Optimally Resilient Strategies in Pushdown Safety Games

Joint work with Daniel Neider (MPI-SWS) and Patrick Totzke (Liverpool)
Artwork by Paulina Zimmermann

Martin Zimmermann
University of Liverpool

September 2020
Highlights 2020
\[\omega + 1 \quad \cdots \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad \cdots \]

0
Theorem

Player 0 has a (globally) optimally resilient strategy in every pushdown safety game with disturbances.

Note

No longer true in infinitely branching arenas!
Lemma
Let G be a pushdown safety game with initial vertex v_I. If $r(v_I) \neq \omega + 1$, then $r(v_I) < 2^{|G|} \cdot |\Gamma|^{|G|}$ (not the actual value).

Note
Bound is tight for pushdown and one-counter arenas.
Theorem

The following problem can be solved in triply-exponential time: “Given a pushdown safety game \mathcal{G} with initial vertex v_i, determine the resilience value of v_i”. Also, an optimally resilient strategy from v_i can be computed in triply-exponential time.

Note

None.
Theorem
The following problem can be solved in polynomial space: “Given a one-counter safety game G with initial vertex v_I, determine the resilience value of v_I”.

Note
No strategy computed.
Thank you for watching.

A longer version of this talk is available on the YouTube channel of MFCS 2020 (linked from my homepage)

Daniel Neider: neider@mpi-sws.org
Patrick Totzke: totzke@liverpool.ac.uk
Martin Zimmermann: martin.zimmermann@liverpool.ac.uk