherwise.

In either case, we define r′ = r′III , which concludes the definition of m′ = (o′, r′). The
resulting o′ is at most n and the resulting function r′ is an element of R. We combine these
elements in the memory structure M = (M, init, upd).

Recall that throughout this section we fixed a parity game with weights G. Let G =
(A,WeightParity(Ω, w)). We define the (b-)threshold game of G

Gb = (A′,Parity(Ω′)) ,

with A′ = (V ′, V ′0 , V
′

1 , E
′), where V ′ = V × M , V ′i = Vi × M for i ∈ {0, 1}, where

((v,m), (v′,m′)) ∈ E′ if and only if (v, v′) ∈ E and upd(m, (v, v′)) = m′, and where

Ω′(v, o, r) =

{
Ω(v) if o < n, and

1 otherwise,

which concludes the definition of Gb.
Via a straightforward adaptation of results by Weinert and Zimmermann [WZ17] we

obtain that this construction indeed satisfies the above property, i.e., that it suffices to
solve Gb in order to solve the threshold problem for G:

Lemma 9.3. Let v∗ be a vertex of G. Player 0 has a strategy σ with Costv∗(σ) ≤ b if and
only if he wins Gb from (v∗, init(v∗)).

We split the proof of Lemma 9.3 into several lemmas. The direction from right to left is
relatively straightforward: Since Gb is a parity game, if Player 0 wins Gb from (v∗, init(v∗)),
then she does so with a positional strategy σ′. This strategy assigns to each vertex (v, o, r)
of Player 0 in Gb a unique successor (v′, o′, r′), where the values of o′ and r′ are deterministic
updates of o and r via the update function upd. Hence, σ′ can be interpreted as picking
only a successor vertex v′ of v with respect to the current memory state (o, r). Thus, the
choices of σ′ can be mimicked in G.

Lemma 9.4. If Player 0 wins Gb from (v∗, init(v∗)), then she has a strategy σ in G with
Costv∗(σ) ≤ b.

Proof. Let σ′ : V ′0 → V ′ be a positional winning strategy for Player 0 from (v∗, init(v∗)) in Gb.
Since Gb is a parity game, such a strategy exists by assumption. We define the finite-state
strategy σ for Player 0 in G as the unique strategy induced by the memory structure M
and the next-move function Nxt defined as Nxt(v,m) = v′, if σ′(v,m) = (v′,m′) for some
m′. It remains to show Costv∗(σ) ≤ b.

Let ρ = v0v1v2 · · · be a play in G that begins in v∗ and that is consistent with σ. Let

ρ′ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · ·
be the unique play in Gb that satisfies both (o0, r0) = init(v0) as well as (oj , rj) =
upd((oj−1, rj−1), (vj−1, vj)) for all j > 0.

A straightforward induction shows that ρ′ is consistent with σ′. As ρ′ moreover starts
in (v∗, init(v∗)) by definition, it is winning for Player 0, i.e., it satisfies the parity condition.
This in particular implies that the overflow counter along ρ′ never saturates, i.e., that we
have oj < n for all j ∈ N, since vertices with saturated overflow counter form a losing sink

20:38 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

for Player 0. Hence, the plays ρ and ρ′ coincide on their color sequences. Since ρ′ is winning
for Player 0 in G′, it satisfies the parity condition, which in turn implies that ρ satisfies the
parity condition. It remains to show that almost all requests in ρ are answered with cost at
most b.

As argued above, the overflow counter along ρ′ eventually stabilizes at some value less
than n. Moreover, since ρ satisfies the parity condition, all but finitely many requests are
answered. Hence, there exists a position j such that oj′ = oj < n and such that Cor(ρ, j′) <
∞ for every j′ > j. Assume towards a contradiction that there exists some j′ ≥ j with b <
Cor(ρ, j′) <∞. Then, due to the construction of Gb, the overflow counter is incremented
along the play ρ′ at some point after j′. This, however, contradicts the choice of j. Hence,
we obtain that almost all requests in ρ are answered with cost at most b.

We now turn our attention to the other direction of the statement of Lemma 9.3, i.e.,
we aim to show that, if Player 0 has a strategy σ in G with Costv∗(σ) ≤ b, then she wins Gb
from (v∗, init(v∗)). We show this claim via contraposition: Assume that Player 0 does not
win Gb from (v∗, init(v∗)). Since Gb is a parity game, it is determined. Hence, Player 1
wins Gb from (v∗, init(v∗)), say with the positional strategy τ ′. Such a positional strategy
for him exists again due to Gb being a parity game. We construct a strategy τ for Player 1
in G that enforces lim supj→∞Cor(ρ, j) > b for each play ρ starting in v∗ and consistent
with τ . Since this implies Costv∗(σ) > b for each strategy σ of Player 0 (see Remark 9.1),
this suffices to show the desired statement.

Recall that the overflow counter along each play starting in (v∗, init(v∗)) is monotonically
increasing and bounded from above by the number n of vertices in G. Hence, the value of
the overflow counter either stabilizes at some value less than n, or it eventually saturates
at value n. In the former case, τ ′ has to ensure that the resulting play violates the parity
condition. Hence, it suffices to mimic the moves made by τ ′ in G ad infinitum in this case,
which results in a play with infinitely many unanswered requests in G. In the latter case,
however, mimicking τ ′ does not yield a strategy in G with the desired property, as τ ′ does
not necessarily prescribe “meaningful” moves in Gb once the overflow counter saturates. This
is due to the fact that these vertices form a sink component that is trivially winning for
Player 1. In order to leverage τ ′ even after saturation of the overflow counter, we intervene
whenever the overflow counter is incremented, by resetting it to the smallest possible value
from which τ ′ is still winning, thereby ensuring that the sink component is never reached.
Hence, the strategy always mimics “meaningful” moves in Gb.

Formally, we define the set R that contains all vertices (v, o, r) that are visited by some
play that starts in (v∗, init(v∗)) and that is consistent with τ ′. Recall that we defined rv
as the function denoting the requests opened by visiting the vertex v. Given a vertex v,
we then define ov = min({n} ∪ {o | (v, o, rv) ∈ R}). In particular, we have ov∗ = 0,
since (v∗, init(v∗)) = (v∗, 0, rv) ∈ R.

Lemma 9.5. The strategy τ ′ is winning for Player 1 from (v, ov, rv) in Gb for all v ∈ V .

Proof. If ov = n, then all plays starting in (v, ov, rv) violate the parity condition by construc-
tion of the arena of Gb. Thus, for the remainder of this proof, assume ov < n. Let (v, ov, rv)ρ
be a play starting in (v, ov, rv) that is consistent with τ ′. Moreover, let π be a play prefix
starting in (v∗, init(v∗)), consistent with τ ′, and ending in (v, ov, rv). Such a play prefix exists
due to the definition of ov and due to the assumption of ov < n, which implies (v, ov, rv) ∈ R.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:39

Since τ ′ is positional, the play πρ starts in (v∗, init(v∗)) and is consistent with τ ′.
Thus, πρ violates the parity condition, which implies that ρ violates the parity condition
due to prefix-independence.

We now define a new memory structure M′ implementing the strategy τ . Recall
that we defined the memory structure M = (M, init,upd) during the construction of the
threshold game Gb. Using the components of that memory structure, we define M ′ = M =
{0, . . . , n} ×R, init′ = init, and

upd′((o, r), (v, v′)) =

{
(o, r′) if upd((o, r), (v, v′)) = (o, r′), and

(ov′ , r
′) if upd((o, r), (v, v′)) = (o+ 1, r′).

and combine these elements into the memory structure M′ = (M ′, init′, upd′).
In the second case of the definition of upd′, we have r′ = rv′ by definition of upd. Finally,

we define the next-move function Nxt′ via Nxt′(v,m) = v′, if τ ′(v,m) = (v′,m′) for some
m′ ∈M and let τ be the finite-state strategy implemented by M′ and Nxt′. We claim that
for each play ρ starting in v∗ that is consistent with τ we have lim supj→∞Cor(ρ, j) > b.

To show this claim, let ρ = v0v1v2 · · · be some play in G that starts in v∗ and that is
consistent with τ . Moreover, let

ρ′ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · ·
be the unique play in A × M′ that satisfies (o0, r0) = init′(v0) as well as (oj , rj) =
upd′((oj−1, rj−1), (vj−1, vj)) for all j > 0. We say that j is a reset position if j = 0 or
if

upd((oj−1, rj−1), (vj−1, vj)) = (oj−1 + 1, rj) ,

i.e., if the second case in the definition of upd′ is applied.
The play ρ′ is not necessarily a play in Gb, since Gb is defined with respect toM instead

of M′, but every infix of ρ′ that starts at a reset position and does not contain another one,
is a play infix in Gb that is consistent with τ ′. At every reset position, instead of incrementing
the overflow counter, we set it to ov.

Via a straightforward induction leveraging the same arguments as Weinert and Zim-
mermann [WZ17] we obtain oj < n for all j ∈ N, i.e., the overflow counter along ρ′ never
saturates. Intuitively, this implies that the strategy τ always uses “meaningful” moves of τ ′

for its choice of move and thus allows us to subsequently argue that τ is indeed winning for
Player 1. Moreover, while the set M ′ of memory states as defined above is of size (n+ 1)|R|,
the above observation allows us to implement the strategy τ ′ using a set of memory states
of size n|R| by omitting the memory states indicating a saturated overflow counter.

It remains to show that we indeed have lim supj→∞Cor(ρ, j) > b. As argued above, this
then directly implies Costv∗(σ) > b for each strategy σ of Player 0, concluding the proof of
the direction from left to right of Lemma 9.3.

Proof of Lemma 9.3. The direction from right to left is encapsulated in Lemma 9.4.
For the direction from left to right, recall that we defined a strategy τ for Player 1,

that we picked ρ beginning in v∗ and consistent with τ arbitrarily and that we defined ρ′ =
(v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · . First assume that the overflow counter of ρ′ eventually
stabilizes, i.e., there exists some j ∈ N such that oj′ = oj for all j′ > j. Then, there exists a
suffix of ρ′ that is consistent with τ ′, which therefore violates the parity condition. Hence, it
suffices to note that the color sequences induced by ρ′ and by ρ coincide in this case since
the overflow counter along ρ′ never saturates as argued above, and due to the construction

20:40 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

of Gb, in which vertices of the form (v, o, r) inherit the coloring of the vertex v for o < n.
Thus, ρ violates the parity condition and, in turn, also the parity condition with weights
with respect to any bound.

Now assume that the overflow counter of ρ′ does not stabilize. Then, there are infinitely
many reset positions in ρ′. We obtain that there exist a request that incurs cost greater
than b between any two adjacent such positions as a direct consequence of the construction of
the arena of Gb. Hence, we obtain lim supj→∞Cor(ρ, j) > b, which concludes this direction
of the proof.

Lemma 9.3 allows us to decide the threshold problem for a parity game with weights
with n vertices and d odd colors by solving a classical parity game of size O(nbd), i.e., the
size of the parity game depends on both the size of the parity game with weights as well
as the threshold. Lemma 7.2, however, allows us to bound the parameter b: If b is at least
nd(6n)(d+ 1)(W + 1)W , then solving the threshold problem reduces to solving the parity
game with weights. We formalize these observations as Algorithm 3.

Algorithm 3 An algorithm deciding whether or not Player 0 has a strategy σ with
Costv(σ) ≤ b in a parity game with weights G.

Input: Parity game with weights G with n vertices, d odd colors, and largest absolute
weight W , vertex v of G, bound b ∈ N.

1: if b ≥ nd(6n)(d+ 1)(W + 1)W then
2: return v ∈ W0(G) /* Requires solving G, e.g. via Algorithm 1 */
3: else
4: Gb = b-threshold game of G /* Gb is explicitly constructed */
5: return (v, 0, rv) ∈ W0(Gb) /* Requires solving Gb */
6: end if

Recall that our aim in this section is to argue that the threshold problem for parity
games with weights is in ExpTime. To this end, we have constructed Algorithm 3, the
correctness of which follows directly from Lemma 9.3. It remains to argue that this algorithm
runs in exponential time.

To this end, recall that parity games can be solved in polynomial time in the number of
vertices and in exponential time in the number of odd colors [Jur98,CJK+17]. Moreover,
recall that the (b-)threshold game Gb has O(nbd) many vertices, where n and d are the
number of vertices and the number of odd colors in G, respectively. As we are able to bound
the value of b from above by a polynomial in n, d, and the largest absolute weight W of G
due to Lemma 7.2, we obtain that we are able to solve Gb in exponential time, which we
formalize in the following theorem.

Theorem 9.6. The following problem is in ExpTime:

Given a parity game with weights G, a vertex v of G, and a bound b ∈ N,
does Player 0 have a strategy σ with Costv(σ) ≤ b?

Proof. We show that Algorithm 3 witnesses the claimed membership in ExpTime. The
correctness of this algorithm follows directly from Lemma 7.2 and Lemma 9.3. It remains
to show that Algorithm 3 terminates in exponential time. Let n be the number of vertices
of G, let d be the number of odd colors of G, and let W be the largest absolute weight in G.

If b ≥ nd(6n)(d+1)(W+1)W , then the dominating factor for the runtime of Algorithm 3
is the call to a solver for parity games with weights in Line 2. This solver only has to solve

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:41

the given parity game with weights as discussed in Section 4. Due to Theorem 5.7, the
problem of solving these games is in NP ∩ co-NP. Since NP ⊆ ExpTime, we obtain the
desired runtime in this case.

If, however, b < nd(6n)(d + 2)(W + 1)W , Algorithm 3 constructs and solves the b-
threshold game Gb of G in Line 4 and Line 5, respectively. Let n′ be the number of vertices
of Gb. By construction of Gb we obtain

n′ = n|{0, . . . , n} ×R| = n(n+ 1)(2b2 + 3b+ 2)
d ∈ O(n2b2d) ,

where R denotes the set of request functions as defined above.
Due to our case analysis based on the cardinality of b in Line 1, we furthermore

obtain b ∈ O(n2d2W), which in turn implies

n′ ∈ O(n2(n2d2W)
2d

) = O(n2+4dd4dW 2d) .

As we assume weights to be given in binary encoding, we additionally obtain W ∈ O(2|G|),
which finally implies

n′ ∈ O(n2+4dd4d(2|G|)
2d

) = n2+4dd4d22d|G| ,

i.e., Gb contains only exponentially many vertices and d′ = max{1, d} ∈ O(d) many colors in
terms of |G|. Recall that parity games can be solved in polynomial time in the number of
vertices and in exponential time in the logarithm of the number of colors using, e.g., the
recent algorithm by Calude et al. [CJK+17]. Hence, Gb can indeed be solved in exponential
time in |G|, which implies membership of the above problem in ExpTime.

Algorithm 3 furthermore yields an algorithm determining the optimal b such that
Player 0 has a strategy of cost at most b from a given v: Given a parity game with weights G
with n vertices, d odd colors, and largest absolute weight W , and a vertex v of G, we first
solve G and determine whether or not v ∈ W0(G). If this is not the case, then no such
bound b exists. Otherwise, the minimal b with the above property can be determined with a
binary search over the range 0, . . . , nd(6n)(d + 1)(W + 1)W . This binary search requires
deciding at most log(nd(6n)(d + 1)(W + 1)W), i.e., polynomially many instances of the
threshold problem, each of which takes at most exponential time. Hence, the optimal b such
that Player 0 has a strategy of cost at most b can be determined in exponential time in the
size of G.

This concludes the proof of ExpTime-membership of the threshold problem for parity
games with weights. It remains to show that this bound is tight. To this end, we show in the
next section that the threshold problem is ExpTime-hard via a reduction from the problem
of solving countdown games.

9.2. ExpTime-Hardness. In the previous section we have shown ExpTime-membership
of the threshold problem for parity games with weights.

In this section we provide a matching lower bound by showing that the threshold
problem is ExpTime-complete. To this end, we reduce the ExpTime-hard problem of solving
countdown games to the threshold problem for parity games with weights. Countdown
games were introduced by Jurdziński, Laroussinie, and Sproston [JLS08].

In a countdown game, some initial credit is fixed at the beginning of a play. Both players
then move in alternation in an arena whose edges are labeled with negative weights. In each
turn, first Player 0 announces some weight, before Player 1 has to move along some edge of

20:42 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

that weight, reducing the initial credit by the weight of the traversed edge. If the credit at
some point hits zero, Player 0 wins. If, however, the credit at some point turns negative,
Player 1 wins. Since each edge has strictly negative weight, each play is won by either player
after finitely many moves.

When formulated in our framework of arenas and winning conditions, a countdown
game G = (A,Countdown(w, c∗)) consists of an arena A = (V, V0, V1, E), a weighting w
of A, and some initial credit c∗ ∈ N, which satisfies the following conditions:

(1) There exists a designated sink vertex v⊥ ∈ V1,
(2) we have
• E ⊆ (V0 × V1) ∪ (V1 × V0) ∪ ({v⊥} × {v⊥}),
• V0 × {v⊥} ⊆ E, and
• (v⊥, v⊥) ∈ E,

(3) for each e1 = (v, v′1), e2 = (v, v′2) ∈ E, with v ∈ V0 we have that e1 6= e2 implies
w(e1) 6= w(e2),

(4) for each e ∈ E ∩ (V0 × V) we have w(e)

{
= 0 if e ∈ (V0 × {v⊥}), and

< 0 otherwise, and

(5) for each e ∈ E ∩ (V1 × V) we have w(e) = 0.

As discussed above, a countdown game is played in turns. Each turn starts at a vertex v
of Player 0, from where Player 0 first picks some outgoing edge e leading to vertex v′ of
Player 1. That edge has unique weight among the outgoing edges of v due to the third
requirement. Moreover, if Player 0 does not opt to end the play by moving to v⊥, the weight
of the edge is negative due to the fourth condition. Subsequently, Player 1 picks a successor
of v′ and moves to that successor along an edge of weight zero due to the fifth requirement,
where the next turn of the play starts.

The countdown condition is defined as

Countdown(w, c∗) = {ρ = v0v1v2 · · · ∈ V ω | ∃j. vj = v⊥ and c∗ + w(ρ) = 0} .
Our definition of countdown games differs from the one given by Jurdziński, Laroussinie, and
Sproston [JLS08], as we adapted it to fit our framework of games introduced in Section 2. It
is, however, easy to see that our definition and the one given by the authors are equivalent.

As countdown games are essentially of finite duration, we obtain that they are determined
due to Zermelo [Zer13].

Remark 9.7. Countdown games are determined.

Jurdziński, Laroussinie, and Sproston showed that solving countdown games is Exp-
Time-hard via a reduction from the word problem for alternating Turing machines with
polynomially bounded space. In order to concisely encode the exponential number of con-
figurations attainable by the Turing machine during its run on the input word and the
transitions between these configurations, this reduction requires the weights along the edges
of the countdown game as well as the initial credit c∗ to be given in binary encoding.

Proposition 9.8 [JLS08]. The following problem is ExpTime-hard:

Let G be a countdown game and let v be a vertex of G. Does Player 0 have a
winning strategy from v in G?

We reduce the problem of solving countdown games to the threshold problem for parity games
with weights. To this end, for the remainder of this section, fix some countdown game G =
(A,Countdown(w, c∗)) where A = (V, V0, V1, E), as well as some initial vertex v∗ ∈ V .

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:43

Intuitively, we construct the parity game with weights G′ such that at the beginning
of the play a single request is opened, which is only answered upon visiting v⊥. After
visiting v⊥, the play returns to the initial vertex v∗ reopening the unique request of G′ along
the way.

In a countdown game, only Player 0 may decide to move to v⊥. Since he should,
intuitively, only do so after traversing a play prefix of weight −c∗, we equip the edges leading
from his vertices to v⊥ with weight 2c∗. Thus, he can enforce “tallying the score” by moving
to v⊥.

In order to afford Player 1 the same possibility, we add edges that allow her to move
from his vertices to v⊥. Furthermore, in order to incentivize her to only take these edges
once she has exceeded the lower bound of −c∗, these edges have weight zero. All remaining
weights remain unchanged, thus the costs incurred by the unique request in G′ model the
remaining credit in the corresponding play in G.

Formally, let v> be some vertex not occurring in V . We define the parity game with
weights G′ = (A′,WeightParity(Ω, w′)), where A′ = (V ′, V ′0 , V

′
1 , E

′), with

• V ′ = V ∪ {v>}, V ′0 = V0 ∪ {v>}, V ′1 = V1, and
• E′ = (E \ {(v⊥, v⊥)}) ∪ (V1 × {v⊥}) ∪ {(v⊥, v>), (v>, v

∗)}.
Since there exists a unique outgoing edge of v⊥ leading back to the initial vertex v∗ of the
countdown game via v>, the play is restarted after visiting the sink vertex.

Furthermore, we define the weight function

w′(e) =

w(e) if (v, v′) ∈ E \ (V0 × {v⊥})
2c∗ if e ∈ V0 × {v⊥}
0 otherwise

as well as the coloring

Ω′(v) =

1 if v = v>,

2 if v = v⊥,

0 otherwise

and claim that Player 0 has a strategy σ with Costv>(σ) ≤ c∗ if and only if he wins G
from v∗. We illustrate this construction in Figure 9.

v>/1 v∗/0

/0

/0

v⊥/2· · ·

A

0
2c∗

0

0

Figure 9: Construction of the parity game with weights G′ from a given countdown game G.
We omit unchanged weights for the sake of readability.

We claim that this construction implements our intuition, i.e., that solving G′ with
respect to the bound c∗ is indeed equivalent to solving G.

20:44 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

Lemma 9.9. Player 0 wins G from v∗ if and only if he has a strategy σ with Costv>(σ) ≤ c∗
in G′.

Proof. We first show the direction from left to right. To this end, let σ be a winning strategy
for Player 0 in G from v∗. Moreover, let π = v0 · · · vj be a play prefix in G′ starting in v>
and let j′ be the largest position in π with vj′ = v>. We define the strategy σ′ for Player 0
in G′ via σ′(π) = σ(vj′+1 · · · vj) and claim Costv>(σ′) ≤ b.

To prove this claim, let ρ′ = v0v1v2 · · · be a play in G′ starting in v> that is consistent
with σ′. First assume towards a contradiction that ρ′ only visits v> finitely often. Then,
due to the structure of the arena, ρ′ only visits v⊥ finitely often. By construction of σ′, this
implies that ρ′ contains a suffix that begins in v∗, is consistent with σ, but never visits v⊥.
This contradicts σ being a winning strategy for Player 0 in G from v∗. Hence, ρ′ visits v⊥
infinitely often.

Thus, ρ′ is of the form

ρ′ = v>π0v⊥ · v>π1v⊥ · v>π2v⊥ · · · ,
where each πj starts in v∗ and is consistent with σ. We first argue that, if πj ends in a
vertex of Player 1, then we have 0 ≥ w′(πj) ≥ −c∗: All weights in G′ except for those along
the edges from V0 × {v⊥} are nonpositive. Hence, 0 ≥ w′(πj) follows directly from the
construction of G′. Moreover, w′(πj) < −c∗ would contradict πj being consistent with the
winning strategy σ for Player 0 in G, since Player 0 would be unable to continue the play
prefix πj such that the resulting play is winning for her. Hence, we have 0 ≥ w′(πj) ≥ −c∗.
Moreover, since all edges leading from v> and all edges leading to v⊥ have weight zero, and
since w′(π) is decreasing for increasing prefixes π of πj due to construction of G′, we obtain
Ampl(v>πjv⊥) ≤ c∗.

If, however, πj ends in a vertex of Player 0, then we have w′(πj) = −c∗—and therefore
Ampl(v>πjv⊥) = c∗—as πj is consistent with the winning strategy σ for Player 0 in G. In
either case, we obtain that the unique request in v>πjv⊥ posed by visiting v> is answered
with cost at most c∗. Hence, ρ′ has cost at most c∗, which concludes this direction of the
proof.

We show the other direction of the statement via contraposition: Assume Player 0 does
not win G from v∗. Since G is determined due to Remark 9.7, Player 1 wins G from v∗, say
with strategy τ . We define a strategy τ ′ for Player 1 in G′ that is winning for her from v>
via mimicking moves made by τ until the initial credit is used up. At that point, we define τ ′

to prescribe moving to v⊥ in order to witness exceeding the initial credit and to restart the
play.

Formally, let π′ = v0 · · · vj be a play prefix in G′ that starts in v> and ends in some
vertex of Player 1. Moreover, let j′ ≤ j be the largest position such that vj′ = v>.
If w(vj′ · · · vj) ≥ −c∗, we define τ ′(π′) = τ(vj′+1 · · · vj). Otherwise, we define τ ′(π′) = v⊥. It
remains to show Costv>(τ ′) > c∗, which concludes the proof due to Remark 9.1.

To this end, let ρ′ be a play in G′ starting in v> consistent with τ ′. Due to the structure
of A′, every infix of ρ′ that visits neither v> nor v⊥ traverses edges of weight zero and
negative weight in alternation. Moreover, since τ ′ prescribes moving to v⊥ once the play
infix since the last visit to v> has incurred weight exceeding −c∗, the play ρ′ is of the form

ρ′ = v>π0v⊥ · v>π1v⊥ · v>π2v⊥ · · · ,
where each πj starts in v∗ and is consistent with τ .

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:45

We aim to show Ampl(v>πjv⊥) > c∗ for all j, which implies lim supk→∞(ρ′, k) > c∗

due to the construction of G′ and thus suffices to show the desired statement. To this end,
fix some j ∈ N and first consider the case that πj ends in a vertex of Player 1. Then we
obtain w(πj) < −c∗ by definition of τ ′. This directly implies the desired statement.

Now consider the case that πj ends in a vertex of Player 0. We first argue that
w′(πj) 6= −c∗ holds true. Towards a contradiction, assume w′(πj) = −c∗ and recall that πj
starts in v∗ and is consistent with the winning strategy τ for Player 1 from v∗. Thus the
play πj(v⊥)ω in G is consistent with τ . Hence, w′(πj) = −c∗ contradicts τ being a winning
strategy for Player 1 from v∗.

It remains to show Ampl(v>πjv⊥) > c∗ for the case that πj ends in a vertex of Player 0.
If w′(πj) < −c∗, we directly obtain Ampl(v>πjv⊥) > c∗. If, however, w′(πj) > −c∗, we
have w′(πjv⊥) > c∗, since we defined w′(v, v⊥) = 2c∗ for each vertex v of Player 0. Thus,
we obtain Ampl(v>πjv⊥) > c∗ for each infix v>πjv⊥ of ρ′. Hence, each request posed by
visiting v> is answered with cost greater than c∗. Since we argued above that ρ′ contains
infinitely many visits to v>, we obtain lim supk→∞(ρ′, k) > c∗.

Due to Lemma 9.9 we obtain a polynomial reduction from the problem of solving
countdown games to the threshold problem for parity games with weights. As the former
problem is ExpTime-hard due to Proposition 9.8, this implies ExpTime-hardness of the
latter problem.

Lemma 9.10. The following decision problem is ExpTime-hard:

Given a parity game with weights G, some vertex v∗ of G, and a bound b ∈ N,
does Player 0 have a strategy σ with Costv∗(σ) ≤ b in G?

Proof. We reduce the problem of solving countdown games to the given problem. To this
end, let G = (A,Countdown(w, c∗)) be a countdown game and let v∗ be a vertex of A. We
construct the parity game with weights G′ as described above. Due to Lemma 9.9, Player 0
wins G from v∗ if and only if he has a strategy σ with Costv>(σ) ≤ c∗. As the problem of
solving countdown games is known to be ExpTime-hard due to Proposition 9.8, this implies
the desired result.

In the following section, we consider the memory requirements of both players when
playing optimally.

9.3. Memory Requirements. Recall that, if Player 0 just aims to win a parity game
with weights with n vertices, d odd colors, and largest absolute weight W , then a memory
structure of size polynomial in n, d, and W suffices to implement a winning strategy due to
Theorem 6.1. Dually, Player 1 requires, in general, infinite memory in order to implement a
strategy winning for her, again due to Theorem 6.1.

In this section, we show that these bounds change significantly in the context of the
threshold problem: In order to implement a strategy that enforces cost of at most b in a
parity game with weights with d odd colors, memory of size polynomial in b and exponential
in d is both necessary and sufficient for Player 0. Dually, if Player 1 just aims to enforce a
cost of the resulting play larger than some threshold b, strategies of size exponential in d
suffice for her to do so. Both of these bounds are tight.

We first argue that exponential memory indeed suffices for both players to satisfy or
violate a given threshold in a parity game with weights, respectively. To this end, recall
that, given a parity game with weights G and a threshold b, we determined the solution

20:46 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

of the threshold problem by solving the b-threshold game G′ of G. This threshold game
is a classical parity game whose arena consists of the arena of G augmented with request
functions and an overflow counter that is bounded from above by n.

Furthermore recall that, in the proof of Lemma 9.3, we showed how to leverage a winning
strategy for either player in Gb in order to construct a winning strategy for them in G. To this
end, we implemented the strategy for Player 0 in G using the set {0, . . . , n} ×R as memory
states, where the set {0, . . . , n} implements the overflow counter and where R denotes the
set of request functions.

The first component of that memory structure is, however, irrelevant for Player 0: If he
has a winning strategy whose behavior is dependent not only on the current vertex and the
request function, but also on the value of the overflow counter, then he also has one that
only depends on the current vertex and the request function.

Lemma 9.11. Let G be a parity game with weights containing d odd colors and let b ∈ N.
Moreover, let v∗ be a vertex of G. If Player 0 has a strategy σ in G with Costv∗(σ) = b, then

he also has a strategy σ′ with Costv∗(σ
′) ≤ b and |σ′| = (2b2 + b+ 2)

d
.

Proof. Recall that we argued previously that if Player 0 has a strategy σ in G with Costv∗(σ) ≤
b, then he also has a winning strategy from (v∗, init(v∗)) in the threshold game Gb as defined
in Section 9.1. Moreover, since Gb is a parity game, we obtain that if Player 0 wins Gb
from (v∗, init(v∗)), then he also has a positional winning strategy doing so. Thus, let σb be
a positional winning strategy for Player 0 from (v∗, init(v∗)) in Gb.

Let R be the set of vertices reached by plays starting in (v∗, init(v∗)) and consistent
with σb. Since σb is positional, and since the parity condition is prefix-independent, σb is
winning from all vertices in R. Furthermore, for each vertex v and each request function r,
we define

ov,r = max({0} ∪ {o | (v, o, r) ∈ R}) ,

i.e., ov,r is the maximal value such that Player 0 wins Gb from (v, ov,r, r) using σb, or zero, if
no such value exists.

We now define the strategy σ′ for Player 0 in G such that it has the above properties.
To this end, recall that we defined the memory structure M = (M, init, upd) for the
construction of Gb, where M = {0, . . . , n} ×R, and where R is the set of request functions.
We define M ′ = R, the update function upd′(r, (v, v′)) = r′, if upd((ov,r, r), (v, v

′)) = (o′, r′),
as well as the initialization function init′(v) = (ov,rv , rv), if init(v) = (0, rv). Finally,
we define the next-move function Nxt′(v, r) = v′, where v′ is the unique vertex that
satisfies σb(v, ov,r, r) = (v′, o′, r′), and claim that the strategy σ′ implemented by M′ =
(M ′, init′, upd′) and Nxt′ has Costv∗(σ

′) ≤ b, which suffices to show the desired statement.
To prove this claim, let ρ = v0v1v2 · · · be a play starting in v∗ and consistent with σ′

and let (v0, r0)(v1, r1)(v2, r2) · · · be the unique play defined via r0 = init′(v0) and rj =
upd′(rj−1, (vj , vj+1)) for all j > 0.

A straightforward induction yields (vj , ovj ,rj , rj) ∈ R for all j ∈ N. We first argue that
we have ovj ,rj ≤ ovj+1,rj+1 for all j ∈ N. To this end, let (o, r) = upd((ovj ,rj , rj), (vj , vj+1)).
By construction of the arena of the threshold game we have o ≥ ovj ,rj and r = rj+1.
Moreover, since (vj , ovj ,rj , rj) ∈ R and due to our definition of σ′, we obtain (vj+1, o, r) =
(vj+1, o, rj+1) ∈ R. Hence, o ≤ ovj+1,rj+1 , which implies ovj+1,rj+1 ≥ ovj ,rj .

Thus, the ovj ,rj are monotonically increasing. Furthermore, we easily obtain ovj ,rj < n
due to all (vj , ovj ,rj , rj) being in R, the definition of R, and due to σb being winning for

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:47

Player 0 from (v∗, init(v∗)). Hence, the sequence of the ovj ,rj eventually stabilizes, i.e., there
exists a j ∈ N such that ovj′ ,rj′ = ovj ,rj for all j′ ≥ j.

We argue that the play (vj , ovj ,rj , rj)(vj+1, ovj+1,rj+1 , rj+1)(vj+2, ovj+2,rj+2 , rj+2) · · · is
consistent with σb: Let j′ ≥ j be such that (vj′ , ovj′ ,rj′ , rj′) ∈ V

′
0 and let σb(vj′ , ovj′ ,rj′ , rj′) =

(vj′+1, o, rj′+1). We then clearly obtain o ≤ ovj′+1,rj′+1
by definition of the latter. Further-

more, we have ovj′ ,rj′ ≤ o due to the construction of the arena of the threshold game, which

yields o = ovj′+1,rj′+1
due to our assumption ovj′ ,rj′ = ovj′+1,rj′+1

.

Thus, the play (vj , ovj ,rj , rj)(vj+1, ovj+1,rj+1 , rj+1)(vj+2, ovj+2,rj+2 , rj+2) · · · starts in a
vertex from R, is consistent with σb, and shares a color sequence with a suffix of ρ due to oj ≤
ovj ,rj < n. The strategy σb being winning for Player 0 from (v∗, init(v∗)), the construction
of Gb and prefix-independence of the parity condition with weights then yield w(ρ) ≤ b.

For Player 1, in contrast, it is open whether one can omit the overflow counter when
implementing a strategy with cost at least b. Hence, we have to include it in the resulting
memory structure. Recall, however, that we have argued in Section 9.1 that we are able to
omit those memory states modeling a saturated overflow counter, thus slightly reducing the
size of the resulting strategy in comparison to a naive implementation. The following upper
bound thus results directly from the results of Section 9.1.

Corollary 9.12. Let G be a parity game with weights with n vertices and d odd colors and
let b ∈ N. Moreover, let v∗ be a vertex of G. If Player 1 has a strategy τ in G with Costv∗(τ) =

b, then she also has a strategy τ ′ with Costv∗(τ
′) ≥ b and |τ ′| = n(2b2 + 3b+ 2)

d
.

Having argued that exponential memory suffices for both players to implement optimal
strategies, we now turn our attention to providing matching lower bounds. These exponential
lower bounds are inherited from the special case of finitary parity games, for which Weinert
and Zimmermann [WZ17] showed that both players require exponential memory in order to
implement strategies that ensure or violate a given threshold. We reprint these results here
for the sake of completeness.

Proposition 9.13 [WZ17].

(1) For every d ≥ 1 there exists a finitary parity game Gd with a vertex v∗ such that
• Gd has d odd colors and |Gd| ∈ O(d2),
• Player 0 has a strategy σ in Gd with Costv∗(σ) = d2 + 2d,
• there exists no strategy σ′ for Player 0 with Costv∗(σ

′) < d2 + 2d, and
• for every strategy σ for Player 0 in Gd, Costv∗(σ) = d2 + 2d implies |σ| ≥ 2d−1.

(2) For every d ≥ 1 there exists a finitary parity game Gd with a vertex v∗ such that
• Gd has O(d) many vertices and 2d odd colors,
• Player 1 has a strategy τ in Gd with Costv∗(τ) = 5(d− 1) + 7,
• there exists no strategy τ ′ for Player 1 with Costv∗(τ

′) > 5(d− 1) + 7, and
• every strategy τ for Player 0 in Gd with Costv∗(τ) = 5(d− 1) + 7 has size at least 2d.

10. Conclusions and Future Work

We have established that parity games with weights and bounded parity games fall into the
same complexity class as energy parity games. This is interesting, because, while solving
such games has the signature complexity class NP ∩ co-NP, they are not yet considered a
class in their own right. It is also interesting because their properties appear to be inherently

20:48 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

different: While they both combine the qualitative parity condition with quantified costs,
parity games with weights combine these aspects on the property level, whereas energy
parity games simply look at the combined—and totally unrelated—properties. We show
the characteristic properties of parity games and of games with combinations of a parity
condition with quantitative conditions relevant for this work in Table 2.

Complexity Mem. Pl. 0/Pl. 1 Bounds

Parity Games [CJK+17] quasi-poly. pos./pos. –
Energy Parity Games [CD12,DJL18] pseudo-quasi-poly. O(ndW)/pos. O(nW)

Finitary Parity Games [CHH09] poly. pos./inf. O(nW)
Parity Games with Costs [FZ14,MMS15] quasi-poly. pos./inf. O(nW)

Parity Games with Weights pseudo-quasi-poly. O(nd2W)/inf. O((ndW)2)

Table 2: Characteristic properties of variants of parity games.

As future work, we are looking into the natural extensions of parity games with weights
to Streett games with weights [CHH09,FZ14], and at the complexity of determining optimal
bounds and strategies that obtain them [WZ17]. We are also looking at variations of the
problem. The two natural variations are

• to use a one-sided definition (instead of the absolute value) for the amplitude of a play, i.e.,
using Ampl(π) = supj<|π|w(v0 · · · vj) ∈ N∞ (instead of Ampl(π) = supj<|π| |w(v0 · · · vj)| ∈
N∞), and
• to use an arbitrary consecutive subsequence of a play, using the definition Ampl(π) =

supj≤k<|π| |w(vj · · · vk)| ∈ N∞.

There are good arguments in favor and against using these individual variations—and their
combination to Ampl(π) = supj≤k<|π|w(vj · · · vk) ∈ N∞—but we feel that the introduction
of parity games with weights benefit from choosing one of the four combinations as the
parity games with weights.

We expect the complexity to rise when changing from maximizing over the absolute
value to maximizing over the value, as this appears to be close to pushdown boundedness
games [CF13], and we conjecture this problem to be PSpace-complete.

References

[BCJ+97] Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long, and Wilfredo R. Marrero. An
improved algorithm for the evaluation of fixpoint expressions. Theor. Comp. Sci., 178(1–2):237–255,
1997.

[BV07] Henrik Björklund and Sergei Vorobyov. A combinatorial strongly subexponential strategy improve-
ment algorithm for mean payoff games. Discrete Appl. Math., 155(2):210–229, 2007.

[CD12] Krishnendu Chatterjee and Laurent Doyen. Energy Parity Games. Theor. Comp. Sci., 458:49–60,
2012.

[CF13] Krishnendu Chatterjee and Nathanaël Fijalkow. Infinite-state games with finitary conditions.
In Simona Ronchi Della Rocca, editor, CSL 2013, volume 23 of LIPIcs, pages 181–196. Schloss
Dagstuhl–LZI, 2013.

[CH06] Krishnendu Chatterjee and Thomas A. Henzinger. Finitary winning in ω-regular games. In Holger
Hermanns and Jens Palsberg, editors, TACAS 2006, volume 3920 of LNCS, pages 257–271.
Springer, 2006.

[CHH09] Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in ω-regular
games. Trans. Comput. Log., 11(1):1:1–1:27, 2009.

Vol. 15:3 PARITY GAMES WITH WEIGHTS 20:49

[CHJ05] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. Mean-payoff parity games.
In LICS 2005, pages 178–187. IEEE Computer Society, 2005.

[CJK+17] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in quasipoly-
nomial time. In STOC 2017, pages 252–263. ACM Press, 2017.

[Con93] Anne Condon. On algorithms for simple stochastic games. In Advances in Computational Com-
plexity Theory, pages 51–73. American Mathematical Society, 1993.

[DG18] Anuj Dawar and Erich Grädel, editors. LICS 2018. ACM, 2018.
[DJL18] Laure Daviaud, Marcin Jurdzinski, and Ranko Lazic. A pseudo-quasi-polynomial algorithm for

mean-payoff parity games. In Dawar and Grädel [DG18], pages 325–334.
[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, µ-calculus and determinacy. In FOCS

1991, pages 368–377. IEEE Computer Society, 1991.
[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of the propositional

µ-calculus. In LICS 1986, pages 267–278. IEEE Computer Society, 1986.
[FJS+17] John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered

approach to solving parity games in quasi polynomial time and quasi linear space. In SPIN 2017,
pages 112–121. ACM, 2017.

[FZ14] Nathanaël Fijalkow and Martin Zimmermann. Parity and Streett games with costs. LMCS, 10(2),
2014.

[JL17] Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In LICS
2017, pages 1–9. IEEE Computer Society, 2017.

[JLS08] Marcin Jurdziński, François Laroussinie, and Jeremy Sproston. Model checking probabilistic timed
automata with one or two clocks. LMCS, 4(3), 2008.

[JPZ08] Marcin Jurdziński, Mike Paterson, and Uri Zwick. A deterministic subexponential algorithm for
solving parity games. SIAM J. on Comp., 38(4):1519–1532, 2008.

[Jur98] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Proc. Lett.,
68(3):119–124, November 1998.

[Jur00] Marcin Jurdziński. Small progress measures for solving parity games. In STACS 2000, volume
1770 of LNCS, pages 290–301. Springer, 2000.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theor. Comp. Sci., 27:333–354, 1983.
[Leh18] Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In

Dawar and Grädel [DG18], pages 639–648.
[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
[McN93] Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149–184,

1993.
[MMS15] Fabio Mogavero, Aniello Murano, and Loredana Sorrentino. On promptness in parity games.

Fundam. Inform., 139(3):277–305, 2015.
[NRY96] Anil Nerode, Jeffrey B. Remmel, and Alexander Yakhnis. Mcnaughton games and extracting

strategies for concurrent programs. Ann. Pure Appl. Logic, 78(1-3):203–242, 1996.
[Pur95] Anuj Puri. Theory of hybrid systems and discrete event systems. PhD thesis, Computer Science

Department, University of California, Berkeley, 1995.
[Sch08] Sven Schewe. An optimal strategy improvement algorithm for solving parity and payoff games. In

CSL 2008, volume 5213 of LNCS, pages 368–383. Springer, 2008.
[Sch17] Sven Schewe. Solving parity games in big steps. J. of Comp. and Sys. Sci., 84:243–262, 2017.
[STV15] Sven Schewe, Ashutosh Trivedi, and Thomas Varghese. Symmetric strategy improvement. In

ICALP 2015, volume 9135 of LNCS, pages 388–400. Springer, 2015.
[SWZ18] Sven Schewe, Alexander Weinert, and Martin Zimmermann. Parity games with weights. In CSL

2018, pages 36:1–36:17, 2018.
[VJ00] Jens Vöge and Marcin Jurdzinski. A discrete strategy improvement algorithm for solving parity

games. In E. Allen Emerson and A. Prasad Sistla, editors, CAV 2000, volume 1855 of LNCS,
pages 202–215. Springer, 2000.

[WZ17] Alexander Weinert and Martin Zimmermann. Easy to win, hard to master: Optimal strategies in
parity games with costs. LMCS, 13(3), 2017.

[Zer13] Ernst Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In Proc.
Fifth Congress of Mathematicians, Vol. 2, pages 501–504. Cambridge Press, 1913.

20:50 S. Schewe, A. Weinert, and M. Zimmermann Vol. 15:3

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theor. Comp. Sci., 200(1-2):135–183, 1998.

[ZP96] Uri Zwick and Mike S. Paterson. The complexity of mean payoff games on graphs. Theor. Comp.
Sci., 158(1–2):343–359, 1996.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Parity Games with Weights
	4. Solving Parity Games with Weights
	5. Solving Bounded Parity Games with Weights
	5.1. Energy Parity Games
	5.2. From Bounded Parity Games with Weights to Energy Parity Games
	5.3. Proof of Lemma ??

	6. Memory Requirements
	7. Quality of Strategies
	8. From Energy Parity Games to (Bounded) Parity Games with Weights
	8.1. From Energy Parity Games to Bounded Parity Games with Weights
	8.2. From Bounded Parity Games with Weights to Parity Games with Weights
	8.3. Relation to Mean-Payoff Parity Games

	9. The Threshold Problem
	9.1. ExpTime-Membership
	9.2. ExpTime-Hardness
	9.3. Memory Requirements

	10. Conclusions and Future Work
	References

